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A mean-field theory is developed which describes the effects of lattice disorder on magnetic phase transitions.
Depending on the parameter values, three types of renormalization effects on Tc can occur, i.e., weak, strong, or
catastrophic; the last implies a first-order phase transition in both magnetic and lattice order parameter. Phase
diagrams are obtained which show both the existence of critical triple points and the effects of phonon
entropy in determining Tc. It is also shown that even in the weak-coupling limit, the lattice disordering
process can be driven by magnetic entropy alone. The model is applied to MnBi, which undergoes a first-
order magnetic phase transition well below its mean-field-value Curie temperature.

I. INTRODUCTION

Although the theory of phase transitions in single-
order-parameter systems has been studied inten-
sively for several decades, it is only recently that
the more complicated case of interacting order
parameters has been considered. Many-order-
parameter systems are particularly interesting
because even small interactions can lead to a strong
renormalization of the critical temperature and in
some cases change the character of the phase tran-
sition from second to first order or vice versa.
Examples of such couplings between competing pro-
cesses are found in mixed magnetic crystals with two

types of magnetic ordering, ' superfluid and crystal-
line ordering in solid 'He, magnetic-nonmagnetic
metal insulator transitions, 3 and crystals which com-
bine ferroelectric and ferromagnetic properties. 4

In this paper we present a mean-field theory
which describes the effects of lattice disorder on
magnetic phase transitions. ' As exemplified by the
case of ferromagnetic MnBi, this type of interac-
tion can be strong enough to change not only a sec-
ond-order magnetic phase transition into a first-
order one, but the character of the usual order-
disorder process that takes place in nonmagnetic
crystals as well. 6 The question we pose is the fol-
lowing: Given a crystalline magnetic system (anti-
ferro, ferri, or ferromagnetic) which undergoes a
second-order phase transition in the magnetization
order parameter, what is the effect of the lattice
structure which itself can disorder? Furthermore,
will the effects of order-parameter coupling be
readily observable?

In order to answer these questions a general, but
well-defined model is derived in Sec. II. The ther-
modynamics of the model are derived using a mean-
field approach in Sec. III and the results and phase
diagrams obtained are discussed in Sec. IV. Final-
ly, in Sec. V, MnBi is analyzed in some detail in
the context of our theory.

Throughout this paper a mean-field approach is
used, which neglects fluctuation effects. This is
not a serious flaw, since in most cases the effects

H,„=—2Q Q A;;S;,(S),), (2. 1)

where the summations are over all lattice sites,
A&& is the exchange interaction (J;; is positive), and

we are studying lead to first-order phase transi-
tions well below Tc, so that fluctuations play a
negligible role. However, in some cases our treat-
ment may only be approximate. For example, the
critical region for the magnetic order parameter
for a ferromagnet is small, but the critical region
in the lattice order parameter may be significant.
In this case neglecting fluctuations might lead to
errors in the description of weakly-first-order
phase transitions in either order parameter. 7

Nevertheless, the qualitative behavior predicted by
our theory will remain basically unchanged, and
so we feel that a mean-field-theory approach through-
out this paper is appropriate for our purposes.

II. MODEL

In order to analyze specifically the effects of lat-
tice disorder on the properties of a magnetic sys-
tern and conversely, we develop a simple but gen-
eral model. We take the ground state of our ther-
modynamic system to be a perfectly ordered mag-
netic crystal with no defects. Furthermore, the
ions are taken to be in a well defined spin state
( J) coupled by a ferromagnetic exchange interac-
tion. As the temperature increases, the system
disorders either by promoting some of its ions into
interstitial positions leaving a vacancy with no spin,
or by disordering the spins at regular lattice sites.
We assume that an ion in an interstitial site retains
its spin multiplicity and that it is magnetically un-
coupled to either the lattice or other interstitials.
Although this assumption is restrictive, it does not
affect the phase transition behavior and can be re-
moved by introducing extra magnetic couplings be-
tween ions in interstitial sites or between ions in
lattice sites and interstitial sites.

In the mean-field approximation the exchange
Hamiltonian is written

1,2 2'74].
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S&, is the & component of the spin operator at lat-
tice site i. Since (S&,) is independent of the lattice
label Eq. (2. 1) becomes

(2. 2)

Furthermore, if the exchange coupling is nonzero
for nearest neighbors only, then

ZA;g ——A aqua' (2. 3)

where A' is the exchange constant, q is the lattice-
site occupation probability, i. e. , the probability
that sites i and j are occupied simultaneously, s
is the number of magnetic nearest neighbors for a
given ion, and J is its spin eigenvalue. Next we de-
fine a lattice order parameter g in terms of the
fractional number of occupied interstitials n& as

ri =- 1 —qn), (2. 4)

QA)g =Aors Z2
Qf

The total magnetization is given by

(2. 5)

where q is the fractional number of interstitial sites
which are occupied when q =0. In terms of g, Eq.
(2. 3) becomes

E =H =&JA gM +U~n; —Un;, (2. 11)

which at T = 0 determines the equilibrium configura-
tion of the system. For a perfectly ordered
(q = 1) ferromagnetic crystal (M = 1), we must have

whereas an ordered antiferromagnet requires

or ion-lattice interactions are present, the total
activation energy becomes excitation-number de-
pendent and can be approximated by

2
&~att~ce= Ugn; —Un

where U is a parameter which depends on the type
of interaction one assumes. There are several
mechanisms that can give rise to the second term
in Eq. (2. 10). The additional strain field induced

by an ion in an interstitial site provides an interac-
tion energy proportional to n2&, and so does the
screened attractive interaction between an ion in an
interstitial site and the vacancy it leaves behind. '
Since the strain field of the populated interstitials
is very small in very open lattice systems, we can
safely assume that the screened interaction will
produce the Un2~ term in crystals with large num-
bers of interstitial sites, such as MnBi.

The total internal energy is then

M =n, 2pe(S, ), (2. 8)

n =Nq, (2. 7)

where n, is the number of exchange-coupled sites
per unit volume and p, B is the Bohr magneton.
Since an ion in an interstitial site is magnetically
decoupled from all other ions, n, is given by

III. THERMODYNAMICS

An expression for the entropy of the system is
needed in order to write a trial Gibbs-free-energy
density. In terms of E given by (2. 11), the con-
figurational entropy is

where N is the total number of lattice ions plus in-
terstitial sites. Upon substituting (2. 5) and (2. 7)
in (2. 2) the exchange Hamiltonian becomes

S=uB ln e 'E""" Z
(n)

(3. 1)

He„= -A'M

where

A' =(-~A J/2p, eN)q .

(2. 8)

(2. 9)

An examination of Eqs. (2. 8) and (2. 9) indicates
that lattice disorder produces a renormalization of
the exchange energy. As shown below, ihe strength
of the renormalization effects will depend on a
subtle interplay of spin and lattice entropy. This
interaction will in turn determine the temperature
dependence of g and hence A'.

In order to completely specify the model, we
must determine the lattice-disorder contribution
to the internal energy. If U; is the activation ener-
gy for promoting an ion into an interstitial site and
no interaction is assumed between the occupied in-
terstitial and the remaining vacancy, the total en-
ergy would be proportional to U, n; (neglecting the
kinetic energy'v of the ion). If. however, ion-ion

where P—= (k~T) and E((n)) denotes all possible
states of the system. An additional term is neces-
sary to describe the change in force constants (and

thereby vibrational frequency) that an ion undergoes
as it is promoted into an interstitial site. For har-
monic forces, the contribution to the partition func-
tion is given by

g e-nt (u 2+~2u) /2ABT d~ dg
~ OO

(3.2)

G = —Sn;&BT lnI', (3. 3)

where I'-=e;/&u and the factor 3 arises from the
allowed three vibrational modes. Finally, we ob-
tain

where I is the ionic mass and ~ is its vibrational
frequency in a regular lattice site. If the vibration-
al frequency in the interstitial site is ~;, the total
phonon contribution to the free energy is
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G = (U, —SksTlnI')n, —Un, +AOZJr/M +ksT[2n, inn; —n, [ln(2J+1)@]

+ 2 (1 —n, ) ln(1 —n;) —(1 —Qn;)(ln (sinh[(2 J + 1)BM/2 J]'/ —ln[sinh(BM/2 J)])].,

in which the exchange parameter 9 is defined by

B= 2A —&J /)/ksT .

(s. 4)

The equilibrium behavior of both the magnetic and lattice order parameters is determined by requiring the
system to be in a state in which the Gibbs free energy is an absolute minimum at any given temperature.
From SG/SM = 0 we obtain

M=[(2J+1)/2J]coth[(2J+1)BM/2J] —(1/2J) coth(BM/2J), (3.6)

which is the usual Brillouin equation modified by the temperature dependence of the exchange parameter as
expressed directly in (3. 5) and indirectly through q. The second minimization condition (i.e. , BG/sn;=0)
yields

U; + Sks T ln(1 ) —2 Un; = —Aoz J2QM2+ ks T [2 ln(l —n, ) —2 1n(n, ) +ln(2 J + 1)o

—Q(ln(sinh[(2 J + 1)BM/2 J])—ln[sinh(BM/2 J)])] . (3 7)

2MJ' —[(2J + 1) —1]BM/6 J = 0 . (s. 6)

This equation, through the temperature dependence
of B [Eq. (3.5)], gives the Curie temperature Tc,

Equations (3.6) and (S.7), together with the re
quirement of providing an absolute free-energy
minimum for G, determine the equilibrium con-
figurations of the system. Before presenting and
discussing the phase diagrams which result from
solving (3. 6) and (3.7), it is illuminating to con-
sider some limiting cases. (i) As T-O, coth(BM/
2J')-1 and M=1 as expected. Moreover, the free
energy becomes G = —AozJ'. (ii) As M-O, Eq.
(S.6) becomes

tional and phonon entropy, whereas the magnetic
disorder would be essentially determined by the
value of the exchange constant and the spin multi-
plicity of the ions. However, because both degrees
of freedom affect the transition, the disordering
process can exhibit a rich variety of possible be-
haviors. In particular, the possibility exists that
lattice disorder might be driven by magnetic en-
tropy if the gain in spin entropy per ion promoted
into an interstitial site becomes larger than the in-
crease in phonon entropy resulting from the same
process. If we assume M=1, the condition for this
magnetically driven lattice disorder process can
be written

Tc = 2 J(J+1)A zq/Sks = Tcq . (s. 9) (F-3/ 2 1) (3. 11)

As can be seen, Eq. (3.9) yields the usual mean-
field value in the limit g-1. The lack of perfect
lattice order causes T& to be re&ormalized down by
a factor q = 1 —Qn„with n, determined by (3.7) at
T~. Furthermore, as M-0 the magnetic contribu-
tion to the free-energy density becomes

G = ks T ln(2 J'+ 1) (3. 10)

per ion. This result follows from small argument
expansions of the hyperbolic functions. Thus re-
gardless of the number of occupied interstitial sites
we obtain the usual spin-multiplicity contribution to
the entropy.

The entropy contribution to the free energy also
provides insight into the role of coupled order pa-
rameters in determining not only the degree, but
also the character of the phase transition. As noted
above, the system entropy can increase in two ways
with increasing temperature. First, by spin disor-
der at the lattice sites and second by promoting ions
into paramagnetic interstitial sites. If both pro-
cesses were totally uncoupled, the interstitial site
population would be regulated solely by configura-

Thus even with no change in phonon frequency (I' =1)
an ion with spin as small as & can drive a lattice
order-disorder transition.

IV. NUMERICAL RESULTS

The large variety of phenomena described by the
model is illustrated by solving Eqs. (S.6) and (3.7)
for different values of the parameters. The tech-
nique used for solving these equations is quite
straightforward. %e set n; =0 in g which appears
in B of (3.6) and solve (3.6) numerically for M.
This value of M is then used in (S.7) to determine
n;, which in turn is substituted in (3.6). Usually,
one iteration is sufficient, but in rare cases a few
have been necessary. The numerical procedure
employed to solve (3.6) and (3.7) is the bisection
technique, which works well in the vicinity of singu-
larities of the type that occur in our equations. It
should be noted that the free-energy minimum may
not occur at the solutions of Eqs. (S.6) and (3.7).
Rather, it may occur on the boundary, which is a
rectangle in the (n„M) plane bounded by n; = 0, 1/Q
and M = 0, 1. Thus we also seek minima on the
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FIG. 1. Magnetization order parameter as a function
of reduced temperature. Parameter values are I'=1,
@=2, J=2, and @=2. Curve (a) corresponds to A=0. 0077
eV with U&/U=1, curve (b) to A =0.035eV with U;/U=1,
and curve (c) to A = 0. 0077 eV with U~/ U = 0.6.

boundary and compare values of the free energy to
determine the absolute minimum.

The solutions we have obtained for the magnetic
order parameter are of three distinct types, as il-
lustrated in Fig. 1, where we plot the magnetiza-
tion order parameter as a function of the reduced
temperature for different sets of parameters.

(a) Weak renormalization. This case is charac-
terized by a mean-field-type behavior for the mag-
netization with a perfectly ordered crystal. A sec-
ond-order phase transition occurs at Tc [as given
by (3. 9) with n =1] and with mean-field values for
the critical exponents. In this situation, as found in
most crystalline ferromagnets, the defect concen-
tration is on the order of 10 ~-10 . Above T~ the
material is an ordered paramagnet which undergoes
a first-order phase transition in the lattice order
parameter at some higher temperature than T~.

(b) Strong xenoxmalization. In this case there is
a strong temperature variation of the lattice order
parameter near Tc. The functional dependence of
M(T) changes drastically from a Brillouin-type
solution with T~ strongly renormalized. This type
of behavior, illustrated in Fig. 1(b), is the one in
which fluctuation effects can significantly alter
mean-field-theory predictions. Specifically, when
the lattice order parameter undergoes a second-
order phase transition near T~, the critical ex-
ponents for both order parameters might even differ
from those calculated by group renormalization
techniques in the absence of any order parameter
coupling.

(c) CatastroPkicrenoxmalization. This case is
characterized by a lattice order parameter which
undergoes a first-order phase transition at To& T~ .

(4. 1)

where S is given by (3.4).
The total phase diagram in which the normalized

temperature is plotted versus U/U& for different
parameter values is shown in Fig. 2. At a given
temperature, depending on I' and U/U;, the system
exists in one of three phases. Qne phase is the or-
dered ferromagnet in which both the spin and mag-
netization are ordered. A second phase is the or-
dered paramagnet in which the lattice is ordered,
but the spin disordered. The third phase is the dis-
ordered paramagnetic in which both are disordered.
The dashed lines delineate the second-order phase
transition and the solid curves indicate the first-
order transitions. As can be seen, I' shifts the
transition temperature but does not change the main

features of the phase diagram. The solid curves
terminate at critical points at both ends, but only
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FIG. 2. Phase diagram of our model as a function of
U/U; for different values of the parameters. Solid lines
denote first-order phase transitions; dashed lines denote
second-order phase transitions. Small circles denote
critical points; large circles correspond to critical triple
points.

Then the magnetization also undergoes a first-order
phase transition to zero at To as shown in Fig. 1(c).
Above T, the system is totally disordered; it be-
comes a paramagnetic "liquid. " There is a latent
heat associated with this transition given by L
= T,M, where ~S is the entropy difference between
the M=1, q =1 phase and the M =O, q =0 phase, i.e. ,

L= T [S(1,1) —S(0, 0)],
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one critical point falls within the boundary of the
figure. The intersections of the solid and dashed
curves locate the critical triPle Points at the re-
normalized Tc.

V. MANGANESE BISMUTH

FIG. 3. Calculated magnetization for MnBi in the low-
temperature phase, The solid line shows the calculated
values; circles show the measured magnetization. The
dashed line corresponds to the extension of Eq. (3.6) be-
yond To, the first-order phase transition. The defect
concentration right below To is of the order of 10

stitial site the right-hand side of (S.11) becomes
0.9, which is smaller than J=2.

In Fig. 3, we plot the magnetization order param-
eter using known values appropriate to ]VJnBi, viz. ,
J = 2, U; = l. 0 eV, z = 2. 0, Q = 2. 0 and A o = 0. 0077
eV. Although U is not known a Priori, the value
U=1. 7 eV which yields TO=625 K, for I'=1.0, is
quite reasonable. It should be noted that changing
I' and therefore U to retain TO=625 K does not
significantly affect the magnetization curve below
To. The solid curves in Fig. 3 were calculated
using the free-energy minimization condition and
the circles correspond to the measured magnetiza-
tion in single crystal samples. The agreement is
quite good. This indicates that below 625 'K the
magnetization closely follows mean-field-theory
predictions for J=2. The dashed curve is the ex-
trapolation of the Brillouin-function solution in the
case of uncoupled order parameters.

It has been recently reported by Chen' that the
first-order magnetic phase transition is accompa-
nied by a phase decomposition in which Bi is re-
leased. It is possible that the departure from
stoichiometry is triggered by the interstitial occu-
pation by Mn ions, which leave nucleation sites for
Bi-rich areas on the surface.

VI. CONCLUSIONS

To illustrate some of the predictions of our model
we consider manganese bismuth (MnBi), which is
a room-temperature ferromagnet. Furthermore,
MnBi has a large optical Faraday rotation, large
anisotropy, and small domain size. These proper-
ties make it particularly useful for high-density
magneto-optic holography. This stoichiometric
compound has a low-temperature phase which has
an open NiAs lattice structure. Its saturation mag-
natization at T-0 is approximately four Bohr mag-
netons which indicates that the Mn ions in the crys-
talline sites are in a Mns' configuration with J= 2.

The critical temperature T~ as given by Eq.
(S.9) is 717 'K, well above the phase decomposition
temperature of 625 K. Thus one would expect that
a catastrophic renormalization of the Curie tem-
perature occurs. That this is indeed the case is
illustrated by the first-order magnetic phase tran-
sition at 625 K, which accompanies the lattice dis-
ordering process.

In terms of our model both phase transitions can
be viewed as being caused by a delocalization of the
Mn ' ions which can occupy either a regular lattice
site or an interstitial site. The latent heat accom-
panying this phase transition is 2. 5 kcal/mole as
calculated from (4. 1) with J =2. From (3. 11)
one concludes that the transitions are spin disor-
der driven for the following reason. Even if one
assumes that the lattice constant changes by 25%
upon promotion of an ion from a lattice to an inter-

As we have shown, the coupling between the mag-
netization in a crystal and the lattice order param-
eter can lead to strong renormalization effects
which influence not only the magnetic properties
of the system but its lattice stability as well. In
most cases magnetic phase transitions take place
at temperatures much lower than that of the melt-
ing point of the crystal and therefore the effects of
lattice disorder on T~ are negligible. However,
there are crystals such as Mn Bi which undergo
lattice order-disorder transitions at temperatures
below T~, and as we have shown, this leads to a
first-order phase transition in the magnetization
which in many instances accounts for all the ob-
served latent heat. Equally important, the usual
lattice order-disorder process can be driven by
spin entropy if the entropy gain per spin [which is
proportional to ln(2 J+1)j is larger than the phonon
entropy gain, as we have shown in Sec. III. Since
our treatment uses mean-field theory it only al-
lows for qualitative predictions in the case where
both lattice order parameter and magnetization tend
to undergo a second-order phase transition simul-
taneously. Since the critical region for the lattice
order parameter is much larger than that for the
magnetization, one expects the renormalization
effects on M(T) to be much stronger than those dis-
cussed above. Nevertheless, the qualitative fea-
tures in this case will remain the same when fluc-
tuation effects are considered.
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Although we have only considered ferromagnetic
coupling of the ions, the theory we have presented
here is quite amenable to modifications which will
make it very general. Besides describing the criti-
cal properties of systems with coupled order pa-

rameters, it can be used accurately for tempera-
tures far below To and To (where the usual Landau
expansion of the free energy is not valid) and there-
fore yield into the nature of defect formation in
complex situations.
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