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Phonon-induced phase transition in a classical Heisenberg chain*
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The linear chain of classical Heisenberg spins coupled to phonons is studied. The coupling arises from the
phonon-modulation of the nearest-neighbor exchange integral and the cases of both direct exchange and
superexchange are treated. The phonons lead to an effective biquadratic interaction between spins, with
important physical consequences. Thermodynamic functions at finite temperatures and zero field are evaluated
exactly and discussed. It is shown that antiferromagnetically coupled spins in an external field at T = O'K can
undergo a first-order phase transition; as the field crosses a critical value, the magnetization and lattice
spacing change discontinuously.

I. INTRODUCTION II. HAMILTONIAN AND UNITARY TRANSFORMATION

Although models exhibiting spin-phonon inter-
actions have been studied for several years, exact
solutions so far have been confined to Ising sys-
tems. ' ' The present paper obtains the thermo-
dynamic properties and correlation functions of a
linear chain of classical Heisenberg spins whose
coupling is modulated by phonons. Bolton and Lee'
have noted that with classical Heisenberg spins and
a spin-phonon interaction linear in the phonon op-
erators, the Hamiltonian may be transformed in-
to parts which separately depend on spin and lat-
tice degrees of freedom. However, the trans-
formed spin Hamiltonian is not usually exactly
solvable. Part of the interest of the present model
stems from its being an exception in this respect.

The method of solution employs a unitary trans-
formation which is a direct generalization of that
used by Mattis and Shultz' for the corresponding
spin-& Ising problem. However, unlike the trans-
formed Hamiltonian obtained by Mattis and Schultz, '
that obtained here exhibits biquadratic interac-
tions —and these have important physical conse-
quences. Besides affecting the thermodynamic
properties and correlation functions (which can be
calculated exactly at all temperatures in zero mag-
netic field'8), the interactions can lead to a first-
order phase transition at zero temperature; both
the magnetization and the lattice spacing change
discontinuously as the field crosses a critical
value.

It is shown that these results hold even when the
magnetic coupling arises through superexchange.
A rough estimate of the phonon-induced interaction
shows that it may well be large enough for the
phase transition to be observable.

The Hamiltonian under study here is

SC=J Q S)'Si~, —HQ S)

-yQ(x„,—x, )S,. ~ S„,+—QP,.'+-Q(x, „-x,)'.
1
4 m

(1)
8& is a classical unit vector, S&' is its a component,
and II is the external field applied along the z axis.
x; is the displacement of site i from its mean po-
sition with y = 0 and P& is its momentum. x, and P&

are quantum-mechanical operators obeying the
commutation rule [x&,P, ] =i5». k (& 0) is the spring
constant between adjacent sites and m is the mass
of each site.

The interactions in Eq. (1) are envisaged to
arise from direct exchange. The spin-phonon cou-
pling arises as the strength of the exchange cou-
pling J(x) between two sites is a function of their
separation &. Assuming that expanding Z(r) as a
function of & and then retaining terms linear in
site displacements is justified, the Hamiltonian in
Eq. (1) results, with the identification J =J(a) and

y = —[M(&)/8&]„„where & is the equilibrium sep-
aration of the sites in the absence of spin-phonon
coupling. The form of the spin-phonon interaction,
when J'(&) arises via superexchange, is discussed
in Sec. V.

Salinas' has pointed out that the Ising chain in-
teracting with phonons exhibits different properties
under different constraints. Here free boundary
conditions are assumed, corresponding to fixing
the applied pressure at zero and allowing the
length of the chain to vary.

Defining
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Ui,

with

y A

U,. =azp i—P, PS,. S&„},
j& i

one finds

Uxi U ' =xi+— S~'S)+„
j&i

UR U =K g +cdph y

where

R, =JQS,. ~ S,.„-HQS;
-A Q (S) ~ S)+,)2,

p2 k
KPh= Q~~ +2 Q (x, ,—x))',

(2)

(3)

(4)

(8)

Here P= T ' (T is the temperature and Boltzmann's
constant has been set equal to unity). The inte-
grals in Eq. (8b) are over all orientations of the
vectors 8;, and the trace in Eq. (8c) is over phonon
states. Let ( ~ ~ ~ ) denote (1/Z)Tre . . . , and let
( ~ '), denote (1/Z) Tre

Using Eq. (3) and the invariance of the trace un-
der unitary transformations, one then has

g =-(x,.„-x,.) = (y/k)(S, S,.„),. (8)

The linear chain is thus seen to exhibit magneto-
striction, and for small fields II the distance be-
tween nearest neighbors is less (greater) than the
value with y = 0, provided that y has a sign which
is the same as (opposite to) J. As the temperature
rises, (S, ~ S,„),monotonically decreases in abso-
lute magnitude and the chain correspondingly ex-
pands (contracts) to its length with y = 0.

III. FINITE-TEMPERATURE PROPERTIES IN ZERO FIELD

and

A =y'/2k.

Z=- Tre-8~ =Z,Z„„, (8a)

where Tr denotes integration over the spin vari-
ables together with a trace over phonon states and

Ji J[ le- a Kg (8b)
i~ 4r

Zph tr e (8c)

The effect of U is to uncouple the Hamiltonian in-
to parts which depend separately on the spin and
lattice degrees of freedom. The transformation
exploits the classical (i.e., commuting) nature of
the spins; although a similar transformation may
be used for a pair of quantum-mechanical Heisen-
berg spins, ' the generalization to a chain is not
possible.

In contrast to the Ising system studied by Mattis
and Schultz, ' here there is a phonon-induced bi-
quadratic coupling between the spins. With &= 0,
the linear chain of classical spins with isotropic
bilinear and biquadratic coupling has been studied
previously ' and the partition function and corre-
lation functions have been found. The thermody-
namic properties are briefly discussed in Sec.
III. As & is always positive, the possibility of-
competition' between the bilinear (BL) and biqua-
dratic (BQ) terms does not arise. The situation
is quite different with nonzero II, and in Sec. IV
it is shown that a first-order phase transition can
occur at 7.'=O'K as B is changed, as a result of
different types of ordering favored by the BL and

BQ terms.
The partition function Z factors:

II is set equal to zero throughout this section.
With this constraint, Z~ has been evaluated pre-
viously" and straightforward diff erentiation yields
the corresponding spin specific heat per site,

C~ = p'[A'(I4- I22)-2 JA (I,-I,I,) +J~(I2 —Im)],

where

I„=I„/I
and

~1 2

1

(10)

(12)

2

[J'(I2- 1,2) —A(I3-I~I2)] . (14)

For the Ising model considered by Mattis and
Schultz, ' o. is proportional to C, . From Eqs. (10)
and (13) it is seen that such a relation holds for
the Heisenberg chain only in the limit of weak
spin-phonon coupling (y, A - 0).

The zero-field magnetic susceptibility may be
evaluated, expressing it in terms of spin corre-
lation functions and noting that

(s, s,.)=(s, s,.),.
The result is

The specific heat of the system is the sum of C~

and the phononic contribution.
Using the expression for the correlation function

(S S&)o obtained in Ref s. 7 and 8 in Eq. (9), one

finds the change in the intersite spacing is

(13)

and the temperature derivative of f is
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zz PP'1 - Ii
X 3 1+1 (15)

where ILL is the magnetic moment of the electron.
To analyze the low-temperature behavior of

various thermodynamic quantities, one may use
the readily proved recursion relation

2Pg z BA[ -Sz
( 1)a+1 Bz] PJz z

(16)
together with the asymptotic form of I,. Writing
E, in terms of an error function of complex argu-
ment, ' and using the asymptotic form of the lat-
ter' one finds

e z(&+ I
J' I) 3

"""2PR+lIJI) '2P&(1+ IJII»)"4P'&'(I+IJI/2&)"

In the absence of spin-phonon coupling, it is
known" that Cz-1 a,s 7'-O'K —a reflection of the
classical nature of the spins. With A 40, C~ ap-
proaches the same value, as can be shown from
Eqs. (10), (16), and (1'7). o. approaches the value,
(sgn J)y/[k(IJI+2&)], as & 0'K.

With ferromagnetic coupling between spins
(J&0), Eqs. (15)-(1I) yield

x", .;—lP'v'(IJI+»).

The amplitude of the divergence is enhanced over
its value in the absence of coupling to phonons.

With antiferromagnetic coupling (J&0),

zz P.
'

6(J'+ 2A)' (19)

The coupling to phonons in this case a,cts to dimin-
ish the susceptibility.

In either case (i.e. , J positive or negative) the
effect of the phonon-induced BQ interactions as
T-O'K is to effectively increase the value of IJI.
This seems intuitively plausible (if ZZ =0) as the
BQ terms in Xz do not distinguish between con-
figurations in which adjacent spins are parallel
or antiparallel; in either case they tend to rein-
force the effect of the BI interactions.

This is no longer necessarily true in the pres-
ence of an applied magnetic field; the types of
ordering favored by the BQ and BL terms may
not be identical and, as shown in Sec. IV, a first-
order phase transition can result.

occurs, consider the case of antiferromagnetic J
with an applied magnetic field. P' will be restrict-
ed to be positive throughout this section. ) For
small fields, the ground state of the system is as
illustrated in Fig. 1(a). The larger the value of J,
the smaller will be the bending of the spins, and
the smaller the susceptibility. In this regime it
is clear that the BQ terms assist the BL terms in
opposing the applied field.

However, when 8 is close to 90', the BQ terms
side with the magnetic field in tending to align the
spins parallel. It is this ambivalence in the order-
ing tendency of the BQ terms which leads to a
first-order phase transition. The latter occurs
when the state with 8 =90' [Fig. 1(b)] becomes en-
ergetically favorable over one with a small value
of 8 [Fig. 1(a)].

Writing Rz =g, h, „„it follows that

&s- &~ ~+i (20)

where E~ and E; „,are the ground-state energies
of K~ and h; &„, respectively. The equality holds
in (20) provided the ground states of h«„ for dif-
ferent i are compatible. This proves to be the
case" if

~~
~
~+i=J~»'~~+i-&(~ S~+i)'-zI (~';+~)+,). (»)

Thus it is only necessary to find the configuration
which minimizes h». It is easily seen that in the

IV. PHASE TRANSITION WITH CHANGING H AT T=O'K

In this section, the ground state of the spin sys-
tem described by the Hamiltonian Kz [Eq. (5)] is
studied. The results are valid for arbitrary lat-
tice dimensionality for the analogous Hamiltonian
with nearest-neighbor BL and BQ interactions, al-
though for dimensions larger than one, such a
Hamiltonian does not result from spin-phonon in-
teractions.

In order to understand why the phase transition

S(
A
Sp

S) )l ~~ Sp

FIG. 1. (a) Ground-state configuration with antiferro-
rnagnetic coupling is illustrated for the case H &H, .
(b) When the field increases and crosses the critical
value 0, , the spins suddenly line up along the field.
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lowest-energy configuration, the magnetic field
bisects the angle between S, and 8,. Defining 8 to
be the angle made by each of the spins with the
axis normal to the magnetic field [Fig. 1(a)] the
problem reduces to finding the value of L9 which
maximizes

f(8) =J cos28+A cos'28+Hsin8 (22)

in the domain 0& 0& 90'.
Setting the first derivative equal to zero, one

obtains

coso =0 (23a)

or

sin8 cos28 =H/8 A- P'/2A) sin8. (23b)

Equation (23b) may have zero, one, or two roots
in the domain of interest depending on the relative
magnitudes of J, &, and &. The two-root case is
of interest here. Figure 2 shows a plot of the left-
and right-hand sides of Eq. (23b) (the solid and
dashed curves, respectively), with J'/A =4 and
H/A =10.52. The intersections of the curves de-
termine the locations of the local maximum M,
(say at 8,) and the local minimum M, of f(8). The
function f(8) is plotted in Fig. 3 for the same val-
ues of J/A and H/A. It is seen that f(8,) equals
f(90') for these values of the parameters. Were
H slightly smaller, f(8o) &f(90') would hold; if
slightly larger, f(90') &f(8,) would hold. Thus,
holding J fixed at 4&, as H crosses the critical
value H, =10.52A, there is a first-order phase
transition as the spins move from the spin-flopped
phase [Fig. 1(a)] to one in which they are aligned
along the field [Fig. 1(b)].

The staggered magnetization M, normal to the
field is a measure of the antiferromagnetic order
in the system. As & increases and crosses H„
M, jumps from costa to zero. There is a corre-
sponding discontinuous change in the inter-site
spacing, as the value of the spin correlation
(S, S,+,)o changes abruptly. Using Eq. (9), one
has

~H Hg+) ~H H (-) (2r/&) cos'8. (24)

A necessary condition for the transition to occur
is that the solid and dashed curves (see Fig. 2) in-
tersect at two points. As H is changed, the dashed
curve is displaced vertically. Increasing J/A
corresponds to making the dashed curve steeper.
It is clear that when J/A is sufficiently large,
there can be only one point of intersection. Con-
sequently, f(8) has only one maximum point in
0 & 0 ~ 90' and no discontinuous phase transition is
possible if & is too small. "

The first-order transition discussed here is
quite different from that discussed by Bean and
Rodbell, "with increasing magnetic field. The
transition considered by them occurs in a ferro-
magnet above the Curie temperature; as the field
increases, the ferromagnetic-order parameter
increases discontinuously. In contrast, in the
phase transition in the antiferromagnet discussed
here, the order parameter M, decreases discon-
tinuously to zero as the field increases.

f(8)
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FIG. 2. Left- and right-hand sides of Eq. (23b) are

plotted with J=4A and H = B, =10.52A. The points of
intersections of the two curves determine the positions of
two of the extrema of f(0). With sufficiently large J/A. ,
there is at most one point of intersection and no phase
transition is possible.

8 (deg)

FIG. 3. f(8) is plotted with J =4A and H=H, =10.52A.
The maximum of f(0) determines the ground-state con-
figuration. As H increases and crosses H, , the location
of the maximum jumps from 00 to 90'.
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V. PHONON MODULATION OF

SUPEREXCHANGE COUPLING

It is interesting that the generalization of the re-
sults of Sec . II-IV to the case of suP exexcha nge
coupling presents no additional difficulty. Such a
generalization is useful if one wants to estimate
the magnitude of the phonon-induced BQ coupling.

Suppose that there is a, nonmagnetic (Y) site
between every pair of magnetic (K) sites. Further
suppose that the only nonz ero overlap is between
wave functions on adjacent X and Y sites and that
this overlap occurs in the tail regions of exponen-
tially decaying wave functions. Let 0 and & be the
inverse decay lengths of the expone ntial s corre-
sponding to X and Y sites, respectively.

Le t x„x,+, be the instantaneous longitudinal dis-
placeme nts of succe sive X sites and let y; be the
displacement of the F site between them. Then
the hopping integral b between the two magnetic
(Ã) sites is proportional to

dr -a(r-X. )+7(g-y -) ~,/ -g(y I-y ) + g(y/-g. )1

and conseque ntly

b
-o(x.~ — -)

where b is the hopping integral with the magnetic
sites at their equilibrium positions. Assuming
that the instantaneous value of the super excha nge
coupling is proportional to b and expanding to
first order in the x;, one obtains the total Hamil-
tonia n

A A AK'=Z S; S,+,-H S( —y (x,. +, -x))$, $, +, pKp„

Ka=JQS, S;„—HQS;. —A'Q($; S;„)'. (28)
i

Here

A'=y'/u (29)

and equals bvice &, the value of the biquadratic
interaction resulting from the phonon modulation
of direct exchange.

The value of & ' is now estimated, using param-
eters relevant to manganous oxide (MnQ).

The dispersion of the system described by Kph

is known. ' In the long -wavelength limit,

a = [(m +M}/2w'] &', (80)

A '/J = 4o't/k.

where R is the q -0 slope of the acoustic branch
in the plot of frequency versus the wave vector q
in units of w/a. Neutron-scattering experiments"
yield the value R = 1.4 & 10" Hz, which implies
k = 1100 erg cm

The radial Hartree -Pock wave function" for the
manganese ion is the sum of differently decaying
functions. The two de cay rates of importance at

0
distances of interest (i.e., 1-2A) are o, = 1.46
(a.u. )

' and o, =2.41 (a.u. ) '.
The next-nearest -neighbor exchange in MnO

(which is the result of 180' superexchange) has
been estimated" to be 3.5 'K. Since this is the
interaction between two S = -,' spins, the coupling
J between unit vectors in the Hamiltonian is
= 30 'K.

Equations (26) and (29) imply

(26)

where

and

y =20J (26)

UI =exp i P;"+p; — S)~ 8)+~ +ip, —5] ~ S, +,
j&k

Then

UI XI U/ -1 3C IS + 3C /
hph

where Kph has been defined in Eq. (2'I) and

Kph = —Q [(y, —x,. }'+(x,.„—y,.)']++ ' +

(2'7)

p,." and P&" are the mome nta of the X and F sites,
and m and M are their respective masses.

Define U' =II,U, ',

With the value s of J and k given above and o

it is found that A'/J =1. This value of A'/J is large
enough" for the phase transition described in Sec.
IV to occur with a critical field of several hundred
kilogauss. Using 0, instead of O„one would e sti-
mate a larger value of A'/J and a, smaller H, .

The aim has been to get some idea of the sizes
of the parameters involved, rather than to predict
the occurrence of the transition described in Sec.
IV in a spe cific substance . In MnO, nearest -neigh-
bor direct-exchange interactions compete with the
next-nearest-neighbor superexchange interactions
which were used as a basis for the estimates, A
more realistic model than that considered here
would also include the effects of anis otr opic terms
in the spin Hamiltonian and account for the non-
harmonicity of the lattice to begin with.

One may speculate on the persistence of the
phase transition as the temperature is raised. One
expects that the one -dimensional system at Tf 0 K
will not exhibit the discontinuity while a three -di-
mensional system probably will.
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VI. SUMMARY

The effects of the coupling of a linear chain of
Heisenberg spins to phonons have been studied.
The direct-exchange case was treated first, and
a displaced-oscillator transformation was used to
decouple the Hamiltonian into parts which sepa-
rately depended on the spin and lattice variables.
The lattice underwent magnetostriction, and the
transformed spin Hamiltonian contained biquadrat-
ic terms. Thermodynamic functions were evalu-
ated exactly and studied in zero external field.

Next the effect of an external magnetic field was
investigated at T=0'K. It was found that provided
the induced biquadratic coupling was large enough,
antiferromagnetically coupled spins underwent a
first-order phase transition as the field crossed
a critical value, with the magnetization changing
discontinuously. The phase transition was a con-
sequence of the form of the resultant spin Hamil-
tonian Ks and occurred in all dimensions in sys-

tems described by a similar Hamiltonian, whether
or not the Hamiltonian resulted from phonon ef-
fects. The length of the compressible linear chain
was seen to change abruptly at the phase transi-
tion.

Finally, it was shown that it was straightforward
to extend the results to a simplified model of su-
perexchange. A rough estimate of the phonon-in-
duced biquadratic coupling was made, and it was
found to be large enough in order for the phase
transition in an applied field to occur.
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