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Localized description of superconductivity. II. Strong-coupling formulation
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A localized description of superconductivity in narrow-band metals, proposed by Appel and Kohn, is
extended to the strong-coupling case. Equations similar, but not identical, to the Eliashberg equations
are obtained. These equations are solved numerically and the results are represented by a
semiphenornenological formula for T, . A microscopic calculation of the electron-phonon coupling
constant in the localized representation, based on measured phonon frequency-distribution curves and
augmented-plane-wave band calculations, is described. Results for V, Nb, and Ta yield values of P

within a factor of 2 from the expected ones, without any adjustable parameter.

I, INTRODUCTION

Appel and Kohn have suggested in a recent paper'
(hereafter referred to as AK) that the natural way
to describe the Cooper pairing mechanism in tran-
sition metals with narrow d bands is by employing
the Wannier or atomic-site representation rather
than the Bloch representation. The former em-
phasizes the atomic nature of the tightly bound d
electrons which are generally believed to be re-
sponsible for superconductivity in the transition
metals.

The AK formulation begins with the homogeneous
integral equation for the vertex part of a Cooper
pair transformed to the site representation. In
the case of a nondegenerate band this equation
reads

I'(n, ~) = —— P 1(n', ~') g G(m+m', ur)
t3 n', m' m, m'

XG(m', —e) I(n' —m, n; v —&u'), (l.l)

where P=1/ksT, the frequency sum runs over the
values &u'=(iw/P) (2n+1), and the Green's function
is

~c p'm
G(m, &u) = —Q (~,

P

where e(p) is the single-particle energy Finally, .
the factor I in Eq. (1.1) is the contracted irreduc-
ible vertex defined by

(1.2)

I(n', n; u) =—g I(n, +n', n„n, +n, n„up) .

(1.3)

Each term on the right-hand side is the irreducible
vertex, describing the transition of two electrons
initially at sites n„n, +n', to sites n„n, +n. The
irreducible vertex, which is the main ingredient

in the whole theory, consists of the phonon-ex-
change vertex and the Coulomb-interaction ver-
tex. The basic approximation of AK is that of the
"contact model, "which neglects all terms with

n, n WO in Eq. (1.3). This means that the dominant
contribution to the interaction vertex comes from
processes in which the two electrons are initially
at the same site and are scattered together to an-
other site. In the contact model the set of equa-
tions in (1.1) reduces to a single equation, from
which one can derive a BCS-like formula for the
transition temperature.

In a previous paper' (hereafter referred to as I)
we described a microscopic calculation along the
lines proposed by AK for V, Nb, and Ta. Our
main conclusions were that (a) the contact model
is a satisfactory first approximation and (b) the
Bloch formulation of the electron-phonon inter-
action vertex adopted in AK has to be modified in
a way to allow the d functions to follow the ionic
motions without appreciable deformation. Such
a formulation of the phonon-electron interaction
was developed by Mitra' and Barisic. ' In the con-
tact model the phonon-exchange vertex factorizes
into a part which depends only on the phonon spec-
trum and one which is determined by the electron
properties. The first part can be calculated from
experimental phonon-fr equency-di str ibution
cur ves. The second part involve s der ivatives of
matrix elements of the potentials between local-
ized wave functions. These matrix elements were
calculated in I, using the atomic wave functions
and potentials given by the Herman-Skillman
tables. ' The atomic potentials were modified by
a Thomas-Fermi screening factor to account for
the screening by the free s electrons in the metal.

The formulation developed by AK does not take
into account self-consistently the electron self-
energy and is therefore a weak-coupling theory,
while narrow-band superconductors are as a rule
strong-coupling superconductors. In the present
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paper the ideas of the localized description pro-
posed by AK are extended to the strong-coupling
theory of superconductivity. We start from the
self-energy equations and transform the Coulomb
and phonon-exchange interactions, which appear
in these equations to the atomic-site representa-
tion. We then adopt the contact approximation.
Following the standard procedure one can sub-
sequently derive equations which are similar, but
not identical, to the Eliashberg equations. This is
described in See. II. In Sec. III we show that T,
derived from these equations may be represented
by a McMillan'-type formula, or even better by an
expression proposed by Leavens. ' The electron-
phonon coupling constant, which appears in these
expressions, is calculated in Sec. IV for V, Nb,
and Ta. The difference between this calculation
and the one described in I is that now the matrix
elements in the phonon-exchange vertex are de-
rived from the band structure obtained by an aug-
mented-plane-wave (APW) calculation. The pres-
ent calculation has no adjustable parameters.

II. STRONG —COUPLING EQUATIONS.

The strong-coupling theory of superconductivity
is most conveniently formulated in the Nambu
formalism. ' The starting point is the equation
for the self-energy

Z(p, i(d„) = ——Q r, G(p', i (d„) r,

X g~~, Dy p p ) S(d~ —24P~ipp' X

+ &.(i- i') ),
(2.1)

where 7; is the Pauli matrix and the Green's func-
tion G and the self-energy Z are 2 x2 matrices.
The diagonal elements of these matrices represent
the normal Green's function and self-energy, while
the off-diagonal terms are the anomalous functions
which do not vanish only in the superconducting
state. The Green's function G is related to the
self-energy through the equation

From the last three equations, one gets

(dZ(p, (d) 1+ e(p, (d) 7; +C (p, (d) v;
(d Z (p, &d) —e (p, (d) —4 (p, id)

8 1 2 8 2 1
-i

p (n'-n ) -i p'(n'-n )

N
I I

n&, n2

ni, n2

x 1(n,', n,'; n„n„&d) . (2.6)

Let us define n=n, —n„n'=n, ' —n,', and m=n, ' —n, .
In terms of the newly defined site indices, one
easily gets

1(p, p';p', 0; ~)

m, n, n'

8 ip (m+n' 8-ip' (m —"I(n, n; (d)

(2.7)
where the factor I on the right-hand side is now

the contracted-interaction vertex, defined in Eq.
(1.3). This interaction vertex contains all the
processes in which a pair of electrons on two sites
separated by the lattice vector n' is scattered to
two sites separated by the lattice vector n. At
this point we introduce the contact approximation,
assuming that the dominant contribution comes
from processes for which two electrons on one

where

e(p, (d) = e(p) +x(p, (d)

The expression in the brackets of E(l. (2.1) rep-
resents the interaction, which consists of the pho-
non part and the Coulomb part. To make contact
with previous work on the localized description
of superconductivity, we note that this expression
may be replaced by the irreducible electron-elec-
tron interaction vertex E(p, p'; p', p; i(d„—i(d„), as
may be seen from Fig. 1. We then transform this
interaction vertex from the momentum representa-
tion with eigenstates ip) to the Wannier (atomic-
site) representation with eigenstates in):

I(P, P '; P ', P; (d)

G '(p, i(d„) = Go '(p, i&d„) —Z(p, i(d„), (2.2)

where the free-electron Green's function G, is P-P'

Go(p, 4(d„) = [4(d„1 —e(p) r& j (2.3) Pi -P3

g(p, (d) =
t 1 —Z(p, (d) j id 1

+i(p, ~d) r, +)((p, (d) r, . (2.4)

The self-energy is conveniently expanded in Pauli
matrices (a) ' (b)

FIG. 1. Connection between the self-energy and the
irreducible vertex part: (a) phonon-exchange vertex
I "(pi, p&, p3, p4, id); (h) phonon-exchange self-energy
gPh(P id)
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site scatter together to another site: only this term. In a cubic crystal I.„B is diagonal
in n and P and independent of n; so

I(P P ' P P' &) = —g e e ' I(&), (2.8)

where I((d) —= I(0, 0; (()).
The function I((()) was discussed extensively in

AK and I. It is given by

I((u) = U+ J'L((()),

with

F(v) dv
~2 V2

(2.12)

(2.13)

I (e) = U+ J' g g L„]](m, u&), (2.9)

where U is the Coulomb interaction, I. & is es-
sentially the phonon Green's function in the lattice-
site representation, and J' is a combination of
certain matrix elements. Let us now define these
factors in greater detail. The Coulomb interaction
in the localized representation is

p*(r —n) Q*(r' —n) V( fr —r'f)

xp(r) p(F') d'rd'r', (2.10)

where (t)(r —n) is the Wannier function localized
at site n. In practice (t)(r —n) will be an atomic
wave function. The phonon Green's function is

1 r Ie 2(2q) e),]](q), ~ q.(m
q, X.

(2.11)
where e), (q) is the n Cartesian component of the
unit polarization vector describing the phonon
fq, X&. For a weak q dependence of ~ the m =0
term makes the largest contribution [for an Ein-
stein phonon L(m, v) GG 5,] and we shall keep

where F(v) is the normalized phonon-frequency
distribution and M is the ionic mass. Finally, it
is shown in AK that for a nondegenerate band,
negl. ecting three-center integrals,

=g (l&nl v V In&l +2l&nl v„y l0&l'),

(2.14)

where V, is the potential around the atom at the
origin. This expression was derived in the usual
tight-binding formulation of the electron-phonon
coupling, in which the Bloch functions are linear
combinations of atomic orbitals around the fixed
lattice points. It is shown in I that, starting from
atomic orbitals centered around the moving ions,
one gets

J = P (l&nl v„V, fn& f'+2
l

'()'-„„&1)
f V, ln) l') .

n, 0(.

(2.15)

Let us now replace the expression in the brack-
ets in Eq. (2.1) by I(p, p'; p', p; i(()„—iv„) given by
Eqs. (2.8) and (2.12) and perform in a standard
way the frequency sum over n'. %e obtain

z(p, iv„) =—
nN

ITl P

() f(- '), f( ')
M 2 v 2(()„—(() —v 2(d„—(d + v

+ —'Utanh

+
J'2 dv F(v) Ã(v)

v(G(p', (v„+ v) +G(p', (e„—v)] v, I, (2.16)M 2v

where f(cu') and N(v) are the Fermi-Dirac and
Bose-Einstein distribution functions. It is easy
to proceed from here and obtain a one-dimensional
integral equation in the usual way. To do this we
neglect the last term with the Bose factor, as is
usually done when no soft phonons are involved.
(This is done in order to avoid clumsiness and is
by no means inevitable. ) We consider first the
self-energy due to phonon exchange only,

gphg ) g e-pp m g e-pp" m

P

x d(u'Im[T, G(p', ru') T,]

J' o dvF(v) f(- (g')

M, 2 V CO —CO' —V+Z5

f( ') (21~)
4p —co + v+z~
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where we have replaced ice„by (d+i6. The main
contribution to the integral comes from momenta
p' such that I ep I

-
&uD; so we may replace

I
p'I by

P~. For an isotropic superconductor we then ob-
tain

sinp~m ' J' d)/E((/)
P~m M 2v

X
~ ~ ~

1
+ + v+i~ u' —u+ v- i6

—g e 'P 1m[7, G(p', (d ) r, ]

Ã(0) w de lm [7; G(e, (u') 7;], (2.1&)
Pp' m

where we used the relations m de(p') =p' dp'and +0)
=mPz/2)p'. Extending the integration over e from
—~ to + ~ and using the result U= U

1+%(0) Uln(e~/&u, )
(2.22)

(2.21)
In the last two equations the upper sign is used
with 7; and the lower with the unit matrix.

Finally, let us include the Coulomb part of the
interaction. The integration over ~' may be cut
off at ~0 provided that U is replaced by the pseudo-
interaction'

de(P') r3 G(P', (d') r,

(u' Z((u')1 —e ((d') 7,
[~(2Z2( I) @2(~l)]I/2 (2.19)

Going through the same procedure as before one
finds that the Coulomb contribution to the spher-
ically averaged anomalous self-energy is

and the symmetry properties of the functions C

and Z, we find for the spherically averaged self-
energy

xtanh -2 (2.23)

Eph ((d)

where

u)'Z((()')1+4((d') T,

[ I2z2( I) o2( t)] ). /2

x[Kp,"((d, (d') f(- v') + &", (~, —(d )f (& )]

(2.20)

and that there is no similar contribution to the
normalization function Z. The factor P [sinj~m/
Pzm]2 is of order unity, since the dominant term
is that with m = 0. In what follows we shall omit
this factor, approximating it by 1.

We next define the gap function h(&v) =C (&u)/Z(~)
and obtain from Eqs. (2.4), (2.5), (2.20), and
(2.23) the two coupled equations for 6 and Z:

E(0)J'/M()= z() da'Be „„„, 2 &f(- (()') [((()'+~+ h') '+((()'- (()+h') ']
0

1V(0) U o-f((d ) [(—~ +(()+ &) +( (() ~+ ~) '] ) — B ~ 2) / [' -'f( ')]
Z(ru

(2.24)

g((()) = [1 —Z(u)) (() = N(0) — d(()' Be
0

x —u' ~'+ ~+ v ' — ~' —&+ v + ' — + + v — — —&+ v (2.25)

These equations are very similar to those solved
by McMillan. They are further discussed in Sec.
III.

III. TRANSITION TEMPERATURE

b, 0«u& ur,

A((u) =

0, (80& 4)

and get

Following McMillan, one can solve Eqs. (2.24)
and (2.25) by starting from the trial function (3.1)
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where

N(0) j' F(v) dv

M ~2 (3.2)

similar phonon spectrum), while somewhat smaller
numbers results from the phonon spectrum of V.
These results may be parametrized by an expres-
sion of the form

g*=N(0) U,

( )
F(v) dv

V

F(v) dv

(3.3)

(3.4)

McMillan obtains a similar expression for T„
however, with a somewhat different expression
of the constants A. and (e):

—b(1+A).T=a(~) exp „() )) (3.7)

However, we find that different values of the pa-
rameters a, b, c are required to fit the numerical
results for Nb, V, and Ta. For comparison we
give here the resulting formula for Nb, which is
the analog of McMillan's formula:

a'(v) F(v) dv

(&u) = o. '(v) F(v) dv
o. '(v) F(v) dv

(3.5)

(3.6)

—1.31(1+ A)T. = 1.3 5 ( ~ ) exp, )
A more uniform fit is obtained with an expres-

sion of the form suggested by Leavens, '
The function n'(v) F(v) is usually derived from
tunneling experiments. ' A microscopic calculation
of this quantity would involve a complicated Fermi-
surface averaging of matrix elements of the crys-
tal potential gradient between electron Bloch func-
tions. From this point of view the expression in
Eq. (3.2) looks very appealing. The calculation
of J' involves matrix elements between atomic
orbitals and avoids the Fermi-surface averaging.
The frequency integrals in Eqs. (3.2) and (3.4)
contain the phonon-distribution function, which is
more elementary than the quantity n'(v) E(v).

We have solved Eqs. (2.24) and (2.25) numer-
ically using the experimentally measured phonon-
frequency distribution curves for V, ' Nb, "and
Ta." Unlike McMillan, we have not eliminated
the phonons below 100 'K, because in our equa-
tions we have the factor F(v)/2v instead of E(v)
in McMillan equations, which weighs more strong-
ly the low-frequency region of the phonon spec-
trum. The values of ~ as a function of T, and p. *
for the Nb phonon spectrum are listed in Table I.
Compared with the corresponding values of A.

given by McMillan for given T, and p, *, our value
of ~ is always larger than that of McMillan. Sim-
ilar results were obtained for Ta (which has a,

—5 [1 + A. + X( T,)]T, =a+, exp
A. —cp, "

where, in our case,

J2

C

(3.8)

The ratio X(T,)/P. may be computed directly for a
given phonon spectrum. In Fig. 2, In(u&, /T, ) isplot-
ted for g*=0 as a function of [I+A. +X(T,)]/A. , with
X and X(T,)/A computed for V (circles), Nb (dots),
and Ta (triangles). All the points fall approxi-
mately on a straight line from which we find a
=1.78, 6=1.13. To get the value of c we plot the
right-hand side of the equation,

b[1+X+X(T,) J

In(a &u, /T, )

as a function of p, *. The 42 points we used for
the three elements under consideration fall quite
nicely on a straight line through the origin with
a slope c =1.30. Hence, we find that the transition
temperature determined by Eqs. (2.24) and (2.25)
is fairly accurately described by the formula

T, =1.78 ~, exp
'

1
„' . (3.11)

—1.13 [1+X+X(T,)]
A. —1.30p, *

TABLE I. Values of the coupling constant A, for the Nb

phonon spectrum for various values of the Coulomb term
p* and transition temperature Tc {in 'K), appearing in
McMillan's table. Z

0
3

C 0 088 0 149 0 157 0 24

20
15
10

5

1.34 1.79
1.05 1.41
0.78 1.08
0.54 0.76

2.15
1.69
1.29

0.94

2.19
1.67 [ 1 + )L + )I, ( TC ) ] / &,

I"IG. 2. Plot of ln(coo/Tc) vs [1+A, +X(Tc)]/~ which
yields the values a =1.78, b=1.1.3 appearing in Eq. (3.11).
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This expression fits the results for such different
phonon spectra as of Ta (two narrow peaks and

a, =245 'K) and V (a broad maximum and &u,

=410 'K).

where

(4 1)

J;;= g [2 I V;,.J-.(I, i) I' +
I V; „IC-„(I,i) I']

n, n

(i = 1, 2), (4.2)

where

j-,(l, i) = f (r() ) (r) (;(r —n) dr,

ii;((, i) =f(,"(r —n) (r(rg (;(r —ng dr .

(4.3)

The function (1);(r —n) is the atomic orbital cen-
tered at the lattice point n, and the indices 1, 2
refer to the d subbands,

P(;(r) c(-xyf(r), g, (r) ~xzf(r),
respectively. The indices of the gradient symbol
are the differentiation variable (n) and the Car-
tesian component of the gradient vector (n). The
derivation of Eq. (4.2) rests on the assumption
that the d electrons follow adiabatically the motion
of the ions. It was argued extensively by Barisic4
and in I that this is the appropriate formulation of
the electron-phonon interaction in narrow-band
metals.

The crystal structure under consider'ation is
bcc; so the nearest neighbors are not located
along the crystal symmetry axes. It is therefore
convenient to use the Koster-Slater" method and
express the integrals in Eqs. (4.3) in terms of
similar integrals in which the two lattice points
involved are on the z axis. The J'(and K) integrals
in Eq. (4.3) may be expressed as linear combina-
tions of the three integrals j~(&, o), J~(&, &), and
J~(n, m) [or I7&(o, o), 17~(&, &), and I7P ())', m)] in the
rotated coordinate system, which otherwise have
the same form as in Eq. (4.3). The index p now

IV. CALCULATION OF COUPLING CONSTANT

In the present section we describe a microscopic
calculation of the constant & [Eq. (3.2)] for V, Nb,
and Ta, . The inverse second moment of E(v) may
be obtained from measured phonon-frequency-
distribution curves, as was done in our previous
paper (I). The main problem lies in computing
the factor j'. We assume again (as was done in I)
that the d electrons occupy the threefold-degen-
erate I",, band in a cubic crystal. It was shown
in I that in this case

F,', =d, +a+4jz ())', m) +28& (5, 5),
F» =d, + c+3J~,(v, o) + 3J,(5, 5),
H,', =d, —a+4Jq ()T, z) +2J'~ (&, &),

H„=d, -c+3J, (a, a)+ 3J' (&, &),

N, =d, +b —2', (5, 5),
X, =d, -b-2J, (&, &),

where

a= -,'Jp ((x, o')+—", jq (m, 7()+ —", jq (&, &),

b = —
~3 J

p ((x, a) + (99 Jp ( n; ))) + —", Jq (&, b),
c =—", Jp (7), ))) +—,' Jp (&, &) .

(4. 4)

(4.5)

The index p, (p, ) denotes the distance to the first
(second) nearest neighbor. We have neglected the
possible small difference between the crystal-
field integrals in the 7t and o states as is also done

represents the distance between the two lattice
points, and 0' denotes the atomic orbital

(3z' r'-) f(r) .

The ('Jp and Kz integral s and their derivative s
were computed numerically in I with the radial
wave functions taken from the Herman-Skillman
tables. ' The potentials were the Herman-Skillman
potentials multiplied by the Thomas-Fermi screen-
ing factor e "" to account for the screening of the
atomic potentials by the s electrons in the crystal.
The screening length K

' was treated as an adjust-
able parameter. In the present paper we describe
a different procedure. The essence of the present
approach is a derivation of the Jp (and possibly I7&)
integrals from some given band structure. We
shall demonstrate how this is done for the two-
eenter integrals J~ using the results of APW band
calculations. The procedure is quite straightfor-
ward. One constructs the tight-binding Hamil-
tonian matrix for a general crystal momentum k.
This is a 6X6 matrix in view of the five d func-
tions and one s function. Diagonalizing this ma-
trix one obtains the energy levels as a linear com-
bination of the transfer integrals J~ and the crys-
tal-field integrals (or degenerate three-center in-
tegrals) Z~. The calculation is simple at certain
symmetry points in the Brillouin zone when the
Hamiltonian matrix is reducible. We shall now
skip the details of constructing and diagonalizing
this matrix and simply write down the energy
levels at the symmetry points F (0, 0, 0), H (0, 0, w),
and N (0, -',

m, —,'w). These points were chosen be-
cause the corresponding energy levels contain
combinations of the three integrals J'z(5, 5),
Jp(m, m), and Jp(o', o). Keeping terms up to second
nearest neighbors, we find
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~, (&, a) =(&/p') e "[2+Qp+k(Qp)'],

J, (6, 6) =(&/p') e "
J, (~, ~) = —(&/p') e "(2+Qp),

(4.6)

where & is a certain integral over the radial wave
functions and serves here, together with Q, as an
adjustable parameter. Using the relation between
the J and J integrals" for the nearest neighbor
p = —,'(a, a, a) and Eqs. (4.6) to obtain the relevant
derivatives, one finds

8 8 8

8pz
J(&, w) = J(6, 6) = J(6, ~)

=&[ 41+8(Qp) +2(Qp)'+ '(Qp)'], -
8

J(&, &) = J(&, &) =A[2 + —,'(Qp)'],
8

8p 8p
(4.7)

8
J(6, ~) =&[-1o—2(Qp) +(Qp)'+ 3(Qp)'],

x

where A = —(v 3 &/9p') e o~. The parameters &, Q
may be obtained, using Eqs. (4.6), with the inte-
grals J~ derived from the APW band structure
using Eqs. (4.4) and (4.5). The derivatives in Eq.
(4.7) are then computed and substituted into Eq.
(4.2) to obtain J'. In order to check this procedure
we calculated J' first directly by differentiating
the J's defined in Eq. (4.3) with the wave functions
and potential of Herman and Skillman, ' and com-
pared the results to those obtained by solving Eq.
(4.6) with the same values of J and substituting into
Eq. (4.7). The agreement was excellent for V and
Ta, while for Nb we got a deviation of 20% in J'.
Thus we conclude that having the transfer integrals
from any reliable source we may get J' within an
accuracy of about 20%.

To complete the calculation of A., we still need
the density of states at the Fermi energy, N(0).

by Koster-Slater. " These integrals appear only
in the diagonal and are absorbed in the constant
dp and their value s cannot be obtained in this way.
The identification of the computed energy levels
at the various symmetry points is not difficult but
should, nevertheless, be done with care. Once
this is done one can calculate from Eqs. (4.4) and
(4.5) the J integrals for the first and second near-
est neighbors.

The next step is to evaluate the derivatives of
these integrals. This may be done analytically
using the expressions for the tight-binding trans-
fer integrals proposed by Ashkenazi and Weger. "
Expanding the asymptotic form of the atomic or-
b ital s,

y;(r —n) ~ Ae ' "
/( r —n i,

these authors get

The later may be obtained from the measured
heat-capacity constant y, which is proportional to
the "band-structure" density of states which ap-
pears in Eq. (3.2) times the electron-phonon en-
hancement factor' (I +X):

N(0) =3y/2n'k ~s(1+3,) .

Together with the equation for

~ = [N(0)J'/~] (1/v')

(4.8)

(4.9)

TABLE II. Experimental data and coupling constant A,

obtained in Sec. IV, compared with A.c, the expected val-
ue from the solution described in Sec. III.

Nb Ta

C

mole 'K
J2 (] 0 2a.u.)

(~-'& (~0-'K-')
N(0) (eVatom)
A, (present calc)

A, (McMillan)

5.30

9.04

0.59
2.22
0.99
0.94
0.79
0.60

9.22

7.66

2.14
3.79
0.57
1.83
1.29
0.82

4.48

5.84

2.96
4.85
0.50
1.47
0.92
0.65

this yields two coupled equations for N(0) and A.

The whole procedure described above was per-
formed for Nb, V, and Ta. The APW band-struc-
ture calculations are described in Befs. 15 (for V)
and 16 (for Nb and Ta). The measured phonon-
distribution curves are given in Befs 10 .(for V),
11 (for Nb), and 12 (for Ta), and the heat-capacity
constant y is given in Ref. 17. The results are
listed in Table II. The values of A, obtained by
this procedure should be compared with the values
of A., which yield the experimental values of T, in
Eqs. (2.24), (2.25), or in thesemiphenomenological
formula (3.11) with p, *=0.15. These values of A.,
are as a rule larger than those obtained by Mc-
Millan (the later are listed for comparison) be-
cause of the inclusion of phonons up to 100 'K and
the fact that the replacement of E(v) by E(v)/2 v

attributes more weight to the lower modes.
One should keep in mind that we have not included

in our calculations the degenerate three-center
integrals K. Although these integrals are neglected
in the treatment of Barisic4 and Mitra, ' we have
argued previously that they are of the same order
of magnitude as the two-center transfer integrals.
Taking into account these integrals would increaseJ' additively; however, their effect on A. would be
smaller because they would further reduce N(0)
through the renormalization in Eq. (4.8). It is in-
teresting to note that such a simple (in principle)
procedure without a single adjustable parameter
yields values of ~ which differ from the expected
ones (A.,) by less than a factor of 2.
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V, SUMMARY

In the first part of this paper we have modified
the strong-coupling equations of superconductivity
in a way which emphasizes the atomic nature of
the d electrons in a narrow-band metal. The start-
ing point is the ordinary self-energy equation in
which the electron-electron interaction vertex is
expressed in the atomic-site representation and
then simplified greatly by the use of the "contact
model. " This approximation was discussed and
justified in our previous paper (I).

In the localized description there is a decoupl-
ing of the phonon-interaction vertex into a part
which depends only on the phonon spectrum and one
which involves electron matrix elements. As a
result of this, the phonon spectrum F(v) appears
in our final equations in comparison with the func-
tion cP(v) F(v) in the ordinary strong-coupling
equations. Although it is easy to obtain this func-
tion from tunneling experiments, its theoretical
derivation requires complicated averages over
the Fermi surface, which is avoided in the pres-
ent formulation. Actually, the kernel in our equa-
tions contains F(v)/2v, which attributes more
weight to the low-frequency phonons in accordance
with what one generally finds" on comparing
o.'(v) F(v) with F(v).

We have solved the gap equations numerically
for various values of p, * and T, and obtained the
corresponding values of the coupling constant A..
The attempt to represent all the results for the
three transition elements considered led us to a
formula proposed by Leavens, rather than the
McMillan formula. The former takes into account
the finer details of the phonon spectrum and can
therefore describe T, in materials with phonon
spectra as different as in Ta and V.

In the second part of this paper we describe a
microscopic calculation of X. The calculation of
the phonon part from experimental data is straight-

forward. To get the electronic part, we used a
procedure of extracting the matrix elements in J'
from band-structure calculations. In the form
presented here this procedure, as well as the ex-
pression for J', is suitable only for the I'2, band.
This may be a reasonable approximation as long as
the number of d electrons is small, but it will have
to be abandoned for metals with more d electrons,
when all five d functions have to be taken into ac-
count. This is not a serious problem and may be
solved quite easily. "'o Another limitation of the
present calculation is the neglect of the contribu-
tion of the crystal-field integrals to ~. In prin-
ciple these may also be derived from the band
structure, but we have not been able to do so in
our case. We have argued that because of the re-
normalization in Eqs. (4.8) and (4.9) the effect of
these integrals on increasing A. will be much
smaller than their additive contribution to J'.

In conclusion we have derived an expression of
the coupling constant A. in the localized represen-
tation, obtained the theoretical values of A. which
give the observed values of T, in the modified
Eliashberg equations, and, finally, presented
a microscopic calculation of this A.. This calcu-
lation is based on the experimental phonon spec-
trum, the measured heat capacity constant, and

given energy bands, without any adjustable pa-
rameter. The agreement is reasonably good. The
simplicity of this procedure gives hope that it will
be possible to correlate systematically the various
factors which affect T, as one goes from one tran-
sition element to another, as soon as more experi-
mental phonon distribution curves and reliable
band-structure calculations are available.
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