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The generalized dielectric constant is calculated to the order next to the Bogoliubov approximation.
This is done by using the analogy between the condensed boson system and a fictitious fermion system

with spin degeneracy equal to the total number of particles (instead of two). From the zero of the
dielectric constant, we have calculated the first-order correction to the Bogoliubov plasmon energy and

the half linewidth of the plasmon states. The real part of the solution is examined from a graphical
view point to show that up to the specified order of approximation there exists only one mode of
elementary excitation. The screening of the system to a static impurity charge is shown to be
exponential at a long distance. The response of the system to a static transverse vector potential shows

a perfect Meissner effect at long- and short-wavelength limits. We have also examined the diagrammatic

structure for the number of particles in condensate. We show that the series contains only terms of
integer powers of r,'". The entire treatment is fully number conserving.

I. INTRODUCTION

Once the generalized dielectric constant is known,
a complete description of the properties of a many-
body system is possible. ' For example, from the
frequency- and wave -vec tor-dependent dielec tric
constant, one can calculate ground-state energy,
excitation spectrum, dynamic and static structure
functions, and others. Thus a perturbation calcu-
lation for the dielectric constant provides a very
convenient microscopic theory of a many-body
system.

A dielectric approach to a boson system was
made, at the order of Bogoliubov approximation,
by Hugenholtz and Pines. Ma and Woo calcu-
lated the dielectric constant to the next order of
approximation and then, from the zero of the di-
electric constant, calculated the first-order cor-
rection to the Bogoliubov excitation energy for a
dense charged boson gas. The Ma-Woo formalism
of Bose dielectric theory is significantly different
in its structure from those of electron gas. No-
ticeably, it is required that several functions be
introduced that are not found in the electron gas.
This was necessary because of the &-number re-
placement of the condensate operators and the sub-
sequent necessity to deal with incomplete vertices.

In a previous paper, we have shown that the
idea of fermion analogy due to Brandow' may be
applied in a time-dependent manner to provide an
extremely simple dielectric approach. This was
done only at the zeroth order of approximation.
It is the purpose of this paper to extend the theory
to the first order.

As Brandow emphasized, the fermion analogy
makes it possible to study a boson system along a
line completely parallel to the corresponding nor-
mal fermion system. For example, we have
shown previously that the ring diagrams of a

charged boson gas may be summed by using the
same method that Gell-Mann and Bruecknerv used
for an electron gas. In a continuing effort, we ap-
ply in this paper the techniques of DuBois to cal-
culate the dielectric constant of a charged boson
gas.

The only task is to calculate the irreducible po-
larization part m(p, Po). This can be done without
introducing at the outset the chemical potential,
the depletion factor, and those functions that are
unique in the boson formalism of Ma and Woo but
absent in the electron gas. While Ma and Woo in-
troduce various building blocks and then "build"
the irreducible polarization part, the equivalent
work is done in our formalism "automatically" by
drawing diagrams in the same way as DuBois does
and then carrying out the integrations that the dia-
gram rules require. The diagram rules are the
same as those of a normal fermion system' except
that the spin degeneracy of each momentum state
is equal to the total number of particles and con-
sequently the Fermi momentum is zero. To those
who find it annoying to handle the tangle of p, and

No, in particular the tangle of p, on p, itself and the
similar tangle of Np our procedure should prove
simple and straightforward.

In the zeroth order of approximation, m(p, P, ) is
approximated by the simple bubble diagram (see
Fig. I). The result is reviewed in Sec. II. In the
first order of approximation, the electron and the
hole (the virtual pair) are allowed to interact with
each other or with the Fermi sea (condensate).
Thus we first attach an effective potential line (a
direct interaction plus the virtual polarization ef-
fect of the medium) between the two directed lines
or just to one of them in the zeroth-order diagram
resembling a bump [see Pigs. 2(a)-2(c)j. For an
electron gas, this would be sufficient for the first
order of approximation. For bosons, however,
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FIG. 1, Zeroth-order irreducible polarization. part
wio~(p); for this diagram, l=0.

one has to include some additional diagrams. This
is a consequence of the peculiar Fermi sea made
out of the single state p=0 unlike the real Fermi
sea of electron gas. The additional diagrams are
shown in Figs. 2(d) and 2(e). The reason why they
must be included in the first order of approxima-
tion is explained in Sec. II. The contribution of
these first-order diagrams is then calculated in
Sec. III. The resultant dielectric constant is set
to zero im Sec. IV; the real part gives the cor-
rection to the zeroth-order plasmon energy, and

the imaginary part the linewidth of the excited
states. The real part of the equation is discussed
from a graphical viewpoint. Up to the first order
of approximation, we prove that there is only one
solution for the elementary excitation. The sec-
ond branch of Carmi and Lock is absent.

Section IV is devoted to study the response of the
system to weak external fields. The induced charge
distribution around a static impurity charge is
shown to be screened at a long distance exponen-
tially. ~~ A calculation on the transverse current
induced by a weak transverse vector potential
shows a perfect Meissner effect in the two limits
of long and short wavelength, a result first ob-
tained by Fetter. We have also derived the ir-
reducible part of the longitudinal current correla-
tion function. The result is identical with that of
Ma and Woo.

Throughout this paper, we will remain in a fixed-
N formalism. All expectation values will be taken
in the ground state with a fixed particle number.
The operators for which expectation values will be
taken contain equal numbers of creation and anni-
hilation operators. At no stage will the condensate
operators be replaced by the c number No
This is done by introducing a "hole" part in the
free-particle Green's function [see (3)]. The Ham-
iltonian is invariant to the gauge transformation
(a- ae'") and so are all the results of the expecta-
tion values taken in this paper. The gauge sym-
metry does not have to be broken for reasons
mentioned above and thus we are able to treat a
condensed boson system without introducing the so-
called "source field. "

The condensate density of a boson system is an
important variable. Although there is no doubt,

that the condensation is near complete in the high-
density limit, there has been some difference
among authors in the r, expansion. The work of
Schick and Wu' is unique in this regard because
they claim a term of order r', ', which is absent,
for example, in the work of Woo and Ma. ' We
comment on this subject matter in Appendix A,
where we show that the condensate density may be
computed to any order of approximation. The pro-
cedure is unique in that there is no tangle with No

itself or with p, . This is not the case when the
condensate operators are replaced by c number
No Appendix B is devoted to show a similar
perturbation calculation for the chemical potential.
In Appendix C, we discuss the relationship to the
formalism of Hugenholtz and Pines.

F (P) = —f «e""(~(py(f)py(0) )), (1)

where P =(p, Po); the angular brackets represent
the ground-state expectation value; p-=g- a;;a-
and the a's are annihilation operators. The spin
variable is not shown explicitly, but let us keep in
mind that for each momentum state there are N
spin degeneracies. The Fermi sea is composed
of the single-state p =0 with N spin degeneracies,
and therefore summation over the states in the
Fermi sea is performed by multiplying by N. This
provides a remarkable simplicity in calculating di-
agram contributions in boson problems.

The function I, which is a geometric series of
the irreducible polarization part v(P), is given by

&(P)
1 —t;m(p) ' (2)

where v; is the Fourier transform of the inter-
particle potential. We have set h =1. In the high-
density limit, it is sufficien. to evaluate the leading
term of m shown in Fig. 1. The directed lines in
this and other diagrams in our method represent

ny
(p)

1& P

po —7"»+ z6 Po —z6

= Go(P)+ Go(P),

where T~--Ps/2m; and 71;=1 if peO, and 0 if p=0.
The contribution of Fig. 1 is

v ' (P) = t( —&)JI, (P+ ~)Go(e)(2m)'

II. ZEROTH-ORDER APPROXIMATION AND
DIAGRAM CLASSIFICATION

A. Zeroth-order approximation

The main function of interest is the density-den-
sity correlation function defined by
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=2nT, /(po —T,+i6}(po+ T- —i5},
where n =N/0 is the particular number density;
—¹isdue to the Fermi loop. As in (4} we will re-
place the integral fdsq/(2m)~ by (1/Q)g; whenever
1 —'g; is encountered. Substituting (4) into (2), we
have

F"'(P) = 2nT~/(P, E;-+ i6)(P, + E~ ~5),

where';, given by

E;= ( r';+ 2nv;r;)"',
is the excitation energy of zeroth order. There
are many different derivations of this well-known
Bogoliubov energy, but perhaps ours is the sim-
plest one. This simplicity may also be found in the
next order of approximation.

Closely related to E is the effective potential,

jeff (P) ~~gF (P) + ~g

= 2nv;T;/(Po E;+-i5)(Po+E- —i5) + p-2

I= Veff + V" ~

The superscript zero has been omitted in (6) and

(7) because they appear very frequently later on
and we wish to simplify the notation.

B. Diagram classification

Before we proceed to calculate m"', let us ex-
plain the diagram classification. As was men-
tioned earlier, for every Fermi loop, a factor —N
is multiplied. Therefore in the limit N-~, the
number of Fermi loops s will dictate which dia-
grams are to be chosen. For a given number of
interaction lines n, s will determine the importance
of the diagram. In the zeroth order of approxima-
tion, s=1 and n=0. I,et us write it as s=~+1. In
the succeeding orders, s=n, s=n —1, s=n —2, and
so on. Inspecting a few diagrams and remember-
ing that our hole lines carry momentum zero, it is
clear that n —s is equal to the number of indepen-
dent momenta l. This is again a consequence of
the peculiar Fermi sea. Thus the order of ap-
proximation is determined by l alone. For Fig. 1,
l =0. The diagrams with l =1 are shown in Fig. 2;
and those with / = 2 are shown in Fig. 3. In Fig. 3
only structures of diagrams are shown. The dia-

grams are all familiar from DuBois but are clas-
sified in a slightly different way for bosons.

What is presented above is, however, only a
formal classification and it is not obvious at this
point under what condition diagrams of a given or-
der are more important than those of higher or-
ders. We show in Sec. IV that for a charged boson
gas v-m"'(q) is of order (x~~4)'. Thus for a dense
charged boson gas the above classification is mean-
ingful and x, serves as the expansion parameter.

xGO(q2)GO(~+ q2}vega(qg —qg) q (8)

where —N is again due to the Fermi loop. The in-
tegral is nonvanishing only when one of the Go's is
Go and the rest are Go. Performing the integra-
tion for the frequency variable in the Go,

4

(P) = 2~Gt(P) 2 4 GQ(P+ q)GQ(q)&& (q)

+(P- -P), (9)

where P- -P indicates that the term may be ob-
tained from the preceding term by replacing P
=(p, Po) by —P. It proves wise to defer the re-
maining qo integration until the rest of m""s are
examined. In a similar way,

4

vb" (&) = ~ J" 4 lGo(q)1'Go(&+ q)~~la(q)

d4
+ ftGo(-&}1' 4 Gt(-&+ q)&~off(q)

+ ~I.Gt(P)1'( —u"')+ Go'(P)~'o", (10)

III. FIRST-ORDER APPROXIMATION: FIRST
ORDER IRREDUCIBLE POLARIZATION

In the first order of approximation, the irreduc-
ible polarization parts with one independent mo-
mentum variable are added to m' '. The diagrams
to be calculated are shown in Fig. 2. Unlike in
the electron gas, it is quite easy to calculate the
exact contributions of these diagrams. First con-
sider (a). It is given by

m, (p) =i ( —N) J (2 )4 (2 )4 Go(qi)Go(p+q )(y) 2 d 9'g d 9'2

(a) (C} (d) (e)

FIG. 2, First-order irreducible polarization part
m' )I'P). For these diagrams, l =1. The wiggly lines
represent v,ff Q) given by (7). The curly arrows have
been drawn here for a purpose of reference inAppendixC.

FIG. 3. Second-order irreducible polarization part
(p). For these diagrams, E =2. The wiggly lines

represent vef f(P) given by (7). The diagrams not explicit-
ly shown in the second line may be obtained by connecting
three (two) bubbles using four (three) wiggly lines in all
possible ways such that the diagrams remain irreducible.
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The corresponding integral
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and

(q}V
-N "dqo "d4k

2

(2 ) (2 )4 0(Pe Pp+ qo)[GQ(qp)]

X Gp(k ko+ qp) V 11(k) (13)
r 4

n01'= —in )4[Go(q)]2 v,'«(q) . (12)

In Appendixes A and B, we identify p,
"' and no" as

the first-order terms of chemical potential and the
condensate density, respectively. The last two
terms of (10) arise when the two Gp's indicated by
arrows in Fig. 2(b} are Gp and the rest are Gp .

yields the two terms. This is a time-dependent
version of the first-order hole-line renormaliza-
tion thoroughly explained in Ref. 5. This point is
further explained in Appendix C.

The contributions of the rest of the diagrams are
also calculated by a straightforward algebra with
the result:

~(i)(p) ~(1&( p)
4

m„' '(P) =2iGQ(P)n 4 Gp(P —q)GQ(q —P)GQ(q) v,«(q —P)v,«(q) + (P- —P)(241)'

(14)

+in 4 Go P+q Go q v«P+q v«q

+ 2iGo(P}Go( P}n 4 Go(q}Go(P+ q)v.«(q)v. 11(P+q}

+ il Gp(P)] n 4 [Gp(P+ 'q)) ve«(q)ve«(p+ 'q) + (P P) y

4

0."'(p) = »G;(P)n' J 4 [Gp(P+ q)l'Go(q) v.«(q)v. «(P+ q)+ (P- —P)

4

+ i'n4G( )qtG(- )qtG( P+ )qG(o- P- )q.v(q}v. (P+q)
~ (2m)'

4

+2iGQ(p)Go( —p}n 4 Go(q)GQ( —q}v.«(q)v «(p+q)

(16)

4

+i[Go(p)1'n' 4 Go(-q)Go(P+q}v. (-q}v. (P+q}+(P--P}.
~ (2m)

Several combinations of Go's and v,«appear frequently. They are

G11(q) —= [Gp(q)] nV ff(q)

G12(q) —= Go(q)GQ( —q)nv, «(q) = —nv, /(qo —~.+ i6)( q +~.
It is easy to show that

+ f4+1 fe
G,1(q) —= G11(q) + Go(q} =

G'(q)v,', (q) = v;[G11(q)+ G12(q)],

TgkEq T q -+g
Gp(q)veff(q) Ve [G11(q)+ G12(q)] = z,.

6
— z

where

f- = ( T —E-+nv-)/2E-

(16)

(17)

(18)

(19)

Using the above identities, one can combine m,
' '+m,"' and m~ '+m,"'+m„"', and then carry out the final qo

integration. We find, after a simple algebra,

11 u'(P) = Gp(p)&(p)+ (P- -P)+ Gp(P)GQ(- P) &(P)+ (P- —P) + ~(p) + (P- -P)+[GQ(P)]'4(p)+ (P- —P), (2o)

with
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P(P) =)you~+ — —
o ygv. [(X —I/X, —X, X,,p+1)K'+(Xq —1/X„q +A. A. „p —1)K ],

U(p) = — —

o nv;(X„~ —I/X, ,~)+ —
J o nv~[nv„~(1 —&, &„~)+nv, (&, /&„~-&,&„~)]K',

d
8(P) = ——

)o (I/Xq X~,q+ X X~,p —2)K+,

3

p(p) =—,nv (I/X, ~+ X„p —2) —np"'

+ —
o nvo{[nv- (2X —X, X, —X, /X„)+ nv (2X —X,.~ —1)]K'1, d Q'

where

+[nv (2X +A. A, yA, /1, &)+nv, (2X yA. A. pl)]K ], (21)

1

poyE, +E p
—i& '

po —E, —E„p+&&t
i ~

0

~ ~

~ ~p
~

~ I~ t
~

0
~

~
~

~~~

~~
I t q

~
~ q

is the zeroth-order structure factor. In terms of
(11) and (12) may be written as

n ' —(X —I)nv-( ) $
i

d Q

2 . (2m)'
(22)

(,) 1 " doq (Xq —1)o

4 (2~)' (23)

Now we have obtained the dielectric constant to the
first order of approximation,

~(p) =1 —v;[~"'(P)+~"'(P)] . (24)

In spite of the remarkable difference between bo-
sons and fermions, we have derived a boson re-
sult foDowing more simple and straightforward
procedure known for fermions.

IV. ELEMENTARY EXCITATION

A. Plasmon excitation energy

The excitation energy may be determined from
the zero of the dielectric constant. Thus we set

o;(Po) -=v;~(p, Po) =1 .

In the zeroth order of approximation, (25) is solved
trivially with the result given by (6). Still it is in-
structive to plot &'- ' against Po. The graph is
sketched in Fig. 4(a). The solution is determined
by the intersection with ordinate value of unity.
There is only one intersection and thus there is
only one mode of elementary excitation at the ze-
roth order. We will show that this is also true in
the next order of approximation. The elementary
excitation is called plasmon. Unlike in the elec-
tron gas, there is no continuum of intersections at
the zeroth order. The boson analog of the elec-
tron-hole pair excitation does not exist.

In the first order of approximation, we have

o'-(Po) = &-"'(Po) +»'-"(Po),

where

(26)

(A
cX (P) d 0( (PPJ

P
) P

FIG. 4. Sketches for (a) o.y (Pp) (b) &Qy (Pp), We
computed Gay (pp) with ( pl fixed at several values using
a computer. In all cases, the result showed the charac-
teristics sketched (not plotted) in (b).

So"'(Po) = v;m"'(p, Po) .
How does the additional term ~c "' affect the graph-
ical solution'? The curve of »' ' plotted against

Po must be examined. In particular, we wish to
examine whether or not there is any possibibty of
more than one intersection in the range pa& 2Qrp~

where &u» =(4mne /m)'~ . According to Carmi and

Lock, there is a second mode of elementa~ ex-
citation, which is different from the plasmon; it
approaches zero as p- 0 unlike the plasmon. For
this reason, we computed ~( "' as a function of Po
using a computer. We did this for several values
of p with the result sketched in Fig. 4(b). Note
that there is a pole at P, = Tp as may be seen from
(20). The value of b o-'" is minus infinity near the

pole and then increases monotonically as Po de-
creases from Po = Tp. It also increases monotoni-
cally as Po increases from Po= T~, but it is soon in-
terrupted by the region of two-plasmon continuum.

By adding 4~' ' to &', it is quite clear that there
is no possibility of more than one intersection in
the range Po &2e». Had ~~' ' turned out to be pos-
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T;=(-,'f') Ry',
(2 f4 1)1/2 Hyr

nv;= t Ry',
n-1 d3q gd3

(30)

FIG. 5. Integral domain was divided in this way to
avoid the apparent (not real) singularity that occurs at
q= —p in evaluating&E& and Bevy (po).

& o
—En —(& o

—T'p)vp)1z") —i(poo —ro~)v, flu' =0 . (27)

The correction 4E~ is obtained from the real part
of the solution,

(28)PII ——(E~ P b, EP) + iy; .

Now we show that v;m' ' is of order x, 4. To see
this, make the familiar change of variable,

~ q ~

= (4))n/a, )'~ '
I t I,

(29}
n=(3/4)I )(r,ao) o,

where ao is the Bohr radius. (Note that we have
here n, not no )Then. we find

itive for Po& T~, it might have been possible to have
a second intersection. Thus we conclude that there
is no second branch of elementary excitation in a
dense charged boson gas.

The effect of ~~' ' to the dispersion curve is
clear: It pushes the point of intersection to a
smaller value of Po. Now let us find this shift. By
writing m'1' =mz") + AI1"', the condition (25) yields,

ere Ry' =2xs»/2& 3/2 Ry and g 4&3 il4&3l4

Recall that m' ' is written in terms of the three
functions T„E„and nv, . According to (30) the
r, dependences of these functions are identical.
Since m'" contains one independent variable, v, 7t'"
= nv~ m'»' is of order r, . In general, v, v'" has
1-independent momentum variables and therefore is
of order (ro~4)'

Since there is only one solution for Po&2~~& and
v~m' ' is of order x, , it is safe in the high-density
limit to iterate the real part of (27). The result is

aE~=(T~n'vo~/E~)n 'w„'"(p, E~) . (31)

We have evaluated (31}using a computer. Note that
vs11) contains terms of form fdoq f(q, p)l q+pl o.

Thus, the integrand becomes singular at q = —p.
We have avoided this apparent (not real) singular-
ity by dividing the region of integration into four
as shown in Fig. 5 and then inIII, where the sin-
gular point is located, by making a change of vari-
able q+p = q'. The result is shown in Fig. 6 and
is in agreement with Ma and Woo.

B. Damping of plasmon state

The elementary excitationE~ at the zeroth order
represents a well-defined excited state. At the-
first order, however, the solution to (27) has an
important imaginary part and thus the linewidth is
no longer zero for all momenta. The imaginary
part (half-linewidth) is given by

(1) (Z o o/E ) n-1&(1)(p E )

d3
= —)7 Jt n 1,

o (E;-E - -E;-)((o &nv&nv, ) ()I.,)I.„&—1)+(onv&nv, ) (X —1/X„&)2)l')

+ —', )I~(nv~) o (1/)I,,)I.„~+ X,X„~—2) —(nv) nv, /4 E~ ) [nv„~()I.,)I.„o—1)+ n v, (X,)I.„~—)I.,/&„))]

+ —,'()I~+ 1/)I~)nvt nv„t (X,X„&+1)+ nv, ()I.,X„~+ )I.,/X„~)]+—,
' n , v()njv, + nv„&)] . (32)

We have evaluated this integral using a computer.
The result is presented in Fig. 7. The width is
zero up to the critical momentum (f = 2) and then
increases very rapidly to a maximum and then de-
creases gradually to zero as momentum increases
to infinity. The plasmons near t=2. 2 is especially
unstable against the two-plasmon continuum. This
is similar in character to the diffuse plateau in
liquid 4He appearing after the roton dip. For very
large momenta, a plasmon is identical to a free
particle and is a well-defined state.

For Po&2~p) there is a continuum of intersec-

tions. These intersections represent the excited
states containing two plasmons, one with momen-
tum —q and the other with momentum q+p. Fig-
ure 8 depicts the two possible ways these intersec-
tions may actually occur, It is not hard to show
that it is (a).

V. LINEAR RESPONSE

A. Response to a static impurity charge

We examine here the screening effect of the sys-
tem to a static impurity of charge Ze. The induced
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charge density is given by

5(n(p)} =F (P}Zev;2@5(PO), (33)

where F is the linear density response function
which may be obtained by taking the retarded ver-
sion9 from F.

It has been shown by Fetter" that the asymptotic
screening is exponential (~ e ") above the phase

transition temperature but becomes algebraic
(~ I/x') at the transition temperature. The
screening below the transition temperature in the
condensed phase is an interesting open question.
Although we do not have a complete answer, the
character of screening at T=0 is easy to find.

By taking the inverse Fourier transform, we
have

Ze m"'(p, 0) + m" '(p, 0)5»=, dpsin(pt)Pv ), ')(
)

„',
( )j,

where

m"'(p, 0) = —2n/7,-,
3 3

~ nv, (nv, + nv„~) A.,X„&(E,+F-„~) ——
~ nv, (X„~—1)+np,

(34)

(35)

Since the integrand in (34) is even in P =
I pI, it may

be written as

5(n(~)) =, —. dP e'~"pv~
Ze' 1

2r'r 2i-=

1
lim

( }
-0,

where (35) is used.

B. Response to a static transverse vector potential

(39)

1 —v;[m"'(p, 0)+m"'(p, 0}]
'

The integrand is an analytic function of P on the
real axis and therefore the integration may be per-
formed by closing the contour in the upper half-
plane. The zero of the denominator of the inte-
grand in (36) is given by

Tp + (dp( Tp —2 (dp) Tp'p2 7f (p 0) = 0 (37)

where &u&,
——2nT;v;. (37) has solutions in the upper

half-plane. Recall that we have shown numerically
that m""(p, 0) is negative in Sec. IV. Thus there are
simple poles in the upper half-plane and the expo-
nential nature of the screening is established. It
is certainly possible to evaluate (34) numerically,
but we did not feel such numerical result would be
interesting enough to justify the cost.

In the extreme high-density limit, m"' in (37}
may be ignored; the simple poles occur then at P
=v 2Xe" and P=v 2ke' '4, where A. =(4mn/ao)
The contour integral of (36) is performed easily
with the result

tp,.;(p)= —if di~ o (i v (i)i& (0)))-(40)

-ae(tj/8 a,,

-2
IO-

It has been shown by Fetter'~ that a dense charged
boson gas exhibits a perfect Meissner effect at the
limits p- 0 and p- ~. We have nothing new to add.
However, since this interesting subject matter may
be seen only after a few steps, we wish to present
here what might be called a diagrammatic version
of Fetter's derivation.

The paramagnetic term of the induced current
may be found from the retarded version of the cur-
rent correlation function defined by

5(n)x)) = —(Ze/2m') &~ e "sin(&r) . (38)
0.5 (.0 (.5

The total induced charge is —Ze as may be seen
by integrating (38). When m"' is included, this
perfect screening effect still persists in the long
wavelength limit. This follows from

FIG. 6. Numerical. result of ~&. The solid line
represents the result of Ma and Woo and the circle the:
result of (20). Our result is slightly lower than that of
Ma and Woo but the difference is well within. the numeri-
cal error.
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3Itl0-

-)(rr/'a tr„'

FIG. 7. Half-linewidth of the plasmon states. Note
that (31) contains a Dirac function. As a consequence of
evaluating such an integral numerically, the actual nu-
merical results were somewhat scattered around this
curve.

where (i, j) represent the spatial components of the
unperturbed current operator

The function a rr(P) may be obtained in the same
way as for F, but the fact that the two external
vertices are J instead of p requires an extra
amount of bookkeeping work. The London gauge
and the cylindrical symmetry around p, however,
substantially simplify the problem by eliminating
many diagrams. In particular, all of the reducible
diagrams make no contribution; only irreducible
diagrams II;& contribute. II;; may be calculated
from Figs. 1 and 2. Among many terms, only the
term that correspond to the &(P) term in rr'r' sur-
vives and the rest make no contribution. To see
this in more detail, the zeroth-order diagram is
given by

4m' (po —T~+i5)(p, + r~ —i5)

Clearly it makes no contribution. Each term of
IT~~&~' is in either one of the following three forms:

3

J (2, )
f(rl, p qP,

~ (rl+ p)rr rr

q

The total induced current is then given by
3

i';(P) = ——Z &ar(P)&r(P),
4m gi

where

K~r(p) =(4rrne2/mc~)5r, r+(4rr/c )o'~r(p),

(41)

(42)

(43)

d'q
(2 )s f (Qg p)Pr@ ~

(2„)s f(%y p)qrqr ~

The first is zero since LP&A&-—0 for a transverse
vector potential, and the second contributes only
to the longitudinal component. The surviving terms
are of the third form and give

3

II;& (p, Po) =
)3 (4E,E„~) ~$[nv, nv„~ —(T, +E,+nv, ) (T„~ E„r,+ nv„~)] —K'

—[nv, nv„r, —(T, E, +nv, )(T-,.r+E„~+nv,.r)]K )q, q, . (45)

Because of the cylindrical symmetry, (45) is nonzero only when i=j, and thus (42) reduces to the London
equation. In the static limit, we find

d
11,",'(p, o) =--,'5„q„q,'(E, +E„,)-' — ' + " -1

tT / 1+0
(46)

Clearly (46) is zero, in the limit p-0 and p- ~, and the paramagnetic term of the induced current is con-
sequently zero. We refer the readers to Fetter's article for further discussions.

The diagrams in Fig. 3 have not been calculated yet. We plan to undertake this problem in the future.
Whether or not the above-explained perfect Meissner effect persists even at the second order of approxi-
mation will be reported along with the result of g' ' in the future.

C. Ma-Woo formalism

The longitudinal component of the current correlation function may also be obtained from the diagrams
in Figs. 1 and 2. For the reasons mentioned earlier, 633 II33 where the subscript 3 refers to the direc-
tion of p. The function II33 has been calculated by Ma and Woo (they call it F33). The same result may be
obtained by our method with a smaller degree of difficulty. One may proceed as for m keeping in mind
again that the two external vertices represent J (this time it is the number current, not electric current,
following Ma and Woo). It is sufficient just to write down the final result,

ll~or{P) =
(Po -E~+ i5)(PO+ E~ —i5) 4m

(47)
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IIss (P) = [Go(P) -Go(- P)] (I', + I' ) (P/2m')+ [Go(P}+Go(-P)] [(I', —I' ) (P/2m')+ no '(P'/4m')]

+(1/ ')&""+Gl(P)Gl(-P)(-P'/2 ')M"'+[Gi'(P)+Go'(-P)](S"' —
I "')(P'/4 ')

[G (P) —G (-P)1&"'(P'/4 '),
where

1 "d3
r, + r = —i, ,s nv, (&, —&„~)(p Q+-,'p) Q,2 ~ (2g)

3

I', —I' = —
}s

nv (X, /X„~ —1) (P ~ tI+-,'P) Q',

3

(48)

1 "d 1
qs nv [nv, &(A.,X„&—1)+nv, X,(X„&—1/X,&)] Q'+ —,.s nv„&(&, —1/&,),

(49)

1 "d3 1 "d3
(g I)s/g ~ —~, ,s nv, [nv, (X,X„~+X,/X„~)+nv„~(X,X„~+1)]Q',

s nv, A.,(nv, +nv„~) Q
1 "dq

with

Q =It wK'.

The functions defined in (49) are the same as de-
fined by Ma and Woo. The continuity equation re-
lates3 H» to g by

m(P) = (P'/Pso) (Ilss+ n/m) . (50)

Substituting IIss' in (50) yields ii'o'. We have failed,
however, to prove analytically whether or not the
substitution of II,',"+11st," in (50}yields ii"'+m"'.
But the fact that the two numerical results of hE~
obtained from (50) and (20) agree with each other
appears to indicate the equivalence of the two.

VI. CONCLUDING REMARKS AND SUMMARY

In this paper, we have derived the generalized
dielectric constant of a dense charged boson gas to
the order next to the Bogoliubov approximation.
The method is based upon the fermion analogy
which was first exploited by Brandow using the
time-independent formalisms popular in the nu-
ear matter and known by the names of Brueckner,
Goldstone, and Bethe. The dielectric formalism
in this paper uses the time-dependent formalism
of Feynman and Dyson. Of course the time vari-
able qo is eliminated at the end of each partial sum-
mation of diagrams. We have demonstrated suf-
ficiently that retaining the time variable to the last
stage instead of eliminating at the beginning is not
by any means a disadvantage in dealing with a dense
charged boson gas. In fact, if one compares, for
example, the time-independent summation proce-
dure for diagrams of N~ shown in Ref. 6 with the
time-dependent way shown in this paper, the latter

proves to be substantially simpler than the former.
What is accomplished in the time-independent
method by a delicate use of the factorization theo-
rem is done in the time-dependent method by a
trivial integration over the time variable.

In comparison with the dielectric formalism of
Ma and Woo (MW) and the Green's-function ap-
proach of Schick and Wu (SW}, we believe that the
apparent simplicity of our procedure is more than
a pedagogical interest. We wish to stress that
those subsidiary correlation functions that the MW

formalism requires to introduce and the tangle of
JU, and no, which is more apparent in the SW for-
malism, may all be handled "automatically" by the
introduction of the "free particle-hole Green's
function" Go. In particular, the fact that right fac-
tors of p, and no are calculated and put at right
places automatically should prove to be a substan-
tial advantage at the second order of approximation
where g' ' would be included.

The results of this paper may be summarized as

I I

I

I

I I I

I

I I
I I

I I

I

I

I I
I

I

FIG. 8. Sketches for the possible intersections of the
ordinate value unity with ng {ps)+conj {po) in the two-
plasmon continuum region. The dotted lines represent
p():Eg + Eq~g E g+ Egg (a) is the case for a dense charged
boson gas.
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follows:
(i) The first-order correction to the Bogoliubov

excitation spectrum was obtained. This problem
has received a considerable amount of interest re-
cently by several authors. '5 We have shown that
our result agrees with that of Ma and Woo numerically.

(ii) Damping of the plasmon state was examined.
While this was done for an electron gas quite some
time ago by DuBois, curiously enough no work has
been done for a charged boson gas. We have com-
puted the leading term.

(iii) We have proven that, up to tbe first order
of approximation, there is only one mode of ele-
mentary excitation, and the second mode that Car-
mi and Lock claim to exist is absent.

(iv) We have proven that the nature of tbe screen-
ing of the system to a static impurity charge at T
=0 is, up to the first order of approximation, ex-
Ponential. We have also presented a diagrammatic
argument to show the perfect Meissner effect at the
long- and short-wavelength limits.

(v) ln an appendix, we have shown that tbe x,
expansion of n, contains only terms of integer pow-
ers of r, ; the r, term of Schickand Wu is absent.

From the generalized dielectric constant, it is
possible to calculate the static structure function
S(P). There was a demand for a calculation of
S(P) to the order next to the Bogoliubov approxi-
mation. A dielectric calculation has been performed
recently by Family'o for this term of S(P}. Family
performed another calculation using a collective
coordinate method, and the result is in a striking
agreement with that of the dielectric approach.
Berdahl 7 has also carried out a calculation recent-
ly. His calculation is based upon the observation
that S(P) is related to the functional derivative of
the ground-state energy with respect to the Fouri-
er transform of the interaction potential. The re-
sult of Berdahl and the two results of Family are
in agreement. Therefore this subject matter of
S(P) appears to be well settled.

One can also calculate in principle the ground-
state energy from the dielectric constant. The
leading term may be obtained by carrying out a
trivial integration over the coupling constant. 4 The
necessary integration over the coupling constant at
the next order is, however, by no means simple;
we do not find any advantage over the previous ap-
proaches.

Thus we will turn our effort to calculating the di-
agrams of m' '. The result should be interesting
because the inclusion of m' ' would take the three
plasmon intermediate states into account without

any approximation.
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APPENDIX A: CHEMICAL POTENTIAL

"' dx
Eo=, &~o(~) I

ff„
l
~o(~)&

~ (ol r(a„s(~))lo), ,
+Q

(Al)

where H&& is the potential-energy operator with

coupling given by A.v;; S(X) is the time-evolution
operator U~(~, -~); I 4'o(X}) and 10) are the in-
teracting and noninteracting ground state, respec-
tively; I. indicates that only linked diagrams be
taken. To the zeroth order of approximation, Ep

is given by ring diagrams. With some care not to
double count, one can find

[ ((f)](o& ~ 1
~

d q (o& (A2)

where we have carried out the X integration. Each
m contains a Fermi loop and thus has a factor of
—

¹ By differentiating (A2) with respect to N, the

awkward factor 1/f is cancelled with the result

p,
"' =-,'in-' Q ~, f v;v(o'(q)]'

g~ - (2~)'

The series may be summed and then, by using the
second line of (4}, is reduced to (11).

The purpose of this and the next appendixes is to
identify the two factors p,

"' and np" appearing in
(10) as the first-order expansion terms of the

chemical potential and the condensate density np
'

= No"'/0, respectively. Such identification is not

essential as far as our dielectric formalism is
conserned, but p. and Np ale important variables
on their own rights and thus we wish to show that
they (p and No) may be calculated using tbe time-
dependent perturbation scheme. As was mentioned
in the Introduction, p, or Np may be computed to
any order of approximation without having to know

the other; whereas in the conventional perturba-
tion method one cannot be calculated without the
other, and more importantly the result of any cal-
culation of p, (or No) will involve yet unknown p,

(or N, ).
First consider the chemical potential p, . We

start from p, = (BEo/SN)„. Here Eo is the ground-
state energy and is given by
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(6) ( b) ( C)

FIG. 9. Perturbation expansion for No = (aoao): (a)

No, (b) No, (c) No . The wiggly lines represent veff(p)
given by (7). The curly arrow has been drawn for a pur-
pose of reference in Appendix C.

~ w 4

p= —n'
(2 ), m(q)v,'E(q) .

The contribution of p,
"' is clearly of order t'",

(r 3/4) f

(A4)

APPENDIX 8: NUMBER OF PARTICLES IN THE
CONDENSATE

We consider here Np 'the number of particles in
the condensate. We start from

No ——(a~~ao) =(Ol T(a~~(0)ao(0)S)
l 0)~ . (Bl)

One might call it a "hole Green's function" iG (p
=0, &=0), and we wish to take this view. Pertur-
bation terms of (B1) may be shown as in Fig. 9,
where (a), (b), (c) correspond to No"', N,"', and

NQ ', re spec tive ly. The two exte mal lines which
are represented by GQ are tied together by a dot
because ap~ and ap act at the same time. This is
not merely for a style but is essential to apply the
fermion analogy correct, ly. We find, up to the
first order,

No"' =(01 ao"ol 0) = N,

N"' = '(- N) ' [G ( )]'o =' „(2v)

The zeroth-order term p,
' ' is zero for a charged

system since the corresponding EQ is zero. For
the succeeding higher-order terms, one can con-
tinue with the diagrams with total independent mo-
mentum variables equal to two, three, four, and
so on. The counting problem becomes somewhat
involved but the final result is the same as (AS),
with m' ' replaced by m. We should note, however,
that the v'o' in (A2) may not be replaced by m. The
exact result is

This may be seen by examining N;=(a;a;) in the
same way as for Np. It is easy to find N'. '=0,
N&~' =Nf.'» Clearly N&~' is of order rs/4.

The diagrams of No'o' are shown in Fig. 9(c).
In these diagrams, there are two independent mo-
mentum variables and therefore they contribute to
the order of r,' '" . In general, diagrams of Np"
have l-independent momentum variables and there-
fore contribute to the order of (rs/ )'.

We have mentioned this because according to
Schick and Wu, '

Np has a term of order r9 . The
presence of such terms in NQ would imply that the
ground-state energy and p. also contain similar
terms of noninteger power of r, In Ref. 6, we
have shown that the ground-state energy contains
only terms of integer power of r', . In Appendix
A, we have also shown that the chemical potential
contains only terms of integer power of r,
Therefore, it is our belief that the r, term is
absent in the expansion of Np.

APPENDIX C: CONNECTION TO THE FORMALISM
OF HUGENHOLTZ AND PINES

This subject matter has been explained by Bran-
dow in a time-independent way. Since he has put
the main emphasis on the problems of the ground-
state energy, we will provide here an equivalent
argument for the correlation function E in a time-
dependent way.

In the formalisms of Hugenholtz and Pines (HP),
there is no hole line, but instead one multiplies the
factor No'/o for every replaced (by No'/o) condensate
operator, and a directed line represents

Go(P) =(Po- 7';+ V+ if) '. (C1)

It differs from our GQ by the factor p. in the denom-
inator. At the order of Bogoliubov approximation,
E is given by

F (p) nol Gll(p)+ Gll( p)+ G (p) + G ( p)] ~ (C2)

Diagramatically it is represented by Fig. 10. It is
easy to see that with Np set to N, E, is equal to our
E'o'. Recalling that m'o'(P) =nGo(P)+nGo( —P), it is
also easy to see what each term in (C2) refers to:
if the first and the last m' ' diagrams in our E' '

are nGo(P), the result reduces to G»,. if both are
nGo( P), we have G»(-P); if one of the two (ei-

"a4k
x

( )4 Go(k So+ qo)v, ff(k)

"d4k
= —iN ), [Go(k)]ov,'„(k)

) d3k

(2 )sf' ~

(B2)

(b) (C )

where f; is given by (19). The desired identifica-
tion has been made. The function f; represents
the fraction of particles in the plane wave state q.

FIG. 10. Typical diagrams of (a) G&&(p), (b) G&&(-p),
(c) G&&Q), (d) G&~(p). The dotted lines are v~, not veff(p).
The circle in (a) is for a purpose of reference in Appen-
dix C.



12 DIELECTRIC APPROACH TG A DENSE CHARGED. . . 2655

ther first or last) is nGO(P) and the other is
nGO(- p), it reduces to the last two anomalous
terms.

Now we pick up just one segment of a diagram
such as enclosed by a circle in Fig. 10(a). The
contribution of this portion of the diagram is given
by (Cl) multiplied by no. How does the factor N
change to N~ and how does the factor p. sneak into
the denominator? This may be done by adding di-
agrams of higher orders to g' '. Among the dia-
grams of m(~&, choose Fig. 2(b). In this diagram,
a directed line may be either Go or Go. Now take
a partial contribution (PC) of this diagram by let-
ting the two indicated lines (by curly arrows) be
Go. This PC has already been calculated in the
last two terms of (10). Next go to )((2&. Choose
the diagram with two "bumps" in Fig. 3 and calcu-
late the PC by letting the three indicated lines be
Go. Continue with the diagram of m' ' with three
bumps, and so on. The PC of each is
no-bump diagram = G~(P)no ',
one-bump diagram =[Go(p)] ( —p, "&)n(0 &+ Go(p)nI)~&,

(cs)
t o-b~p diagram =[Go(p)]'(- t

"&)'n(0&

+[G+(P)]2( t)(1))g(1)

G+(P)+t (2)

where no'~' represents the partial contribution that
the first diagram in Fig. 9(c) makes to no

' when
the indicated line is Go. The sum of (CS) is given
by

G+(P)(~(0) + ~(1) +. . . )

~ [G+(P)]R( ~(l))(~(0) + ~(l& ~, , )

+[G+(P)]3( ~()))2(~(0& ~(1) ~. , ) . (4)

The series is summed easily to the desired result.
Two very awkward and rather dangerous affairs

have been done: (i) only one diagram has been
chosen at each order when the rest make contribu-
tions of equal order. (ii) Even the chosen diagram
was not allowed to make its full contribution.
These are justified only for the Hamiltonian of
Bogoliubov, which contains two condensate opera-
tors in the interaction term. For the Hamiltonian
of Bogoliubov, the diagrams not included and men-
tioned in (i) are all zero, and the rest of the con-
tributions of the chosen diagrams mentioned in
(ii) are also zero As o.ne includes the terms of
Hamiltonian that Bogoliubov dropped, there emerge,
in addition to F„F,and F, (in the notation of
Hugenholtz and Pines). The above analysis may be
extended to higher orders but the details are not
illuminating; the notations adopted in (17) and (18)
and the algebra from there on is sufficient.
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