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A theory of flux flow useful for low-k superconductors is given where the electrodynamics is nonlocal. Fields
and chemical potential gradients are induced by a transport current which causes the vortex to move with
velocity V. These are determined self-consistently by the requirement that they generate a supercurrent to
correspond to the displacement of a static vortex and compensate for scattering of thermally excited
quasiparticles. Making use of an approximate analytic solution for a static vortex by Kramer and Pesch, it is
shown that for the case of pure (I>&,) superconductors at low temperatures (T= 0.57T,) there is no backflow.
The component of V; in the direction of the transport current is the transport velocity, a result of the Hall

effect on the bound states in the vortex core.

I. INTRODUCTION

Although the theory of the motion of vortices in
superconductors has received considerable atten-
tion over the years, no satisfactory solution from
microscopic theory has been given for relatively
pure superconductors with a mean free path large
compared with the coherence distance (> &,).

As a contribution to this problem, we consider
here the motion of an isolated straight vortex (H
close to H,,) resulting from a uniform transport
current flowing normal to the axis of the vortex.
The temperature is assumed sufficiently low so
that only bound states in the core can be therm-
ally excited (in practice, T<~0.5 T,). We make
use of a solution for the energies of the bound
states of a static vortex line as derived by Kramer
and Pesch! from solutions of the Eilenberger equa-
tions.

We show how the effective force on an electron
resulting from the electrochemical gradient and
the magnetic field may be derived in a self-con-
sistent manner. As first shown by Caroli e/ al.?

a vortex may be considered to have a normal core
with a radius roughly equal to the coherence dis-
tance §,, We assume that the transport current
Jr, is sufficiently small so that the distance a
vortex moves during a relaxation time is small
compared with £, No attempt is made to treat the
magnetic field of the transport current self-con-
sistently.

One may regard the present theory as a nonlocal
generalization of the local model of Stephen and
one of the authors.® In the local model, it is
assumed that the current density 35(‘75) depends
only on the local value of the superfluid velocity
Vs The free-energy density F(P) is a local func-
tion of the kinetic momentum B=p ~ (¢/c)& and
v, =08F(P)/oP. It was shown that fields are set up
so as to drive the transport current through the
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normal core in such a way that the total current
density

j:js'*'jn:jT'*"To(—f_ﬁl,t)y (1)

where J, is the uniform transport current, J,()
is the circulating current around a stationary
vortex, and ?L is the velocity of the vortex rela-
tive to the lattice. This was found to be true re-
gardless of the details of the local model.

Noziéres and Vinen* have discussed vortex mo-
tion in pure superconductors on the basis of a
general hydrodynamical model. A critical dis-
cussion and extension of this model as well as
that of the local model has been given by Vinen
and Warren.® They conclude that the component
of ¥, in the direction of the transport current
should be equal to the transport velocity ¥, of the
electrons. If, as illustrated in Fig. 1, V,is in
the x direction, then v;,=|¥,/=v; The compo-
nent v;, in the transverse direction is such as to
make up for the losses in the core. The circulat-
ing currents are assumed to be in the clockwise
direction so that the magnetic field H, is in the
negative z direction, assuming e is positive.
According to the hydrodynamical model, the vor-
tex should move at the Hall angle « relative to Vo,
such that tana=v,/v,,. This is contrary to the
prediction of the local model of Bardeen and
Stephen® for which the Hall angle should be equal
to that of the normal metal for a magnetic field
equal to that in the core.

Since the time those papers were written, a
great deal has been learned about structure of
static vortex lines from nonlocal microscopic
theory.'**~® For values of k of the order of unity,
a large part of the circulation comes from bound
states in the core. The pair potential A(») that
confines the flow acts like an effective magnetic
field which is in addition to the true magnetic
field. We shall show that at low temperatures the
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FIG. 1. Coordinates used to discuss vortex motion.
The current circulates in the clockwise direction and
the magnetic field is in the negative z direction.

values of the energy of the bound states determined
by Kramer and Pesch are consistent both with Eq.
(1) and also with v, ,= v, as suggested by Noziéres
and Vinen. We also determine a viscosity coeffi-
cient and flux-flow resistivity for motion in the
transverse direction v;,. In Sec. II, we discuss
the nature of the effective fields and forces on the
electrons. The relations between them as derived
from momentum conservation are described in
Sec. III. In Sec. IV, we make use of the micro-
scopic theory to derive the area of the core and
the effective Hall field. Finally, in Sec. V, we
apply the results to derive the viscosity coeffi-
cient for flow normal to the transport current and
the flux-flow resistivity. We also discuss possible
future applications of the theory.

II. EFFECTIVE FIELDS

In this section we discover how the effective
fields that move the vortex are determined. Let
us first consider a static vortex about which
currents circulate that give the magnetic field
along the axis. We consider only vortex lines
that carry a single flux quantum &,=%c/2e, or in
units such that Z7=c=1, n/e. As illustrated in Fig.
1, we use cylindrical coordinates, 7, ¢, z, where
z is along the vortex axis and ¢ is measured
from the normal to ¥,. The static magnetic field
may be described by a vector potential that has
only a ¢ component Ay4() which is a function only
of the distance 7 from the axis. For a line with
a single quantum one may take a gauge Aj(r),

Ay(r)=A4(r) + @,/ 277, 2)

where Ay(r) -0 as 7 -0 and A4(») -0 as » -

more rapidly than 1/7. This insures that the
total flux corresponds to one quantum. The mag-
netic field

drAy)_, . drAy

-— -1
H,(r)=7 o ar

@3)

If the vortex is moving at a velocity ¥, relative
to the lattice, all quantities in steady-state flow
will be functions of ¥ —V,¢. The moving magnetic
field will give rise to an electric field normal to
Vi,

Ey=-%,x0=-VF, K +F, DAL (4

This expression is gauge invariant, so that one
could use either & or A’ to describe the magnetic
field; we shall use A. In addition to this field,
there may be electrochemical gradients whose
potential can be added to ¥, *A, giving a field of
the form

f=—VW+F, VA (5)

One may regard this field, as in the local model
of Bardeen and Stephen,. as arising in part from
the time rate of change of the canonical momentum
P, which has only a ¢ component given by

Py(r)=ed /217 — e A4r). (6)

The force from the time rate of change of
Py[F -Vt is, at t=0,

ef = — (7, V)P, (1)
with components
fr=v,cosd(Py/7), (82)
. oP
fo=— vy sing <——é—;¢¢> , (8b)

where Td, is a unit vector in the ¢ direction. _

In the local model,® it was assumed that there
is a normal core of radius « outside of which
supercurrents circulate to give a magnetic field
in the core. From the term e®,/277 in P, there
is a surface charge density 0(a)= - ®,v, cos¢p/4nd®
at the core boundary, a dipolar field outside of
the core normal to v, given by

ef,=—ed,v,/21a’. 9

In the nonlocal theory, the core boundary and
charge density will be spread out over a distance
of the order of the coherence distance from the
axis of the vortex. We superimpose fields with
a continuous distribution of « values.

The normal component comes from the nonpaired
bound states in the core.® At a distance 7, a frac-
tion g(r) of the density at the Fermi surface will
arise from bound states, where g(*) increases
from zero at ¥ =~ and approaches unity as » = 0.
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A fraction — [dg()/dr]da changes from normal to
superconducting in the interval da. One may then,
in analogy with the local model, take for the term
— VW in (5) an integral of fields over different a
values weighted by the factor — (dg/d7),,

W &, v,cos¢ “dg da)
o _20YCOS@ [y 2 [ 48 daa
oy 2172 <1 g+ , da a®)’
(10a)
18W_ &, sing » [“dg @)
ST i 1-glr)-» | dad® )
(10b)

The terms with a factor 1 - g(#) correspond to

the bipolar field outside the core of the local
model while those with the integral represent the
integral of the uniform fields similar to (9) from
the term e®,/2m7 for a>7. One may readily verify
that V?W = - 47mp, where p is the charge density

— o(r)(dg/ar). .

The integral throughout space of — VW and of
G, ¥)A have components perpendicular to vV, of
egiral magnitude and vanishing components paral-
lel to V. Their sum is equal to the integral of
-%, xH, or since H is in the negative z direction,
%, x1,)%,.

More generally, one may regard W as a function
to be determined self-consistently so that it gives
rise to a steady-state motion of the vortex with
velocity V,. It is required that W be regular at
the origin and approach the values indicated in
Eq. (10) as # =». Then V, is determined by the
condition that the fields compensate for scattering
within the core. At higher temperatures, when
quasiparticle states with energies greater than
A, may be present, one would have to determine
the steady-state quasiparticle distribution as well.
This latter is a difficult problem because one
must consider both elastic and inelastic scatter-
ing as the quasiparticles relax to form ground-
state pairs.

[II. MOMENTUM CONSERVATION

Before discussing the details of the microscopic
theory we consider the physics of the problem.
The key is the nature of the bound quasiparticle
states with energies less than A.,. These are not
paired, as are the states in the bulk, so that tran-
sitions between them do not have the usual coher-
ence factors. States of positive energy may be
regarded as having equal amplitudes of particles
above and holes below the Fermi sea. The circu-
lation of current around the axis is similar to
that in an effective magnetic field, in part due to
the real magnetic field and in part due to the pair

potential which confines the states, as discussed
in Ref. 6. We show that the Hall effect from this

effective field is just such as to make v;,= v, and
that the transport current flows directly through

the core with no backflow.

The bound-state wave functions drop off expo-
nentially with distance from the axis so that the
change from supercurrent flow to normal flow in
the core is a gradual one, as discussed in Sec. II.
When there is a transport current with velocity
vy, the Fermi surface is shifted by an amount v,.
If there is no backflow, the Fermi surface of the
bound states is also shifted by v,. However, the
quasiparticles tend to relax to the lattice so that
a field is required to maintain the distribution in
steady state. The Hall effect on the bound states
implies that this field acts at an angle « relative
to the transport current and the vortex moves in
a direction normal to this field, as illustrated in
Fig. 1. ’

The density of bound states at the Fermi sur-
face is the normal density multiplied by an area
A,, which may be regarded as the area of the nor-
mal core. The value may be derived from the
bound-state energies of Kramer and Pesch, but
our value differs slightly from theirs because of
a difference in physical interpretation of the re-
sult.

Let us first consider an ideally pure supercon-
ductor. If the core were at rest relative to the
lattice, and a transport velocity ¥, were applied,
the supercurrent would flow around the normal
core region. This might be described by a veloc-
ity — ¥, of the core, with associated backflow out-
side the core, on which a uniform v, is super-
imposed. The velocity of the core would then be
zero. Now suppose that the core moves with the
transport current, so that the core states have an
additional velocity V,. There would then be no
backflow. In a frame moving with transport cur-
rent, the vortex would be at rest, but the lattice
would be moving with a velocity -V, If we ignore
the magnetic field produced by the moving lattice,
the vortex would move with the electron fluid, as
suggested by the hydrodynamical model of
Noziéres and Vinen.*

If we go back to the lattice frame, electric
fields would be generated by the moving magnetic
field of the lattice but there would be no net force
because this field is just balanced by the effect of
the magnetic field on the transport current

f=E+¥,xH=0. 11)

Let us now assume impurity scattering of the
core electrons with a transport relaxation time
T=vpl. We assume that there is no backflow, as
described in Eq. (1), and show that this solution
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is self-consistent if we allow an appropriate veloc-

ity v,, perpendicular to v, in addition to v;,=v,.
We determine the force ef required to maintain

the flow as follows: The normal density of states

of one spin of positive energy is 2N(0) since both

electrons above and holes below the Fermi sur-

face are counted as positive excitation. If N,(F)

is the corresponding density of bound states at

the Fermi surface, the normal fraction is

g(r)=3%N,(r)/N(0). (12)

If the total electron density is #, the rate of loss
of momentum from scattering is per unit volume
for unit length of line:

grinmu /7. (13)

Since all of the electrons are accelerated by the
force, momentum is gained at a rate

dv
nm=—r=nef,, (14)
which must be equal to (13) if the two are in bal-
ance. The integral of g(v) over the 7, ¢ plane is
the effective area of the core:

A,=2m f et ar. (15)
0

The integral of f, over the same plane is, from (5)
with boundary conditions for large 7 as in (10),

vLy<I>0’ (16)

Thus we find, equating the integrals of (13) and
(14),

vy, /Vp=mA, /ThT. 17

There remains to determine A and v,, from the
microscopic theory of the bound states in the
core, which is done in Sec. IV. The power dissi-
pation is compensated for by the motion of the
vortex line in a direction transverse to vV, The
line moves down a free-energy gradient

~Jx&, giving a net force

ne ffdzr=—frx§o=1rnﬁvﬁy. (18)

In the lattice frame there is an additional change
in momentum from the passage of the circulating
current, Jo(f —¥,f). The time rate of change of
momentum per unit volume F (*) multiplied by e is

e - o -

—_—F =—0_ _ .

F === (T V), (19)
The components in the » and ¢ directions are

%F, =, cos¢ (—@> s (20a)
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L F,=—v,sind <~——d"°(” (20b)
m-® T dr /|-

The component normal to ¥, is

ddJ,
%FL=UL cos’¢ <—i—°>+vL sin’¢ <ﬁ) (21)

The integral over space is

efFld%':nvme [JOH'(QJJ)}M
0 ar

=0. (22)

0

=T, mrd,)

Thus there is no net force associated with the
passage of the line, as is evident from the fact
that v; is assumed to remain constant as the vor-
tex line passes. This would not be true unless
there were some external source of power to keep
vr constant, as the power that drives the line
comes ultimately from this external source.

In superconductors with large values of «, the
peak in 7J, will be near the boundary of the core.
If we calculate the integral to some lower limit
for 7, we would have — v, 7Jy(»). Since we have
assumed that J, is negative, this expression is
positive. In regions where |7J,(r)| is increasing
F, is positive; in regions where it is decreasing
F, is negative on the average. Thus there would
have to be compensating forces in the superfluid
outside of the core. However the net force in the
core would still be given by Eq. (16) if 7J,(7) is
small at the core boundary. Thus although the
microscopic theory to be given later applies only
to small ¥ superconductors, Eq. (1) may still be
valid for large « as well.

1V. MICROSCOPIC THEORY

Accurate calculations of the structure of pure
static vortex lines have been derived by Pesch and
Kramer® from the Eilenberger version of the
Gorkov equations. They have derived the pair
potential A(») and the current density J(») for
various values of the Ginzburg-Landau parameter
k and of the reduced temperature t=T/T,. More
recently, the same authors® have derived analytic
expressions for the quasiparticle energies of the
bound states for small « superconductors. The
approximations involve keeping only the low-fre-
quency terms in the Eilenberger equations, corre-
sponding to keeping only the bound-state terms in
the Bogoliubov equations, which should be appro-
priate for values of K near one. They also con-
sider values of k for type-I superconductors where
vortex lines may be formed in thin films subjected
to transverse fields.

The Bogoliubov amplitudes «,(*) and v,(») may
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be designated by the wave vector k,=Fkcosf, the
magnetic quantum number p, which takes half-odd
integral values, and the spin. Generally, there is
only one bound state for each p, with positive
energies corresponding to positive u, for each
value of the spin. One may regard states of nega-
tive u as occupied in the ground state, giving a
circulation in the counterclockwise direction. For
values of k near one, most of the circulation
comes from the bound states in the core.!*®* The
gap parameter A(») varies linearly with u for
small 7 and is to be determined self-consistently
from the equation

A¥) = VZ u (") v,(r) tanh (zBe ). (23)

According to Caroli et al.,? for v small,
(1) = (RpA./20p) 2™ @YD, o (kp7 cosB),
(24a)
V() = (kpAn/20p) 2 VD20, (kp7 cosh).
(24b)

Here p is one-half an odd integer and the normal-
ization is for unit length of vortex line. The quasi-
particle energies are given by

Pp— fdyA(y)e'U(')/fmdre‘U('),
krcost J; v o

(25)

where
2 r
U(T) =m ’/0‘ av A(’V). (26)

If only small yu contribute to the sum in Eq. (23),
Kramer and Pesch find by the Bogoliubov method
for T,> T> A%/E, (in Gaussian units)

¢ 20k In(Ey/€)) 1)

T m*méicos®o

where &, ~ £(T/T,). This expression applies when
i is small so that one is in the region where €,
varies linearly with u. They found the same ex-
pression with use of the Eilenberger method.

The factor cos®d arises from the geometry of
the Fermi surface, as shown in Fig. 2(a). The
density of states in the interval d6 is for trans-
verse excitations

du dk, Tmtikpcos®0do
g =G4 z=—°L—.
Nhr(e) d dsu 21 47° 111(50/51) (28)

A similar expression with cos®8 replaced by
sin®0 comes from excitation of %,, with the Fermi
surface k,.(0) unchanged. In the over-all density,
excitations of %, contribute equally to those in the
x and y directions. The factor cos®d in dp/de,

accounts for the decrease in phase space and num-
ber of electrons with increase in 2,, as illus-
trated in Fig. 2(a). It is the Fermi energy that
determines k, such that k% +%k2=F%. One can have
excitations in &, without changing %,.. The total
density is obtained by replacing cos®d in Eq. (28)
with cosf and integrating over 6 between — 37

and 37. Setting this equal to 2N(0)A4,, we find

A,=1%8/21n(£,/£) (29)

since the normal density 2N(0) = mky/(n%)?. This
value for A, is § the value given by Kramer and
Pesch!; a factor 3 comes from including excita-
tions in &, and a factor 3 comes from comparing
the density with 2N(0) rather than N(0) for the
normal metal.

To determine the effective magnetic field for
the Hall effect, we would like to find the field such
that there is one excitation for each spin and u
value in a volume A, for unit length of vortex line.
For a magnetic field, the frequencies are indepen-
dent of %, and thus of k2,. The phase space for an
energy interval Zw,=eH.x/mc, as indicated in
Fig. 2(b), is such that

e | = (7% /m)k, Ok, = fiw,. (30)

The phase space corresponding to one state of
positive energy (counting both particles and holes
as positive) is for a volume A, given by

Ak Bk =T, (31)
Thus from Egs. (30) and (31), we have
hw,=1h%/mA,. (32)

Note that the effective field H.y is simply &,/A,.
For this field, the Hall angle is

tana=v;, /v, ,= W T=TAT/mA,. (33)

In Eq. (17), we found an identical expression for

kzF kZF
\ Bk Sky
Kz | kz
(a) (b)

FIG. 2. (a) Phase space for bound state in the core of
a vortex line; 6k, =6k cosf. (b) Phase space for elec-
trons in a normal metal in a magnetic field; 6k, =0k 5/
cosf.
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v4/v;,. Thus we find that v;,= v, as a result of
the Hall effect on the electrons in the core. There
is no backflow.

V. CONCLUSIONS

The effective field serves both to move the vor-
tex line and to balance the effect of impurity scat-
tering in the core, resulting in the simple form of
Eq. (1). It is not certain whether or not Eq. (1)
applies to dirty superconductors at low tempera-
tures. It probably does not apply to pure type-I
superconductors, which can have vortex lines
penetrating a thin film in a transverse magnetic
field. In this latter case, according to Kramer
and Pesch,® the A, as defined by Eq. (8) depends
on 6, indicating that the Fermi surface is modified
as the vortex moves.

The viscosity coefficient 1 for motion in the y
direction, defined so that the retarding force is
nv.,, is given by

N=nr?i®T/mA,. (34)

Except for the shrinkage of the core with decreas-
ing temperature given by the logarithmic factor
In(¢,/&,) in Eq. (8), this result is not far different
from that given by the local model.® It would be
of interest to confirm this shrinkage of the core
experimentally.

One would expect that the same considerations
would apply to a moving vortex lattice as long as
the temperature is sufficiently low so that only
bound states are excited. In practice, this implies
T<0.5T,. Excluded are gapless superconductors
for which the Eliashberg-Gorkov version of the
time-dependent Ginzburg-Landau theory may be
applied. Thompson and Hu® have shown that in
this case one generally has backflow, contrary to
Eq. (1).

The flux-flow resistivity p, is that of a normal
region of relative volume (B/®,)A,, so that the
ratio to the normal resistivity is

pf /pn= (B/éo)Ac'

For pure metals, this is approximately B/H ,, as
suggested by experiment.
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