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Dielectric response of the charged Bose gas in the random-phase approximation
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A closed form for the dielectric function of a charged Bose gas is found in the random-phase approximation.
This dielectric constant is used to explore the quasiparticle energy spectrum (i.e., the allowed modes of
oscillation of the gas), the damping of these quasiparticles, and the long-ranged form of the electrostatic
potential around a test charge in the gas. We do this around the three temperature regions of interest; namely,
T = 0, T = 00, and T = T„where T, is the transition temperature of the gas.

I. INTRODUCTION

The interacting Bose gas is a very complex, and
as yet not fully solved, problem. It not only con-
tains the difficulties of the many-body problem, but
has the added complication of the critical phenome-
non that is a consequence of Bose-Einstein conden-
sation.

Apart from the intrinsic value of solving a par-
ticular many-body problem, a solution is desirable
as an interacting Bose gas can serve as a model of
several real physical systems. In particular, the
specialized situation of a gas of charged bosons can
serve as a model for a superconductor. ' There is
also astrophysical interest in that the centers of
white dwarf stars, and possibly also novas and
supernovas, consist mainly of He nuclei, which
are, of course, charged bosons.

Following the initial work done on the neutral
hard-sphere Bose gas, ' many studies on the inter-
acting Bose gas have dealt specifically with the
Coulomb interaction because of the above physical
applications. In this paper we also deal with the
Coulomb interaction. Hopefully, many of the re-
sults obtained will be characteristic of more com-
plicated interactions that also contain a long-range
part.

The charged Bose gas was first investigated in
1961 by Foldy, who worked at zero temperature
(T = 0) and calculated the energy and quasiparticle
energy spectrum of the gas using a method proposed
by Bogoliubov. ' Since then, various approaches
have been taken with a view to obtaining information
about different aspects of the problem.

Further investigations have been carried out at
T =0 to look at corrections to Foldy's results for
the ground-state energy and quasiparticle energy
spectrum. The thermodynamic functions near
T = 0 have also been looked at, "' as has the pres-
ence of a Meissner effect at T =0. '

Also, work has been carried out at or near T„
the transition temperature for the gas. This work
has been concerned with the critical exponents, "'
the change in the transition temperature from that
of the ideal gas, ' ~ and refinements to the ideal

single-particle ener gy spectrum. '6'

We now introduce a different approach that, un-
like previous works, enables us to consider all
temperature regions.

We use a dielectric-constant formalism in the
random-phase approximation. This approximation,
hereafter called the RPA, means we take the dis-
tribution of particles in our char ged Bose gas to be
that of an ideal Bose gas. We obtain a closed-form
expression for the dielectric constant and then go
on to investigate the quasiparticle energy spectrum
and the long-ranged form of the electrostatic poten-
tial around a test charge in the gas. We also look
at the damping of the quasiparticles (i.e. , the
damping of the oscillations of the gas).

Fetter' also studied the static screening in the
RPA. However, he worked strictly at T, and
above, and we are able to extend his results to be-
low T„which is the interesting condensation re-
gion.

II. MATHEMATICAL DEVELOPMENT

Consider a gas of N identical spinless bosons
with mass m and charge e in a box of volume 0, to-
gether with a background of stationary particles of
opposite charge to preserve charge neutrality.

The Fourier-transformed dielectric constant
e(q, a&) is well known for this system and can be
found in many books. In particular, Harris' de-
rives it by looking at a small disturbance on the
system in equilibrium, and the result is

~ 4weP Fp(P) —Fp(P —q)
liq'0 td —(q/m)p q+qq~/qm)

(I)

Here co is the frequency of a small oscillation of the
gas about equilibrium. Thus Se is the energy of the
quasiparticle associated with the oscillation; q is
the Fourier-transform parameter and represents
the wave number of the frequency co; p refers to the
values of wave number that a free particle in the
box would be allowed to have. [If we impose cyclic
boundary conditions, then p = (2m/0'/P)n, where
n„, n„n, = 0, a I, a 2, ~ ~ ~ . ] Fp(p) is the equilibrium
distribution of the bosons. We now make the RPA
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and take for Eh(p)

F ( ) I/(Z-1 eh /r /hrrrhr 1)

This is the ideal Bose gas distribution function at
temperature T; k is Boltzmann's constant; z is
the fugacity and for bosons O~z ~1. Thus

4@ca ~ 1 1 Sq
~(qr +) 1+~ 2 ~ -1 hhhh/hrrrhT e -1 hh("- )h/hrrrh2' ~ ~ P q+ ~

ri~~q ~ 8 e —1 z e Pl 202
(3)

The transition temperature T, for ideal bosons is
given by20

=2ra' 1
mk pg(-.')

where p =N/0 and f(x) is the Riemann zeta func-
tion.

Bose-Einstein condensation starts to set in at T„
and for T~T, we have z =1. Thus for T~T, it is
clear from Eq. (3) that because of the singular na-
ture of 1/(z ' —1) for z = 1, we must take careful
account of the p = 0 and p = q modes. In Appendix A
we take careful account of these modes, and we in-
dicate the mathematical steps required to reduce
Eq. (3) to the following more manageable. result.

T —Tc'

(d
e(q, ur) =1 —

h hhh h 1 —— +—h
h h, h™.p —.(II+/(DC;)]e rh —[I+/( BC,)] e h/'I,

(4)

where D =i (mv/Ifq+ hq), B =i (m&u/Kp ——,q), C,
=A' hj' h, A =Ah/2mkT; Q(x) is the error function, '
where

P(x)= Jl
e' dt

and eh =47/e p/m is the plasma frequency for the

gas

III. QUASIPARTICLE ENERGY SPECTRUM

We have obtained a closed-form expression for
z(q, v) and we can now use the properties of the
error function to investigate h(q, &u) in the tempera-
ture regions of interest, namely,

T 07 T Tc 7 T Tc +7 T

The allowed values of co are then found by solving
the equation, '

h(q, (u) =0 .
As an interesting quick result, we first show how

Foldy's spectrum can be obtained. Putting T =0 in
Eq. (A1) yields

(dp
h(q, u), T = 0) = 1—, p, ,

(u —h q //4m

This equation shows how the p = 0 and p = q terms
that were singled out in Eq. (A1), determine the
ground-state properties of the gas.

Equation (6) now yields

aP = &eh+ k q'h/4 'm.

This is just Foldy's result for the T =0 quasipar-
ticle energy spectrum with the slight difference that
we have no depletion of the ground state. That is,
we have eh= 4ve p/m, whereas Foldy has u&hh

= 4vehpa/m, where p, =N, /0 and No (, where No

is the depleted ground-state occupation. This differ-
ence occurs because of the differ ent approximations
made in obtaining the result. We use the RPA,
whereas Foldy uses the Bogliubov approximation.

In general, we cannot of course solve Eq. (6) so
easily, but we can obtain asymptotic solutions for
the q- 0 limit. Physically, this is the interesting
region, as here the modes are weakly damped. In
this limit we know co= e~, and so therefore wehave
I D A I

=
I B A I

= m&ohh/kTqh» 1. This region can be
investigated using the results of Appendix B as fo1.-
lows.

Equation (4) was expanded using Eq. (B6) from
Appendix B and putting z = 1. This gives expansions
for e(q, &u) for T-0 and T- T, —. For T-T,+,
z-1 —and thus an expansion for e(q, a&) for T- T, +
was also obtained using Eq. (86). For T-~, z-0,
and therefore, Eq. (B3) was used to obtain an ex-
pansion for &(q, &u) for T- ~.

For T- ~ and T- T, +, we need to eliminate the
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fugacity to have useful expansions. This was done
using the Eqs. (C2) and (C3) from Appendix C.

After some algebra we find the following expan-
sions for a(q, &u):

(i) T =0:

"q"-'-. ', /4. — (. ', /4. ) &(-:)
'".4. —..

. &o~ m'kT f. h(o m(u&3 qa k'
p»5'qs ( 2mkT I jl 4 2mkT

(ii) T(T„T= T,:

&' —k'q'/4m' m (~' —k'q'/4m')' g(-', ) 4m' T )
. ~,' m'kT (. n(o m(u&' q' k'

p 2&k q i 2mkT k ) 4 2mkT j
(iii) T)T„T= T,:

~' —@' '/4m' m ((o'- k'q'/4m')' g(-') + 4m' T

(iv) T =~:

' —k'q'/4 ' m ( '-k'q'/4 ')' 4 ' 2"' ~T)

where 6=1 —(T,/T)'i~. All the above expansions are good for

q kT/ &um«~1 .
Equation (6) ean now be solved iteratively with the above results to yield u& = n+iy (a, y real). Thus,

(i) T =0:
k'q' T ' '

g 2 q'kT 5'q' q'kT '

y = —~~ — sinh, @» exp—

(ii) T(T„T=T,:
n' ' -' 'kT ' I' ' t' 'kT&'&q+3~(') q" 1+o q +ol q

l l [1+o(e)]'+4m'+ t(-') m m'&o' +
t m i j

(iii) T)T„T= T,:
'kT a' '

3~ ') q 1+o,q, +ol q"
I [1+o(~)]

y = —co~, — sinh, »» exp—

(iv) T =~:

3q kT 1+O @'q',
+O, q kT (12)
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p exp —
g

+oo' o 13

These expansions are good for

q kT 5'q4
z «1 and 3 z«1.

Pl 4)& m (dp
(14)

The leading order term in na is m~, and we shall
now discuss which term is the next largest.

(i) T = 0: Let R, be the ratio of the second and
third terms in Eq. (9). Thus

k(2)]'", ,g, T, '"
24m &(—,') q p T

For q» (T/T, )'~~p ~~~, we have R, »1, and the q4

term in Eq. (9) dominates over the q2 term. Thus,
under these conditions of q, p, and T, we are re-
flecting Foldy's result at T =0. For q «( T/T)'~ 3

&&p, we have R, «1, and we flip over to a q~

dominance in Eq. (9).
(ii) T = T, : Let R~ be the ratio of the second and

third terms in Eqs. (10) and (11). Thus

For q~ » p ~~'(T/T, ) we have R, » 1, and the q'
term in Eq. (12) dominates. For qa«p ~~3(T/T, )
we have Rs«1, and the q2 term in Eq. (12) domi-
nates. Thus, under these conditions, we have n
= &@~+3q2kT/m+ ~ ~ ~, which is exactly the classical
result~~ for q- 0. [Note that our inequality above
for q, together with the conditions in Eq. (14), al-
lows q-0. J

We shall now briefly discuss the damping of the
modes. We note that I o.'/yl«1 for q kT/m&u~~«1.
Thus the oscillations are hardly damped at all for
sufficiently small q. But as q becomes larger such
that q kT/me~ 1, then the damping becomes sig-
nificantt.

Because large q modes appear to be heavily
damped, they are not physically interesting and
therefore we-have not explored them, but dealt only
with small q modes [Eq. (14) implies small q].
However, a brief discussion of large q modes in the
classical case is given by Jackson.

We note in passing that in Eq. (13), we have re-
covered the correct form of the Landau damping
for the classical case.

IV. ELECTROSTATIC POTENTIAL

For q» p
2~3 we have A~ » 1, and the q term in

Eqs. (10) and (11) dominates. For q~«p 2~~ we
have R,«1, and the qa term in Eqs. (10) and (11)
dominates.

(iii) T = ~: Let R3 be the ratio of the second and
third terms in Eq. (12). Thus

1 [&(l)1'" a 2&3 T.
Rg =24 ~(5) q p

V(r) =,
l~
d q e' '"'

V(q), (15)

and

V(q) =4mQ/q e(q, &@ =0) .
Thus we need to investigate e(q, 0), where from
Eqs. (4) and (5):

We now investigate the electrostatic potential
V(r) about a charge Q immersed in the gas. We are
interested in the asymptotic form of V(r); so we
will concern ourselves with the x- ~ limit of V(r).
Now

T» T~:

kq~ T j p4v~kq k i;& j 2
(17)

( ) 1
& 1 m 2mkT mph' iqA j, qag4 (13)
p 7T q j=i 2

We expect that the major contribution to V(r) for large z comes from the small q part of V(q). Physically,
we see this from the fact that to probe large y we need a long-wavelength mode, which means small q.

We now want small q expansions of e(q, 0). These are found from Eqs. (17) and (18) using Eqs. (B2) and
(B5) from Appendix B. The fugacity is eliminated in the same fashion as before, using Eqs. (C2) and (C3).
We find
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(ii) T~T„T=T,:
4' (4P T 'Ij / ]

e (q, 0) = 1+—, , ~ 1 ——
~

+—,—~, + 0 —,
q @ T) q p 25 q

(iii) T =T,:
1 cop62 kT 1

e(q, 0) =1+—~ —,+0 —
~

q p 28

(iv) T&T„T=T,:

(v) T oo

e(q, 0) =1+~ 1+,/, —' + ~ ~ ~ +0(q ) .1 m(o~ g(—', ) T, '
0

q kT 2 T

Now, our approach is to take e(q, 0) = 1+ (the term that gives greatest contribution as q- 0) and then sub-
stitute this into Eqs. (15) and (16), and take the x- ~ limit to obtain the asymptotic form of V(r). After
doing this and performing the angular integrations, we have

(i) T=0:
Q2 "" (3 4m'(o' T &"'

limV(r) =lim ——
~ dqjq sin(qx) q + 2 1—

& 7t-0 T) ]'
(ii) T & T„T= T,:

Q2"" t's . 4 3 3
t T)3/3

].im V(r) =lim ——
~ dq~ q sin(qx) q +~g K~0 T,/

(iii) T = T,:

lim V(r) =lim —— dq q sin(qx) q +
Q2"" &pcs kT

gw eo ~+77 0 2pa'

(iv) T & T„T= T,:

(20)

(21)

Q2" (u,'m'aT e'q' "' ~ "' 1 C(4)t(-')lim V(r) =lim —— dq
~

q~ sin(qr) q + ~ arctan 2 —,1+
4

~+ '
~ ~ (22)

& ~ "0 pe@ ~'mkT 4m

(v) T=~:

lim V(r) =lim —— dq~ q sin(qr) q + 1+ 3/qt(z) T
+'' '

Q2"
g M CO & ~ "0 I

Now the integrals for (i), (ii), and (v) are standard integrals. The integral in (iii) is not standard but
its asymptotic expansion (large z) has been worked out in Appendix D. We find

(i) T=0:

Q 2~8 f T 3/8 1/4
lim V(r) =—cos(Kr) e "", K=

T~

(ii) T & T„T= T,:

Q
P. T 3/3 1 /4

lim V(r) =—cos(Kx) e "", K=,~ 1—
T(, J

(iii) T = T,:

lim V(r) =~ z
Q 2a'p

gwOO z&psz kT

(iv) T=~:

lim V(r) =—e "",
pw oo

Consider now the integral for T& T, and T = T,. Our prescription for finding lim„„„V(r) says that we
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take the largest contributing term to e(q, 0) in the limit q- 0, and then integrate. So we might be tempted
to expand the arctan for small q and take the first term. Thus we would say

3~2 1/2 1 g 1/a
g 2 g 2 t @3&a 1/a 1 w

1/3
g 2 0 2

and then

q 2 '" ~2 'kT 1 I' '" 1 v "' g(-')g(-')
lim V(r) =lim —— dq q sin(qx) q +—— 8 + o e e

7TJp p vk' 8 mkT g(-,') 2 4m

Therefore

@ -« ~ ,
r-~ 6IpS 4m

However, for the expansion of the arctan to be
valid, we require that 8 be greater than zero. So
our procedure does not allow us to go down to T,
from above. Thus we are fixed in some tempera-
ture range above T,.

Fetter' has given a careful analysis in the high-
density limit, of the asymptotic (large x) behavior
of the integral in Eq. (22) by considering the poles
of the integrand. He finds, for T & T„T= T,:

lim V(r) =—e «
p& Co

where

(i) for 82» (m&u~~/p)(m/ff kT, )'~2:

8 n2 k' ~2v~(-:)

4w

(ii) for 8 =0.022(m(u~/p)(m/I kT,)'~:

Kff'I 3 482 mkT
1 K( )K2(2) 8

k 7t

(iii) for 8 &0.014(m(o~/p)(m/k2kT ) ~2:

Kf/f 4 382 mkT
1

K(2)K(2) 8
A r

[Note that for large density, (muP~/p)(m/h kT, )
«1.]

In the limit T = T„Fetter obtains a result which
agrees exactly with our result at T = T,. We see
that Fetter's result (i) above is what we obtained by
expanding the arctan, and Fetter finds it holds in a
region where 6) is not allowed to go to zero, which
agrees with what we argued above.

We thus have a description, for all temperatures,
of the asymptotic form of the potential around a
test charge. Around T=~ we have a simple
screened potential, i.e. , an e «"/r form. As we
approach T, from above we still have the simple
screened form, but the screening length 1/K
changes its form near T, until, in the limit as

I

8- 0+, we find that 1/K- ~.
At T, we have the remarkable change to simple

power-law potential so that we no longer have the
Yukawa-type screened potential. (1/K- ~ near T,
is preemptive of the dramatic change in the form of
the potential since a power-law potential has infinite
screening length. )

As we pass over to T & T,„we now find we again
have the simple screened potential form, but to-
gether with an oscillatory factor, i.e. , a (cosKt.)
x(e «"/x) form. For T very close to T, and below
it, 1/K- ~, as we would expect. As T drops to
around zero the form of the potential is the same,
but 1/K drops to (52/4m2&g )'~4

Thus the asymptotic form of V(r) displays quite
dramatic behavior around T„and this is a direct
example of the effect Bose-Einstein condensation
has on the properties of the gas.

V. SUMMARY OF RESULTS

We have given a description of the charged Bose
gas, in the random-phase approximation, that cov-
ers all temperature regions. The RPA result is
valid in the high-density limit. ~' 6 Many au-
thors ' ' have studied the charged Bose gas in the
high-density limit, and particular attention has
been paid to the calculation of the ground-state en-
ergy and the T =0 low-lying excitation spectrum of
the gas. This has been done from the point of view
of the Bogliubov approximation, as well as many
other perturbation treatments. While we have not
calculated the ground-state energy, we can com-
pare our result for the T =0 excitation spectrum.
We did this in Sec. III and as noted there we ob-
tained, except for the depletion of the ground state,
the same result as Foldy did in his high-density
treatment. Also, as noted in Sec. IV, we agree
with Fetter's' high-density result for the form of
the screened potential. All this is further evidence
of the fact that our RPA treatment is valid in the
high-density limit. We note that for the electron
gas the RPA is also valid in the high-density limit.

In the limit T- ~ we recover, as expected, the



12 DIE LE CTRIC RESPONSE OF THE CHARGE D BOSE GAS IN 2625

classical results for co, the Landau damping, and
the asymptotic form of the electrostatic potential
around an impurity. We have obtained Foldy's ex-
pression for co at T=O and extended it for T~O.
We have given the form of co around T, and found
that it shows characteristics of the classical re-
sult. We recover Fetter's results for the form of
the potential both above T, and at T„and we are
able to extend his results to below the transition
temperature where we show the existence of an os-
cillatory factor.

The above theory could now be improved by mak-
ing the whole calculation self-consistent. This is
done by using the form of the static screening al-
ready obtained to determine the changes in the
chemical potential and the single-particle energy
spectrum, due to the Coulomb interaction, from
that of the ideal gas. This would then be substi-
tuted back into Eq. (1) and the whole calculation
worked through again. Fetter' and Bishop have
used the self-consistent approach to work out the

change in the transition temperature for the inter-
acting gas from that of the ideal gas.

Further extensions of the work within the RPA
would be to study the interacting charged Bose gas
in an applied magnetic field. This problem has al-
ready been studied for the case of an ideal charged
Bose gas by Schafroth, ' where he displays the
Meissner effect characteristic of superconductors,
and by Fetter who did the same for the interacting
charged Bose gas using the Bogliubov approxima-
tion.

It would be most interesting to see the magnetic
response of our interacting charged Bose gas dis-
played and the natural starting point would be the
RPA. We hope to discuss this in a future publica-
tion.
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APPENDIX A

The value of Fo(0), which is the ground-state term, can be shown in the thermodynamic limit to be~o

Fo(0) =1/(z ~ —1) =N[1 —(T /T) ~3]2for T~ T, .
Using this, together with the identity

we obtain the following from Eq. (3):
T Tc.'

(A1)

T —Tc'

e(q, (o) =1, gz' g expl — „j ~ p' q+
4me2 ",. I' h2P' . 8- - @q'

z=1 y

(A2)

where (o~~=4me~p/m is the plasma frequency for the gas. Note that the second term in Eq. (4) represents
the p = 0 and p = q contributions, which are the ground-state terms.

Using the prescription, valid in the limit 0- ,

We obtain:
T~ Tc:

~2 T 3/2 4~~2 1 ~ I2p2 g @ 2

e(q, &a)=1—. . ., , 1 —— +, , „~dp exp — j ~-—p ~ q+
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T~T:
4l/e2 1 ~ /

", h p . h Kq
e(q, z)=1+ 2 2Z z dp exp — j v ——p ~ q+

m 2m J

h2(p-q)2. I/ h
d p exp — j iso- —p ~ q+

2mkT i m 2m

Using the transformation of variable p- p —q, we can show

h2(p —q)2. / 5 hq 2
' h p . h hq

2mkT & m 2m ~ 2mkT m 2m
d'P exp — j - —p q+ = lid'P exp — j - —p

Using this, we now take q as the polar direction, perform the angular integrations and integrate once by
parts to obtain:

T —Tc'

T /
(op m 2mkT~ 1 ""

h P

(A3)

T Tc

(A4)

We see that the integral in the above two expressions is singular for real co. As Landau has pointed
out, a correct treatment of the initial value problem would not yield this difficulty. Carrying out the cor-
rect procedure is equivalent to taking the above results and putting co= v+iy where y-0+. We can now do
the integrals in Eqs. (A3) and (A4) and we find the results as given in Eqs. (4) and (5) of Sec. II.

APPENDIX B

We are interested in expansions of
00 j

1/2 1/2 -xj
j=l

-xd ~ (
~ l /2 ~ l/2) -/x2

Vl/ &p

for both x» 1 and x «1 around the regions z = 0
(T = ~) and 2 = 1 (T ~ T,). Now"

-zx1/2 j1/2

Therefore,

e-x/y((xi/2 ~ l/2) l/2 ~ l/2
27ri

(i) x=0.

C+ $00

C

y(2xl/2 l/2) x/-
j=1

, 1'(s)I'(1 —s)dsx j r(x )
1 0(c(1

-xj ~ 1/2 1/2, xjy

/. c+i o

2X'/2j'/2 .
~

ds r(s)x 'j '

~c+4
= ix"' 2' "c-i

I"(s)r(l —s)ds x gl/2dx(z) /2 )
1

K2

0(~(1
~1x, (1 —1 ) 'dy), c&0

& p

where we have used
Q c+$ 00

e"=
2ri-.-- I'(s)x 'ds, c& 0

which is the Mellin integral representation of e "
(for x)0). 1(x) is the y function. Now

where g (z) =g/", z//j and this function has no
poles, as a function of n, around z =0.

Closing the contour in the left half-plane and us-
ing Cauchy's theorem, we obtain an expression for
small x. Closing in the right half-plane we obtain
an expansion for large x. We find,

x«1:

Q( j ) iQ I" ' g, / (z), (B2)
j=1 1 lp+ —,

'
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j . ua. u2—p(ix j ) e =i ~ rgy ) p g/pg3/3 ~(z)
j=1

(»)
(ii) z = 1. We must now Mellin transform z/ as

well. Now z=e'~ and since x~1, inc~0, so we
use Eq. (Bl) to write

g j e-(-1ne)j

27Tz ~d i~

Therefore

dt r(t)(-lnz) 'j ', d&0 . (B4)

2 ~ d+i

y (ix1/8 jl/2) e-x/
2 tTZ "d- i~

Therefore
d+z~

y (ix1/3 .1/8) e x/-
27Tz

C i o

+ C+i

dt '

"C-i'o

dsix'"r(s)r(t), ', (-lnz) 'x 'g ., /3. „, , 0&c&1, d&0.

ds ix'"r(s)r(t), (- lnz) 'x 'f( 2+ s+-t);r(1 —s)
r(-', —s)

0&c&1, d&0, c+d& z .
If we close both contours in the left half-plane, we obtain the expansion appropriate to lnz = 0 (z = 1) and

x small. If we close the s contour in the right half-plane and the t contour in the left half-plane, we get the
expansion appropriate to lnz = 0 (z = 1) and x large. We find,

for x«1,
1/2. 1/2 -xj (-1) '~(-inz) x~"p —.Q(ix'/zj'/~) e "' =i 2arctan + g g &(l —~ —p)I;

j=1 —lnz o~0 n!r(—', +p)

for x»1,
j j

j=l / ~ at=Q p=Q

(Bs)

where we have used"

( 1)kx2k+1arctanx=P, x ~1 .
a=O +

APPENDIX C

" gj
gs/3(z) = .3/z

j=1

1 1
3/2 2Kz ~c-i~

ds I'(s)(—lnz) 'j ', c& 0

2rk'
&T

=g~/2(z)

or
3/2

&(2) T' =g, /, (z),

(C1)

(i) for z =0.
gJ 82 g3

g3/2( ) M 3/2 + 3/2+ 3/Z+j12 2 3

We want to obtain expressions for z =z(Q, T) for
z 0 (T-~) and z-1 —(T T, +).

Now, the number equation for ideal bosons
yields

re+i
ds r(s)(- lnz) 'g(-,'+ s),

277z dc i~
c)0

g3/p(z) =. —2v w (- lnz) + Z, (lnz)
r" l(2-p)
p Q P 1

Thus

T ~3/2
&( ) —'

I
= —2v ~ (-inz)'/z

T]

L(' —P) (I„,-),
p=O P ~

where we have used Eg. (B4).
Closing the contour in the left half-plane, we ob-

tain the following expansion for lnz —0 (z = 1):

Thus gs/3(z) is already in the form of a rapidly con-
verging series and we simply have to invert Eq.
(C1). This yields

Inverting this equation yields

~'(-'), , ~(-')~'(-'), ,
47T Sm

(cs)
3/2 1 (T 3

(c2) This expansion is good for T & T,.

This expansion is good for T- .
(ii) for z & 1.

APPENDIX D

We want an expansion for
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~

"
q sin(qx) dq

&0 q +qp
""

q sin(qx)
~

"x sin(qyx)I- 3 3 dq-
~ 3 dx.

"0 q +qo "o x +1

If we convert xa/(x + 1) to partial fractions and add
and subtract a term, we have

Using Eq. (Bl) and also

1"sinPX =
2ri -.-- ds I"(s)(o."+P') '~'

x sin[s arctan(P/n) ]; e & —1,
Re o.&

~

1mP
~

1 "
1 2x+ 1I=—' sin(qoyx) dx

3 0 x+1 x+x+
1i" 2x —1

+—, sin(qorx) dx .
X X +

The second integral is a standard one, and we
have

we have

~g+$ao

27Tg, ~~ ~~

cQ t
1+/

Now

I'(s) ms
ds ~ 1 —2cos-

(qo~)' 3

1 1 2x+1I =—
1

— 3 sin(qyx) dx
3~0 X+1 X +X+1

+—COS Ie 0
2' qp& ( ~~3(3
3 2 )

Splitting (2x+ 1)/(xa+x+ 1) into partial fractions and
using the result

w OQ -zt

"0 t+~ "0 1+t

we obtain

r l

1 2x+ 1
sin(qo~x) dx.0 x+1 x +x+1

coo dx ao~ 2 q xv 3x
I e ezrxl2

1+f' 2i"' ' '
sining(1 —s)] '

—1&g&1 .
Substituting this into the expression for I' and
closing the contour in the right half-plane (to ob-
tain an expansion for large r), we find

(—1)"I"(3+ 6k)

(q ~)3+60

Therefore,

~"" q' sin(q~)
q +qp

2m q,~ „„„„~(- I)"r(3+6u)
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