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Nuclear acoustic resonance in single-crystal hydrogen-free tantalum*
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Nuclear-acoustic-resonance studies have been made of single-crystal 99.99% pure tantalum metal from

which all hydrogen has been removed (hydrogen concentration much less than 7 at. ppm or 0.04 wt

ppm). The shapes and widths of the "'Ta hm = ~1 and +2 absorption lines can be explained as
due to quadrupole broadening caused by a random distribution of charged impurities. Unlike

hydrogenated Ta, the Am = +2 line shape and linewidth for the hydrogen-free specimen are
independent of magnet angle and temperature between 78 and 300 K. The measured "'Ta Knight shift
is (1.14 ~ 0.02)% relative to "'Ta in KTaO, . The magnitudes and relative signs of the components of
the tensor relating electric field gradient to elastic strain are S» ——~ 26 g 10" statcoulomb cm ' and

S« —— ~29 g 10" statcoulombcm '.

I. INTRODUCTION

Magnetic-resonance experiments in tantalum met-
al are strongly affected by the large nuclear-elec-
tric-quadrupole moment of '"Ta and by the exo-
thermic interaction between Ta and interstitial im-
purities of hydrogen atoms. Budnick and Bennett'
were the first to observe the nuclear magnetic
resonance (NMR) of ' 'Ta in thin tantalum-metal
foils which had been heated in a vacuum to approxi-
mately 2800 K to remove hydrogen. Nuclear
acoustic resonance (NAR) has been used by several
investigators to study 'Ta in single-crystal tan-
talum metal with unknown hydrogen concentrations.
Gregory and Bommel reported the first NAB ob-
servation of Ta and showed that the coupling be-
tween nuclear spins and elastic strains was due to
the dynamic electric-quadrupole interaction. Smith
and Bolef and Smith studied the temperature de-
pendence of the NAB Am=+2 line, Leisure, Hsu,
and Seiber investigated the Ta NAB hm = +1 and
Am = +2 lines in high magnetic fields in single-
crystal Ta with a small hydrogen concentration in
the temperature range 4-150 K. We report in this
paper the results of NAB. measurements on single-
crystal tantalum from which all hydrogen has been
removed (as explained in Sec. II). This work is
part of a general study of the Ta-H system using
NAB, and ultrasonic absorption and dispersion
techniques.

In NAB experiments, time-varying elastic
strains due to acoustic waves produce time-vary-
ing electric-field gradients at nuclear positions.
If the nucleus in question possesses a nuclear-
electric-quadrupole moment, acoustic energy may
be coupled to the nuclear spin system via the dy-
namic interaction of the quadrupole moment with
these time-varying electric-field gradients. This

is the case for ' 'Ta in tantalum metal. The elec-
tric-field gradient is related to the elastic-strain
tensor by a tensor of the fourth rank S. ' There
are, in general, three nonzero components of the
S tensor for crystals with cubic symmetry. These
components are Sll) 12& and $44 when S is ex-
pressed in Voigt notation. If one makes the addi-
tional assumption that the change in electric charge
at the nuclear position with strain is zero, it has
been shown that the number of independent S-ten-
sor components is reduced to two, with S» = —&Sl&.

In the present NAB study of hydrogen-free single-
crystal tantalum metal, we report determinations
of Sl l and S44, details of the hydrogen-f r ee ' 'Ta
linewidth and line shape, and a determination of
the '"Ta Knight shift.

II. EXPERIMENTAL

A 2-cm-long Ta single crystal with growth axis
along a [110]crystal direction, obtained from Met-
als B.esearch, was spark-erosion cut, chemically
etched, ground, and optically polished to give a
cylindrical specimen of length 1.17 cm and diam-
eter 1.04 cm. End faces of the cylinder were
made flat and parallel to within 1.3 p, m, and were
measured (by x-ray-diffraction techniques) to be
within +0. 5' of (110) crystal planes. Interstitial
hydrogen was removed by heating the sample in
vacuum of 2x10 Torr for 10 h at 1070 K, after
which it was allowed to cool slowly (100 K/h) in
vacuum to room temperature.

The conditions for hydrogen removal were chosen
as a result of the following considerations:

(i) The pressure-composition-temperature di-
agram for the Ta-H system allows one to ascer-
tain that the equilibrium concentration of hydrogen
under these conditions is considerably less than 7
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at. ppm (0. 04 wt. ppm).
(ii) The diffusivity of hydrogen in Ta is =10 4

cm'sec-' at 1070 K. " With such great mobility,
the hydrogen concentration should be very near its
equilibrium value throughout a cylinder with the
sample dimensions after only 1 h. "

(iii) Analyses by vacuum fusion detected no hy-
drogen in other samples given a similar treat-
ment.

All crystal cutting and grinding was done prior
to the hydrogen r emoval. After dehydrogenation,
the sample was kept in a hydrogen-free environ-
ment and handled only briefly during transducer
bonding and mounting in the NAR low-temperature
probe. Data taking began one week after hydrogen
removal. We have also conducted NAB studies on
this same sample with different known hydrogen
concentrations and with all hydrogen removed a
second time 12 months after the first investigation.
Both studies on dehydrogenated Ta gave the same
' 'Ta linewidth and line shape which were indepen-
dent of temperature in the 78-300-K range. Our
studies and other reported studies' of hydrogen-
ated Ta show definite ' 'Ta NAB linewidth and line
shape changes in the 78-300-K range which must
be associated with the presence of hydrogen in Ta.

Acoustic waves were generated by means of AT-
cut (transverse) or X-cut (longitudinal) quartz
piezoelectric transducers bonded to the specimen
with Nonaq stopcock grease. The coaxial cylindri-
cal transducers were 0. 953 cm in diameter with a
center acoustic radiating area of diameter 0.64
cm. Acoustic properties (mechanical resonance
"Q" and frequency) of the composite resonator
(sample plus bond plus transducer) were measured
using a Hewlett-Packard model 250A RX meter.
NAR absorption measurements were made at 5
and 10 MHz, utilizing a standard marginal oscilla-
tor ultrasonic spectrometer (MOUS). 's Absolute
change in acoustic attenuation was obtained by com-
parison of the NAR signal amplitude with a cali-
brator signal. ' The absorption line was deter-
mined by numerically integrating the experimental-
ly observed NAB derivative signal. Maximum sig-
nal-to-noise ratio of the hm =+ 2 NAB signal ex-
ceeded 100/1; a much poorer signal-to-noise ratio
was observed for the Am =+1 NAB signal because
of the large linewidth.

The technique of NAR measures the acoustic-
attenuation change associated with absorption of
resonant acoustic energy by a nuclear-spin sys-
tem. ' As noted above, the dominant coupling be-
tween the elastic strains and the ' 'Ta nuclear-spin
system is the dynamic-quadrupole interaction.
The S-tensor component S» was determined using
transverse acoustic waves with propagation vector
k along [110]and polarization vector & along [110].
Using the notation of an earlier paper, "we write

x(I+m+1)(I+m ~2)]'~,

1@v e g(v)
16(2I)s (2I —1) (2I+1) pv kT

where I is the nuclear spin, X is the number of
resonant nuclear spins per unit volume, v is the
acoustic-wave frequency, g(v) is the normalized
line-shape function, p is the mass density, v is
the acoustic-wave velocity, A is the Boltzmann
constant, and T is the absolute temperature. Sim-
ilarly, S«was measured by propagating transverse
acoustic waves with k along [110], t along [001],
and H again in the (110) plane. The acoustic-at-
tenuation change for this case is

An(~, s) = 4CBs(QS44 sinX) . (2)

Relative signs between S» and S44 were measured
by propagating longitudinal acoustic waves with k
along [110]and H in the (110) plane. The attenua-
tion change for this case is

hn(~, s) ——CBsQ [4Stt sin'X+ S44(1+cos X)] .

III. RESULTS AND DISCUSSION

The experimental NAR 6m=+2 line shape is
given in Fig. 1 and the absorption line shape com-
puted from Fig. 1 is shown in Fig. 2. In Fig. 3
we show the Am =+1 absorption line shape. The
differences in signal-to-noise ratio between Figs.
2 and 3 are caused by (a) much poorer composite
resonator acoustic properties at 5 MHz than at

(
l60 gauss

FIG. 1. NAR 4m =+2 experimental l.ine k II [110],
pll [110],X= 0', 10 MHz, 300 K, modulation amplitude
3G. The plotted points are from the theoretical model
of a sum of Lorentz line-shape functions.

the attenuation change as

Sn(~~=~a &

=
4 CBs(QSti cosX) ~

where X is the angle in the (110)plane between the
external magnet field H and [001];
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Sternheimer antishielding factor for the solid. Us-
ing d = 2. 86 A, ' we find 1 —y, =300 is required to
explain the experimental S» if there is zero con-
duction-electron contribution. The ratio of the
lattice contributions S,*,/Sf~ =-2.0; the measured
ratio of S„/S«=-0.9. The large value of (l-y, )

2nd the difference in these ratios imply a sizeable
conduction-electron contribution. Similar diff er-
ences between measured quadrupole-coupling con-
stants and computed lattice contributions in hexa-
gonal-close-packed large-atomic-number metals
have been noted by Das and Pomerantz. '

FIG. 2. NAB Am =+2 absorption line determined by
integrating Fig. l.

10 MHz and (b) much smaller ratio of modulation-

field amplitude to linewidth in Fig. 3 than in Fig,
2.

Experimental NAB changes in attenuation with

magnet angle follow the theoretical dependence
predicted by Eqs. (1)-(3) at 78 and 300 K. We find
no evidence of the anomalous behavior reported
in earlier experiments.

A. Knight shift and S-tensor components

The center of the ' 'Ta NAR hm =+2 experimen-
tal resonance line of Fig. 1 corresponds to a mag-
netic field of 9412 + 2 G at a frequency of 9.700334
MHz. Relative to the Bennett and Budnick" value
for ' 'Ta in KTa03, the shift is determined as
(1.14 + 0.02)'%%u~. Budnick and Bennett' measured the
Knight shift as 1.1/o in Ta metal foils.

From the measured values of ha we obtain, us-
ing Eqs. (1)-(3), the products QS» and QS« to
within 10%. Using a value" of Q=(3. 9+0.4)x10~'
cm, we determine S» = + 26 x10' statcoulomb cm~
and S44 = + 29x 10" statcoulomb cm-'.

Electric-field gradients in metals are generally
assumed' to be due to the sum of lattice and con-
duction-electron contributions. Buttet' has com-
puted the lattice contributions to S» and S44 in
aluminum on the assumption of a point-charge
model for the ion charges at lattice positions. We

compute the lattice contributions S~» and S44 with
the same point-charge assumption and approximate
the lattice sum by summing point-charge contribu-
tions out to the 25th shell from a nuclear position.
This lattice contribution is

S,g = 3. 5Z*e(l —y, )d~,

where 2*=+1, e is the electron-charge magnitude,
d is the first-neighbor distance, and y, is the

B. Line shapes

l. Am = + 2 line

Our studies of the Am =+2 NAR show that its
line shape and linewidth are independent of temper-
ature in the range 78-300 K and are also indepen-
dent of magnetic-field orientation for rotations of
magnetic field in two different (110)planes. As
noted in Sec. II, this is in contrast to previous NAR
results' ' with hydrogenated single-crystal Ta. In
addition, the absorption linewidth from Fig. 2 is
56 G at half-amplitude, which is much greater than
the 2.65 G computed' for the dipole-dipole line-
width in Ta powder.

We can think of only two mechanisms which are
consistent with temperature independence and
angular isotropy. They are (i) pseudoexchange
between like spine~' and/or (ii) static-quadrupole
broadening due to electric-field gradients generated
by a random distribution of charged defects and
impurities screened by spherically symmetric
conduction electrons. We wish to point out that
field gradients generated by strains cannot lead to
a spherically symmetric line shape simply because
this would require both the S tensor and the elastic
constants to possess spherical symmetry. Spher-
ica.l symmetry of elastic constants [c»=c«
= 2(c» —c,z)j and of the S-tensor components (4S»
= S44) is broken by more than a factor of 2 in Ta.

The experimental evidence is quite conclusively
in favor of the charged-defect mechanism. The
strongest evidence is the excellent fit obtained be-
tween theory and experiment, using this model,
which is shown in Fig. 1. This fit was made using
a sum of Lorentzian derivative curves centered
about zero with half-widths and weighting factors
appropriate for the different b,rn = +2 transitions '
possible for a nuclear-spin I=+ system. The ad-
justable parameters used were an over-all ampli-
tude factor and a single linewidth factor. A single
Lorentzian line does not fit the data. It would be
quite a coincidence if the pseudoexchange line
shape also fit this well, especially since it is be-
lieved to be approximately Gaussian.

In addition, a pseudoexchange mechanism pre-
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plG. 3. NAB Any = + 1 absorption line k II t,110], $ II [110],
X = 90', 5 MHz, 300 K, modulation amplitude 4. 7 G.

diets~' that the ratio of the hm =+1 linewidth to
the hm =+ 2 linewidth is 2. The sum of Lorentz-
ians, on the other hand, predicts that this ratio is

To within experimental error, the observed
ratio is between 3 and 4.

2. Dm= + J line

The line shape of the hm =+1 NAR in Fig. 3, in-
cluding the anomaly, in the center, is also inde-
pendent of magnetic-field orientation although the
signal-to-noise ratio is much poorer than for the
Am = +2 NAR. This anomaly has been observed in
a previous NAR study of single-crystal Ta with
6. 8-ppm hydrogen by weight and interpreted as a
splitting due to electric-field gradients which are
random in direction but approximately the same
magnitude at any ' 'Ta nuclear position. Their ob-
served hnz =+ 1 and Arn = +2 line shapes at 10 K
are similar to those shown in Figs. 1-3. Except
for the anomaly in center of the hm =+1 NAB line,
the line shape is consistent with the discussion of
the hm =+ 2 NAB, line shape.

In our discussion of the anomaly, several pos-
sibilities can be ruled out.

(a) The anomaly cannot be a line splitting due to
a net field gradient in the crystal. The existance
of such a field gradient implies a unique axis and
thus the anomaly should be angle dependent,
which it is not. Further, any such net field grad-
ient would also split the b,m =+ 2 NAR, and this

effect is not observed. The anomaly also cannot
be explained by a random distribution of electric-
field gradients at the 'Ta nuclear positions due
to charged interstitial impurities or defects. Such
a distribution of impurities or defects which are
random in direction and in magnitude at the nuclear
positions contributes to the line broadening but
cannot cause the hm =+1 splitting. Finally, the
slope of the anomaly is greater than the slope of
the outside of the resonance line. This is in con-
tradiction to any observed splitting and any rational
theory based on field gradients.

(b) The a,nomaly is not due to the resonant
Alpher-Rubin coupling which sometimes can cause
an emissive looking absorption. " ' The magni-
tude of the resonant Alpher-Rubin coupling vanishes
when the magnetic field is perpendicular to the
propagation direction. The observed angular de-
pendence of the acoustic attenuation change of the
anomaly is totally inconsistent with Alpher-Rubin
coupling.

(c) The anomaly is not due to any coupling to ex-
ternal rf fields. This possibility was eliminated
by shielding the entire sample, including the area
under the transducer, by a grounded copper con-
ductor of one skin depth in thickness.

Such a line shape as in Fig. 3 has been observed
in a Drn =+1 NAR study of the semiconductor
CuI' ~. An anomalous line shape similar to Fig.
3 has also been observed in the electron spin res-
onance of Ni ' in MgO and interpreted as due to
internal cross relaxation. One of us has recently
published a theory of the line shape changes due
to intraspin cross relaxation. This theory pro-
duces qualitatively similar, but as yet not detailed,
line shapes similar to Fig. 3. In fact, without
intraspin cross relaxation, it is impossible to ob-
tain a split line (or a, dip) from a spherically
symmetric random field gradient distribution.
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