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Logarithmic corrections to the mean-faeld theory of tricritical points
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The logarithmic corrections to the mean-field theory of symmetrical tricritical points in three
dimensions are derived using a graphical method. The free energy, equation of state, and other
thermodynamic quantities are obtained in the disordered and ordered phases. The difference in

thermodynamic potential between the ordered and disordered states takes the form 6 = p, '"L '"(r)
X g(Qp '~ L'~ ~(r), gp t~L '~" (r)), where the fields p and Q are measured normal and tangential
to the critical line, respectively, ( is the field which couples to the order parameter, r is the inverse

susceptibility, and L(r) —lnr. The exponent p depends on the number of components of the order
parameter. This form for the free energy differs from that found by Wegner and Riedel.

I. INTRODUCTION

The phenomenological theory for thermodynamic
systems exhibiting tricritieal points was first given
by Landau. This theory was extended by Qriffiths
who showed that a tricritical point occurs at the
intersection of three lines of second-order transi-
tions. In this paper we wiH. be concerned with
symmetrical tricritical points such as are found in
He- He mixtures or in certain magnetic materials

when there are competing antiferromagnetic and
ferromagnetic interactions. At such tricritic31
points positive and negative values of the order
parameter are equivalent. A spin model. appro-
priate to He- He mixtures of such tricritic31 points
has been given by Blume, Emery, and Griffiths.
Nelson and Fisher have discussed the case of
metamagnets and shown that the reduced Hamilto-
nian in this case has the same form as in the Land3u
phenomenological theory. Unsymmetrical tricriti-
cal points ean occur in mixtures of three or more
substances and a phenomenological theory of such
tricritical points has recently been presented by
Griffiths. A recent review of the phenomenologi-
cal. theories of tricritical and higher-order critical
points has been given by Widom. A third type of
tricritical point apparently occurs in the Potts
model (Straley and Fisher; Mittag and Stephen ).

A scaling theory of tricritical behavior has been
developed by Riedel and Riedel and Wegner.
One important observation of these authors is that
the mean-field theory of tricritical points is modi-
fied by logarithmic corrections in three dimen-
sions. Similar logarithmic corrections occur in
four dimensions in the mean-field theory of the
Ising model and in three dimensions for a uniaxial
ferroelectric. In the latter two cases, the log-
arithmic corrections were obtained by Larkin and

Khmelnitski using graphical methods. The log-
arithmic corrections to the tricritieal behavior in
three dimensions and to the Ising model in four
dimensions have been discussed by %'egner and
Riedel~ using the approximate recursion relations
of Wilson. In the four-dimensional Ising model
the logarithmic factors arise from those graphs
with two internal lines, the so-called parquet
graphs. In the case of the tricritical point in three
dimensions the logarithmic factors arise from
those graphs with three internal lines [see Fig.
2(a)j. The approximate recursion relations do not
treat diagrams with an odd number of internal lines
correctly. A discussion of this point has been
given by Wilson and Kogut. It is thus desirable
to derive the logarithmic corrections to the mean-
field theory of tricritical points by another method
and in this paper we use a graphical method'6

similar to that of Larkin and Khmelnitski. We
obtain the equation of state, free energy, and other
thermodynamic properties in the ordered and dis-
ordered states. Our results differ in several re-
spects from those of Wegner and Riedel. The
methods of this paper can easily be extended to de-
termine the logarithmic corrections to the mean-
field theory of unsymmetrical tricritical points in
three dimensions and to the mean-field theory of
the Potts model in four dimensions. This will be
given elsewhere.

The discussion of symmetrical tricritical points
is based on a reduced Hamiltonian

I
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where s; is an n-component spin (-~ & s; & ~). The
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FIG. 1. Critical (solid) and coexistence (dashed) lines
near the tricritical point. Q and p are the mean. -field
scaling variables and are, respectively, tangential and
perpendicular to the critical line at the tricritical point.

parameters ro, u 4, and u 8 in (1) depend on the
thermodynamic fields in the problem. We will use
use a language appropriate to He- He mixtures in
which the thermodynamic fields are temperature
T, the difference of the chemical potentials JU.34

pt3 —p, 4, of the 'He and 4He atoms and a field
which couples to the order parameter. It is more
convenient to measure quantities from the tri-
critical Point Tp P, 34p and g =0 and to introduce
variables f = T/To —1 and 4 = @34/p340 —1. In the
case of metamagnets p, 34 and & are replaced by H,
the internal field, and H„ the staggered field, re-
spectively. We will assume that the parameters
xo and p~ in (1) vary linearly with f and 6 to a first
approximation. The experimental thermodynamic
fields t and ~ are not the scaling fields and Riedel
has shown that a convenient choice of scaling fields
is obtained by introducing new variables Q and p,

which are measured tangentially and normally to
the critical line at the tricritical point (see Fig.
1). These variables will appear naturally in our
theory. Actually, p. can be chosen in any direc-
tion oblique to Q. In perturbation theory p, and Q
are given to a first approximation by

n+ 2 (n+ 2)(n+4)
p, =rp+

5 u4Eq 0 +
(

u6Eq(0
(2)

q=u4+~(n+4) u, E,(0),
where E, (0) is defined by Eq. (5) below and is pro-
portional to a cutoff k„which is introduced into all
momentum integrals. The terms in E& in (2) are
the Hartree contributions to xp and u4, respective-

E, (~)=, d'k G(k, ~),1
(5)

~ ~ G(k„, r) 5 (kq y k ~ ~ ~ k„) .

All momentum integrals are cut off in some way
for 0», . Some integrals of particular interest
are

E (y) E (0) y &~2/47/ E (/)= I/8'&~2

E,(~) = —(I/22m') In~ .

ly. In mean-field theory (including the Hartree
terms), the tricritical point is the point p = Q=O.
The critical line is the line p, =0, Q &0. Thus, to
a first approximation, Q is tangential and p, is
normal to the critical line at the tricritical point.
This same variable Q was introduced by Stephen
and McCauley' who derived the & expansion in 3-e
dimensions for the tricritical exponents and by
Amit and de Dominicis' who considered the 1/n
expansion.

The region of validity of the present theory is
best discussed after we have derived the results.
For the analysis of the terms in the perturbation
theory we will assume

(2)

(4)

where r is the inverse susceptibility. We will see
that the actual expansion is not in terms of ue but
in terms of the physical interaction I'6 which be-
comes small near the tricritical point. It can be
expected that the nature of the solution does not
change essentially in going over from small to
large values of u6. The magnitude of u6 then deter-
mines the size of the critical region. Equation (4)
defines the small-Q region according to the mean-
field theory (the fluctuations lead to a logarithmic
correction to this condition, as we shall see below).
The inverse susceptibility r vanishes at the tri-
critical point and along the critical line. From (4)
it follows that the present theory is not valid close
to the critical line and the tricritical point cannot
be approached along curves which violate (4).

In this paper various thermodynamic quantities
of interest are conveniently expressed in terms
of the quantities p, , Q, r, and ue. In each case
the corrections to the mean-field results of all or-
ders in ueI 1m

~ are determined. The inverse sus-
. ceptibility ~ is also determined in terms of the

fields p, and Q which then enables us to express
all quantities in terms of p and Q.

It is convenient to define certain integrals in-
volving the Green's function G(k, x) = (k2+t) ', '9
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II. DISORDERED PHASE

A. Graphical analysis

We begin by discussing the six-point vertex 1"6

when the momenta in all the channels are zero. In
perturbation theory, a typical graph contributing
a logarithmic factor of order u6ln~ to 16 is shown

in Fig. 2(a). It is those graphs which break into
two pieces when three internal lines are cut which
contribute the leading logarithmic factors in each
order of perturbation theory. These graphs make
up a generalized set of parquet graphs. We cal-
culate the one-particle irreducible graphs of I'6,
I'4, etc. , as only these are required in the equa-
tion of state. Therefore the graph of Fig. 2(b)
may be omitted (actually it is easy to find once I'4

is known). Furthermore, it can be shown that
those higher-order graphs which contain one par-
ticle reducible parts of I'6 [such as in Fig. 2(d)
where the right-hand vertex of Fig. 2(a) is re-
placed by the one-particle reducible graph Fig.
2(b)] give lower order contributions as a result of

(3) and(4). The graphof Fig. 2(c) is of order
u&Q/r4'a and from (4) is smaller by a factor

I lnr I

"a than that of Fig. 2(a). It should be noted
that in perturbation theory each four-point vertex
contributes a. factor

contribution to 1"6. If we sum the results of this
differentiation we get a full i'6 on each side of the
triple line which has been differentiated. In gen-
eral, these factors of I'6 will depend on the mo-
mentum of the internal lines. It can be shown,
however, that this momentum dependence can be
ignored in determining the leading logarithmic cor-
rections to L'6. This procedure has been discussed
in more detail by Tsuneto and Abrahams in the
case of the Ising model. We sum over the spin
components and obtain the equation for channel 1,

Fa ———
~~4' (3n+ 22) I'SERAI'6,

where a prime indicates differentiation with re-
spect to r. The numerical factor +»(&n+22) re-
duces to (3!) ' for n=l, where 3 is the number of
internal lines. For n&1, the factor (31) is in-
creased by (3/5 )(n —1)+1, where 3 is the number
of ways of choosing 2 internal lines in Fig. 2(a)
differently from the external lines and -', is the re-
duction in the number of ways of assigning the
lines at each vertex. These factors are thus de-
termined by the topology of the diagrams and other
such factors which appear below may be obtained
in a, simila, r manner.

The equation for I'6 is obtained by adding the
contributions from all of the ten channels:

u4+Q(n+4)u, E,(r) . I'4= —$~(&n+ 22) F4F 3 ~ (&)

There are ten channels of 1 6 for the transition
3 ~ 3 [Fig. 2(a)]. For each of these channels we
can write a Bethe-Salpeter (BS) equation. An ex-
ample is given in Fig. 2(e), where the kernel I "'
is irreducible in channel 1. A differential equation
for l6 is then obtained by differentiating, in turn,
every internal triple line in the BS equation with
respect to x. This procedure gives the leading

a. )

c)

e)

FIG. 2. Graphs for the six-point vertex I"6.

We integrate this equation with the boundary con-
dition that 1"6——u6, the bare interaction, when

x=1,

r, =u, /L(r),
L(r) =1 —[(3n+ 22)/4&On'a]ua lnr .

(9a)

(9b)

For sufficiently small r, i.e. , close to the tri-
critical point, Z'6- ) lnxj -, and is small and inde-
pendent of ue.

For the four-point vertex 1"4, the leading loga-
rithmic factors a,gain come from graphs with three
internal lines. |,"4 is of order Q and a graph of or-
der Quelnr is shown in Fig. 3(a). The graphs of

Figs. 3(b) and 3(c) are of order Q /r'~a a,nd

u~ x' lnx, respectively, and can be omitted. The
differential equation for I'4 is obtained as above
by differentiating the internal triple lines and add-
ing the contribution from the four channels of Fig.
3(a),

I,'= —P;(n+ 4)F4','r, , (10)

The boundary condition for I'4 is that I'4= Q, its
bare or mean-field value, when r =1 [see Eq. (2)].
Then using (9) we find

I' = Q/L'(r),

where

p= 2(n+4)/(3n+ 22) .
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in terms of x with the understanding that r is to be
determined from (13).

a. Entropy. We define a thermodynamic po-
tential by e ~ = Tr e " ~ . The contribution of the
fluctuations to 8 is

8= —A —= const+8G nb~ Ap
~ 8t Bm dt

(14)

c) where k~ in Boltzmann's constant.
b. SPecific heat. The contribution of the fluc-

tuations to the specific heat at constant p, 3~ is

8 G nk~ A'p
B 8)2 f6+ (16)

e)
FIG. 3. (a)-(c) Graphs for the four-point vertex I'4.

(d)-(f) Graphs for the self-energy Z.

There are logarithmic corrections to this result
but they are of order Q/rL~(r) and thus small.

c. He concentration. The contribution of the
fluctuations to the 'He concentration x is

For the self-energy Z, the graphs giving the
leading logarithmic corrections are of the same
type as those considered above. One such graph
of order Q~lnr is shown in Fig. 3(d), Some other
graphs of Z are shown in Figs. 3(e) and 3(f). They
are of order Qu6r~talnr and u6~rlnr, respectively,
and can be omitted. From Fig. 3(d) the differ-
ential equation for Z is

Z'=Q(n+2)I'4E3 . (12)

B. Thermodynamics

We now consider some thermodynamic quantities
of interest. We assume that the parameter xp de-
pends linearly on the physical fields t and ~. It is
simplest to express the thermodynamic quantities

The inverse susceptibility is determined from
r=ro —Z(r) and we impose the boundary condition
on (12) that as r 1 the inverse susceptibility be-
comes equal to its mean-field value p, . Then us-
ing Eq. (11) in (12) and this boundary condition we
find the inverse susceptibility is

r = t —&[(n+ 2)/(6-n)] (Q'/u, )[L' "(r) —i] . (i3)

The case n= 6 requires a separate discussion. The
exponent of the logarithmic 1 —2P = (6 -n)/(3n+ 22)
and is positive in the interesting case n & 6. A
similar relation for the inverse susceptibility was
found by Wegner and Riedel. Prom (13) the lines
of constant s are simple parabolas in terms of the
mean field variables p, , Q. When r is small the
second term in (13) can be large (when n & 6) and
the parabolas of constant r tend to become concave
towards the disordered phase. However, we are
not able to determine the critical line r= 0 ex-
actly as Eq. (13) breaks down for small r [see Eq.
(4)]. Along the line Q=0, r= p so that the sus-
ceptibility exponent is y = 1 and there are no cor-
rections to the mean-field behavior.

ks To sG t nksTO drox = — —= const+ x . 16
~34o &P 34.p

d. Eree energy and equation of state. In the
presence of a field f conjugate the order param-
eter a term —f ~ s is included in the reduced
Hamiltonian (1). The expectation value of the or-
der parameter is denoted by M= (s). We then in-
troduce a free energy E(M) =6+M) and it is not
difficult to show22 that

8g

E(M) = E(O)+g 1„(r)M" ..2 ml
(18)

As the order parameter is of order M4-r/us it is
only necessary to retain terms with m ~ 6 in (18)
and then

E(M) = E(O)+ ~ I'~(r)M2+(1/4()I'4(r)M

(19)+ (I/6! )I'6(r)MS .
The neglected terms are of order (ue/L)~t

smaller than those retained. We use Eqs. (9a),
(11), and (13) to eliminate I's, I'4, and I'2(r) =r
and find for the free-energy difference

[I. (r) -1]—M5 n+2 Q 2
2 6 6-nu6

+—L ~(r)M +~L (r)M4! 6t (2O)

When L(r) &1 this free-energy difference is of the
form

when 1 is the m-point vertex (excluding one-par-
ticle reducible parts). For M=0, I'6 and I'4 are
given by (9) and (11), and 1'2=r, which is deter-
mined by (13). The free energy expanded in a Tay-
lor series around M =0 is then given by
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P /2Ll /2(r)

x y(qu 1 2Ll 2?(r) Mp 1 4L 1/4(r)) (21)
p, —— — —J. ~ -1 M

5 m+2 Q
6 6-n. u6

Alternatively, we can write the difference in ther-
modynamic potential between the ordered and dis-
ordered states in the form

+—L?(r)M2+ 2- I, '(r)M'
3t 51

III. ORDERED PHASE

(23)

QG p3/2 J 1 /Pi

xg(qu 1/?Ll/2-?(r)
g /1

"5/4L-1/4(r))
(22)

The logarithmic factors destroy the scaling be-
havior of the free energy.

The equation of state is obtained by differentiat-
ing (20) with respect to M,

In the ordered phase the order parameter has a
nonzero value. It is simplest to first consider the
case ~=1. We discuss below what changes occur
for n & 1. The order parameter is given by M = (s)
and it is convenient to make a change of variables
in (1) by introducing Q =s -M. After collecting
terms we may write the reduced Hamiltonian in-
cluding the field g as

—=const+ d2X r M+ —M2+ 5 M5-g Q+ —' r +—4M2+-iLM4 $2+-'(VQ)2+ —(u My&u M2))!)2
kT 31 5t ' ' 2 24

+—((u4+ 2u5M ))!) +—u2M)!) ++)!) (24)

It is now possible to write differential equations for the m-point vertices exactly as before. It is also
necessary to consider vertices with m odd. We will only give the results for these vertices:

I"5=u5L 1(r), I'5=u5ML 1(r), I"4= QL (r)+ —', u5M L (r), 1",=)/)/ML (r)+ 5u5M2L (r'), (25)

and the susceptibility x is determined by -M ut)L (u5M ) (28)

r = /1 —(q'/2u, ) IL'"(r) —I]+ ,'M'qL "'(r—)

+ 24M u5L, (r) (26)

As a second example, in the ordered phase along the
line Q=0 the spontaneous order is determined by
the equations

1I'g ——6 F3F' I" (27)

The equation of state is easily obtained by writing
a differential equation for I"1= (Q)/r Retaini. ng

only those graphs with three internal lines as be-
fore this equation is

r = p, +,'4u, L '(r)M, ,

0 = K + (u5/ 5!)L '(r) M2 .

From these equations we find

r=4I/ I, Ml=(5'I/ I/u)L(l/ I)

(3o)

Vfe impose the boundary condition that as x-1, I'&

reduce to its mean-field value, i. e. ,

I'1(r= 1)= g —p, M —(Q/3!)M —(u5/5!)M

The equation of state is 1', = 0, and from (25) and

(27) with the above boundary condition we find

2

p, — L "~ —1 M
2+6

+—
t

L (r)M +—
t

L (r)M (28)

This is of exactly the same form as (23) (for n= 1),
but in this case the inverse susceptibility x, which

is the argument of the logarithmic factor, is to be
determined from (26). This difference is impor-
tant: for example, at the tricritical point p, = Q = 0
and from (26) we have r-u 4M4Thus, from (28)
the order parameter varies with field at the tri-
critical point as

The free-energy difference between the ordered
and disordered phases is obtained by integrating
(28). To logarithmic accuracy the logarithmic fac-
tors may be regarded as constant in. this integra-
tio n. Thus

E(+fl —F)D) =—
u, — [I"'(~)—1])I',2 2+6

1/2
S= const ——k~ dxo p

2 dt 4&
(33)

M
C = const+ k~ —+ (34)

+—L '(r)M + L'(r)M (32)—
4'f 61

Again this only differs from (20) in that the argu-
ment y of the logarithms is to be determined from
(28).

Other thermodynamic quantities of interest are
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x = const — M—kI3Tp dro a

2p34p d& 47t'
(35)

As the spontaneous order Mo- [(I p I/u8)L(I p! )]' ',
the first term dominates sufficiently close to the
tricritical point in Eqs. (33)-(35). A more com-
plete discussion of the various densities and sus-
ceptibilities will be given in another publication.

We now consider how the above results will be
changed when n &1. This case is slightly more
complicated in the ordered phase than the case
n = 1 because of the two possible susceptibilities
r!!and r~ parallel and perpendicular to the direc-
tion of ordering, respectively. For n &1, the free-
energy difference and equation of state in both the
ordered and disordered pha. se are given by (20) and

(23) provided the argument of the logarithmic factors
is determined correctly. It does not appear pos-
sible when n &1 to express the logarithmic correc-
tions generally in terms of r„and v, . In the case
n= 1 above this was possible because there is only
one susceptibility r!! r. For n &1 it is necessary
to determine r!!and v, in terms of the variables p,

or M and then the results are simply stated. At
the tricritical point r r„r,--u~M-and L(r) in
(20) and (23) is replaced by L(uBM ). In the or-
dered or disordered states away from the tricritical
point r r„r, -!p!-and-L(r) is replaced by L(l p, I)
in (20) and (23) We now briefly consider some of
the consequences of these results.

(i) From (20) and (23) the first-order coexistence
line is determined by

6u, 6 n- (36)

and the spontaneous order on the coexistence line
ls

Mo, -- —(15@/ue)L (r) (37)

The susceptibility in the ordered phase on the co-
existence line is

r=4 p, —— —I. ~r —1
5n+2 Q
6 6 —n ue

(38)

and is four times larger than in the disordered
phase.

(ii) The contribution of the fluctuations to the
He concentration in the disordered phase on the

coexistence line is

x —xo=cr'"=- c(5/8us)" iQ iL' (r), (39)

IV. CONCLUSIONS

The logarithmic corrections to the mean-field
theory of symmetrical tricritical points have been
derived on the assumption u6 & 1. However, the
actual expansion is in terms of 1"6 which becomes
small near the tricritical point and thus we expect
the results also to be valid for u6& 1. The magni-
tude of u6 determines the size of the critical re-
gion. The logarithmic corrections are all ex-
pressed in terms of L(r) = 1 —[(3n+22)/480m ]u~lnr
and then the critical region is determined by

& 480~'/u, (3n+ 22) . (41)

V. SUMMARY OF IMPORTANT RESULTS

The results are most concisely expressed in
terms of

F~(r) = u —— —(L' "(r) —I],6 6 —n u,
I', (r) = Q/L'(r), F,(r) = u, /L(r),

where

(43)

L(r) =1 —
~ u, lnr, p = . (44)

3n+ 22 2(n+ 4)

From the spin model of Blume et a/. we estimate
u6-100 which leads to an appreciable critical re-
gion in this model. For large n we expect u, - I/n~

and the critical region vanishes as n- ~. The 1/n
expansion for this model has recently been consid-
ered by Emery ' and has shown to exhibit no loga-
rithmic corrections in the limit n- ~ in agreement
with the present results.

The other assumption that was made in analyzing
the perturbation series, Q /r & 1, also requires
some discussion. An examination of Eq. (13) shows
that the correct condition is Q /us&rL ~ (r). This
is an important restriction on the results and in
particular prevents us from determining the critical
line and the behavior close to this line. There ex-
ists a crossover region in which the behavior
changes from the tricritical form near the tricriti-
cal point to ordinary critical point behavior near
the critical line. The tricritical point behavior can
be discussed in three dimensions and the critical
behavior can be discussed in systems close to four
dimensions. A quantitative discussion of the cross-
over behavior in three dimensions has not yet been
given.

where c = (ks To/8 my34o)S ro/96, r is given by (13),
and we have used (36). On the critical line where
r= 0 there is no such contribution. In the ordered
phase on the coexistence line we find, from (35),

(a) Inverse parallel susceptibility:

r = I', (r)+ p I",(r)M'+ (1/4! ) I', (r)M' .
(b) Equation of state:

(45)

x xp= c Mo, —(15c/u6) QL' ~(r)

where r is determined by (38) and (36).

f = I (r}M+ (1/3! )I', (r)M'+ (1/5! )1,(r}M' .
(46)

(c) Free-energy difference between ordered and
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S-M' —~'"/4& .
(e) Specific heat:

(46)

disordered states:

hF= I' (z)M (1/4! )I' (y)M + (1/6! )I' (r)M
(47)

(d) Entropy:

mined by (45) and the order parameter by (46).
In the case n& 1, in the ordered state, the argu-
ment of the logarithmic factor has been written as
x with the understanding that x is to expressed in
terms of p. and M using (45). Thus at the tri-
critical point p. = Q = 0, x- M4, while along the line
Q=o, w-! p. l.

C-M /r+ I/16pr'i (49) ACKNOWLEDGMENTS

(f) He concentration:

~-M'- ~'"/4, . (50)
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