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Lattice-relaxation effects at point imperfections in semiconductors*
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We discuss some of the fundamentally inherent limitations involved in calculations of lattice-relaxation effects
at point imperfections. We show that differences of tetrahedral covalent radii between impurity and host
atoms cannot reliably determine whether the nearest-neighbor atoms move inward or outward. A massive
minimization-of-total-energy calculation may yield reliable information for deep levels but for shallow levels
the problem is inherently intractable; even if one knew which way the neighboring atoms move, neither the
sign nor the size of the change in binding energy could be determined reliably, either by a full calculation or,
even more so, by qualitative arguments.

Point imperfections in semiconductors such as
impurities, vacancies or interstitials, are known
to produce local distortions in the lattice of the
otherwise perfect crystal. The importance of
these distortions and their contribution to the elec-
tron or hole-binding energies has been the sub-
ject of much study in the literature. Rigorous
calculations are of course very difficult, and as a
result the size of the effect has, in general, been
estimated in terms of simple models. Unfortunate-
ly, however, these models are flexible enough to
produce the "right" answer in various circum-
stances with the net result of confusing rather than
clarifying the issue. A case at hand is that of the
chemical shifts of shallow donors in Si and Ge.
Until very recently, it was thought that a one-
valley effective-mass calculation was adequate for
the ground state of a screened-Coulomb potential
in these materials. The resulting discrepancies
between theory and experiments, the well-known
chemical shifts, were the subject of much contro-
versy for a long time. Several authors' ' showed
that the right order of magnitude for the chemical
shifts was obtainable in terms of simple models of
the strains produced by local lattice distortions.
%hen it recently became clear that most of the so-
called chemical shift was due to intervalley mix-
ing rather than chemical orstrain effects, ' ' the
models could easily be toned down to yield smaller
corrections. This, for example, was done recent-
ly by Schechter, ' who calculated binding energies
for the shallow donors in silicon by using pseudo-
potentials and including intervalley mixing. He
then proceeded to include contributions from strain
fields using Weinreich's' model. Despite the fact
that Weinreieh's model gives a vanishing correc'-
tion for isotropic wave functions (and Schechter's
wave-functions are isotropic), Schechter used the
following formula obtained by Weinreich from per-
turbation theory

hZ = 4 „roAr /a20-"

where =„ is the deformation potential constant,
x, is the tetrahedral covalent radius of the donor,
4z is the difference in the tetrahedral radii of
donor and host, and a, is the transverse Bohr rad-
ius of the unperturbed wave function. In the case
of P in Si, Schechter calculated a binding energy
of -53 meV. He then estimated the contribution
from strain fields from Eq, (l) to be + 7 meV for a
final binding energy of -46 meV, in perfect agree. -
ment with the experimental value of -45.5 meV. In
using (1), however, he used the hydrogenic va. lue
for a, (20 A, which corresponds to a binding ener-
gy of -30 meV). had he used the average Bohr rad-
ius of &is own unperturbed wane function instead,

0
namely -9 A, he would obtain a much larger cor-
rection, a whopping +34.6 meV, for a disastrous-
ly low net binding energy of -18.4 meV.

A very analogous case is that of shallow aceep-
tors in silicon and germanium. The chemical
shifts, particularly in silicon, have long been
known to be both large and sensitively dependent
on the chemical species. Morgan' used the dif-
ferences of covalent radii between impurity and
host atoms to calculate strain and Stark fields and
roughly accounted for the observed shifts. More
recently, however, Lipari and Baldereschi" show-
ed that the bulk of the "chemical" shift for Al in Si
(for which the Coulomb potential is expected to
work best) is actually due to anisotropic terms in
the effective-mass kinetic-energy part of the Harn-
iltonian. In order to calculate this correction, one
has to include spherical harmonics of /=4 in the
trial function. More recent work by the prese~t
author" in terms of the pseudoimpurity theory""
(PIT), previously developed and applied to donors
in silicon, shows that the shifts of the binding en~
ergies of 8, Ga, and In in Si, as measured from
the binding energy of Al in Si, are truly chemical .

in nature and arise mostly from the xeorthogonal-
ization-potential terms. ' '"

In other cases, strain fields, lattice distortions,
and the like have been used to explain noted dis-
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crepancies at least qualitatively: The present
author' "attributed the discrepancy between the-
oretical and experimental binding energies of the
heavy Sb and Te impurities in Si to distortions of
the impurity-atom core orbitals caused by the
nearest-neighbor atoms which squeeze on them;
Allen" pointed out the importance of strain fields
in the case of isoelectronic traps and suggested the
use of covalent radii in determining them. ; .
Phillips" suggested that lattice distortions actual-
ly dominate the determination of their binding en-
ergies; Baldereschi and Hopfield" studied the same
problem in more detail and used the differences in
bond lengths to obtain quantitative results; Kuki;
moto et al."interpreted their experimental data
on the binding energy of a second electron at oxy-
gen sites in GaP by invoking a very large local
lattice distortion: Jaros and Ross" included lat-
tice distortions in their calculation of the binding
energy and found that "reasonable" distortions
could produce sizable additional binding, but no-
where close to the observed value; Grimmeiss
et al. ." remeasured and reinterpreted the data on

oxygen in GaP. In their model the second electron
occupies a P -like state with fairly large binding
energy which Morgan" suggested can be under-
stood by invoking strain fields. By similar argu-
ments in terms of strain fields, Morgan" also
suggested an explanation for the unusually large
binding energy of the Ge donor in GaP (-200 meV
compared with 65.5 meV for Sn and 82.5 meV for
Si in GaP, all of them substitutional at a Ga site).

All the arguments about lattice distortions and

strain fields, such as those just mentioned, are in
fact plausible, and numerical estimates do or are
likely to support the conclusions. The purpose of
this note is not to offer unfair criticism of good-
faith attempts to offer reasonable explanations for
complicated situations. However, in view of a
growing tendency to rely on strain fields to explain
important effects, we wish to explore here some of
the fundamentally inherent limitations one is faced
with in attempting to calculate lattice- relaxation
effects."

First we wish to illustrate tbe fact that it is not
a trivial or perhaps even feasible task to deter-
mine whether the nearest-neighbor atoms move
outward or inward, which is the one factor that
determines the nature of the strain fields. As we

saw already, a procedure that has been used ex-
tensively is to compare the covalent tetrahedral
radii of host and impurity atoms and conclude that
if the impurity radius is larger, the neighbors
move out, in order to allow for the embedding Qf a
larger "sphere" in the crystal, and vice versa. "
Such arguments, if valid, would suggest that the

atoms around a vacancy move inward since the

TABLE f. The movement of the four atoms neighbor-
ing a vacancy in diamond, Si, and Ge after Yip (Ref.
24); "in" indicates inward movement, "out" indicates
outward movement.

Charge
state

v'

Diamond
Silicon
Germanium

out
out
out

out
out
out

out
out
in

out
in
in

"impurity radius" is zero. '4 Indeed, many authors
studied this question in terms of tbe "defect-mole-
cule" model and concluded that the atoms do move
inward. " However, recently, Messmer and at;-
kins" and Yip" carried out ab initio calculations,
minimized the total energy, and showed that the
atoms around a neutral vacancy in fact move out-
zpmd. For other charge states, Vip found the .

movement to be inward or outward depending on
whether tbe crystal is diamond, silicon, or ger-
manium (Table I). These calculations of course
involve many drastic approximations and one should
be cautious in view of the difficulty in predicting
crystal structures and lattice constants of perfect
crysta]s via minimization-of-total-energy ab initio
calculations, but they do serve to illustrate our
first point: Unless one resorts to a massive total-
energy calculation, it is impossible to tell reliably
which way the nearest-neighbor atoms move by
using intuitively appealing arguments such as diff-
erences in covalent radii of atoms. " Particulary,
in the case of shallow impurities and isoelectronic
traps where the energy changes are very tiny, it
appears that no argument can ever be conclusive
as to which way the atoms go.

Let us now move to our second point. Suppose
one first calculates the positionof an impurity level
with the lattice frozen (by effective-mass theory
or in some other way), as was done in Refs. 1-3,
9, and 1G. Suppose further that one could estimate or
guess which way the atoms move. Could then one
tell reliably whether the impurity level moves up
or down in energy'? The answer is by no means
trivial, since the lowering of the total energy of
the whole system does not necessarily imply low-
ering of the single bound level of interest. Let us
first see what happens if we attempt to obtain an
answer by perturbation theory which has often been
the case. This means that we first solve the one-
electron problem,

[-(h '/2m) V'+ V]4 = Ek,
where V is the total potential of the crystal con-
taining the defect, but with all the nuclei frozen at
their perfect-crystal postions. If we then let the
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nuclei move to their new positions, an additional
perturbation potential 4V is introduced, which may
be written as

aV= Z [v(r —R, ) —v'(r —R,')],

where RJ are the atomic positions in the perfect
crystal, and R& are the atomic positions in the
perturbed crystal. In the notation used in (3), the
perfect-crystal potential V' would be

Clearly, our task would be to evaluate the change
in energy ~, given to first order by

~ = (4 14V I 4') .

The form of the perturbation 4V resulting from an
atom moving inseard is illustrated in Fig. l. Since
4V is essentially symmetric about the midpoint of
the displacement vectors, it is clear from Fig. 1

that the sign of ~ will be different depending on
whether the slope of ~x4'(r} ~' is positive or negative
in the region (See Fig. 1). Since the atomic site is
the region where 4 has nodal oscillations, the sign
(and magnitude} of ~ becomes a very sensitive
quantity and practically impossible to determine.
Even if the problem is formulated in terms of
pseudopotentials, in which case 4 is a pseudo-
wave function, some wiggles may still be left
in the region of the atomic sites to make the deter-
mination of ~ a very tricky task. In practice, the
situation is even worse, since (2) is generally solv-
ed by making serious approximations, which re-
sult in wave functions that are not very reliable.
Most of the time, (2) is solved variationally and
the flexibility allowed in the trial form in general.
is not adequate to produce wiggles of the. kind that
can determine the sign or size of ~ accurately.

A case at hand is the effective-mass theory and its
variants in which the trial funciton is generally
taken to be an exponential-like envelope function
times a Bloch fU..~"(ion. Ir~ m{ .-'l cases the envelope
function has an upward slope at the nearest neigh-
bors (which move the most), as in Fig. 1(a),
whereby it is guaranteed to give a positive 4E
when the atoms moveinandanegative 4E when the
atoms move out." When the envelope function is
multiplied by the Bloch function (or pseudo-Bloch
function), as it should, no guarantee remains that
the slope of the total wave function at the atomic
sites remains the same, leaving even the sign of
the effect an unresolved matter. '

Finally, what about including hV in V of (2) and
solving directly, rather than by perturbation
theory' The essence of the problem here is solv-
ing (2) in approximations better than those of ef-
fective-mass theories. This is necessary because
we are really trying to probe the detailed oscilla-
tory nature of 4' at lattice sites, whereas in ef-
fective-mass theories the discreteness of the lat-
tice is washed out. Going beyond effective-mass
theories, however, is a task involving massive
computations. The approaches of Messmer and
%'atkins, "Yip, "and that of Jaros and Ross, ""
if carried to convergence, can be suitable for deep
levels. With caution, in view of the variational
nature of the wave function, they may supply us
many answers. On the other hand, these methods
would be far less reliable for fairly shallow levels
where tiny changes in large energies are the ob-
ject. In these cases, it appears that the determin-
ation of which way the atoms move and of the sign
and size of the change in binding energy will re-
main a very uncertain matter.

In conclusion, the main messages we wish to
convey in this note are: (i) Comparison of the co-
valent radii of impurity and host atoms cannot tell

{a} bE&0 {b) BE&0

FIG. 1. Qlustration of
how the change in binding
energy && may be either
positive or negative de-
pending on the slope of the
wave functions at the neigh-
boring atoms. We show the
case when the neighboring
atoms (open circles) move
tabard the impurity atom
(dark circle). A similar
illustration can be made
when the neighboring atoms
move out, away from the
impurity atom,
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us whether the atoms neighboring an impurity atom
move inward or outward. (ii) Even if we knew
where the neighboring atoms move, perturbation
theory cannot determine reliably even the sign,
nonetheless the size, of the correction to the bind-
ing energy. (iii) Only massive minimization-of-
total-energy calculations have any hope of deter-

mining both the positions of the neighboring atoms
and the net binding energy. However, this is only
workable for fairly deep levels. For shallow le-
vels, the changes in the total energy due to the
motion of the neighbors are too tiny to be comput-
able.
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