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Impurity effects on the three-dimensional ordering of magnetic chain systems
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We demonstrate the drastic reduction of the magnetic-ordering temperature T, by nonmagnetic

impurities in quasi-one-dimensional magnetic systems. Single-chain spin correlations are treated exactly
for the classical Heisenberg and S = 1/2 Ising systems, with interchain correlations included in a
mean-field approximation.

One-dimensional (lD) magnetic systems are of
interest both because of their relative theoretical
simplicity and because many real crystals show
quasi-one-dimensional behavior. ' One of the basic
topological characteristics of a pure 1D system is
its sensitivity to impurities and imperfections.
Since there exists no "way around" a missing bond
in a chain, a single missing bond will cut the chain
into two independent segments. The introduction,
e.g. , of nonmagnetic impurities into a single mag-
netic chain with nearest-neighbor interactions will
effectively divide it into a number of smaller non-
intera, cting units. On the other hand, in a real lin-
ear magnetic system, weak interchain couplings
exist, which, in fact, lead to three-dimensional
(SD) ordering of these systems below a sufficiently
low temperature T,. Those 3D interactions should
reduce the above-mentioned 1D impurity effect. In
this paper, we study the effect of nonmagnetic im-
purities on the 3D ordering temperature. We find
that this effect is quite drastic, and that it is much
more important for the chain systems than for iso-
tropic 3D systems. We cite examples where this
effect appears to have been observed and give pre-
dictions for cases where impurity concentrations in
the range of tenths of a percent may lead to easily
observable reductions in T,.

The impurities separate each chain into segments
of average length n spins. We assume n»1, the
dilute-impurity limit. Rather than average over a
random distribution of lengths (which can be done
straightforwardly), we will here treat the length of
the segments as uniform, for simplicity. Because
of the large values of n considered here, the numer-
ical results are only slightly modified by this sim-
plification.

The estimate of T, is made using an approxima-
tion ' which treats the 1D correlations exactly and
approximates the interchain interactions by a mean
field. The breakdown of mean-field theory in pre-
dicting ordinary 3D transitions is associated with
the neglect of the long-wavelength fluctuations of
the order parameter which are so important near
a second-order phase transition. These fluctua-
tions are associated with the rapid growth of short-

range order. But in the quasi-one-dimensional sys-
tems, while the correlation length is growing dra-
matically along the chains (so tha, t the individual
chains must be treated carefully, including fluctua-
tion effects), it rema, ins on the order of a, lattice
spacing perpendicular to the chains nearly down to
the critical temperature. One therefore expects
mean-field theory to be a very good approximation
for the weak interchain interactions. We shall con-
fine our attention to the Ising ' and classical spin '

models, where the 1D problem can be solved exact-
ly. The Hamiltonian describing the Ising model is

where J is the intrachain interaction, J' is the in-
terchain interaction, and 0;. =+ —,'. The index i runs
along the chain, s designates the chain, and 5 is a
nearest-neighbor interchain vector. For the clas-
sical spin model

where the S, are classical unit vectors. J„ is the
intrachain exchange interaction multiplied by
S(S+1), where S is the spin value and J",, is the in-
terchain interaction. X„should be a reasonable
approximation for Heisenberg models with S—1.
We note that the signs of J and J' are not restricted.
For these classical models, the staggered suscep-
tibility of the antiferromagnetic model is the same
as the uniform susceptibility of a ferromagnetic
model with the same value of 1Jl/T. Thus with
proper identification of the quantities introduced,
our treatment is applicable to both cases.

In the approximation" where the weak interchain
interaction is treated in a mean-field approxima-
tion, the 3D ordering temperature T, is given by

where z is the number of nearest-neighbor chains
(in the dilute impurity case which we consider, the
modifications of the effective value of z due to the
impurities are negligible), and y»(T, ) is the sus-
ceptibility per spin of the system of isolated inde-
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similar to those of the classical spin model may be
expected for S =-,' Heisenberg models, where nu-
rnerical results are available only for n= 10. Sys-
tematic experiments to check our results on quasi-
1D materials as a function of impurity concentra-
tion would be valuable. We are currently studying
the effects of magnetic impurities, using exact re-
sults' '" for disordered chains. In the limit where
the host-impurity interaction is much weaker than
the host-host interactions, the simple results of

this work are recovered.
We finally reemphasize that the extreme impor-

tance of impurities in 1D magnetic systems is not
peculiar to such systems but is rather a general
topological characteristic of 1D geometry, ' as has
previously been noted' in discussions of the per-
colation problem.
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