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Calculation of the lattice structure on stepped surfaces of Ar and NaCl
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Calculations of surface distortions for high-Miller-index stepped surfaces are presented for Ar and NaCl.
Negligibly small surface relaxation is found for the Ar surfaces. In the case of NaCl, surface buckling and
surface atom displacements on the order of (5-10)% of the atomic step height are obtained. Polarization
effects account for the much larger surface distortions in NaCl.

I. INTRODUCTiON

Surfaces of crystals characterized by high
Miller indices consist of terraces of low-index
planes separated by steps often one atom in
height. ' ' The ordered stepped surfaces display
varying degrees of thermal stability. Studies of
chemi. sorption of hydrogen, oxygen, carbon monox-
ide, 6 and various hydrocarbons' on stepped plati-
num surfaces indicate that these atomic steps play
a. key role in enhancing surface chemical reactions.
When a surface is cleaved, one expects relaxa-
tion of the surface atoms to new equilibrium posi-
tions slightly different from the bulk-equibbrium
structure. A knowledge of the actual positions of
atoms in a stepped surface may be useful in the
understanding of the catalytic properties of
stepped surfaces. Up to now, most of the work on
stepped surfaces has been experimental. In this
work, we try to answer theoretically this simple
questi. on: Where do the atoms on a stepped sur-
face actuaQy sit'P

We present calculations of surface-atom dis-
placements for Ar, a noble-gas solid, and NaCl,
an alkali halide. The equilibrium structure of a
stepped surface is determined by minimizing the
surface energy of a step as a function of surfaee-
atom positions. We chose Ar and NaCl because
both have closed-shell electronic configurations
so that only pair potentials enter into surface-
energy calculations, and the forms of these po-
tentials are relatively well known.

II. CALCULATION FOR Ar

For this calculation, we have chosen the stepped
surface corresponding to cubic Miller indices
(1 0 ll) of the face-centered-cubic structure, as
shown in Fig. 1(a). The surface is infinite along
the g direction. The pair potential u&& needed in
cohesive energy computations is the Lennard-Jones
potential:

where y, &
is the distance between atoms j and j;

c and o are the rare-gas force constants: &

=1.6Vx10 ' erg and o=RO/1. 11 for Ar, QR, being
the nearest-neighbor distance. %e define U„ the
ith atom's contribution to the cohesive energy to
be the summation of pair potentials over all j atoms
that interact with atom j,

It is clear that U; takes different values depending
on the position of the atom i. When j is at or near
the surface, values of U,- may vary from atom to
atom; where i is deep within the bulk, U, takes on
the bulk value U, irrespective of the atom index i.
The stepped surface energy is defined in the fol-
lowing manner: (i) Pick out the set of surface
atoms which define the smallest repetitive unit for
the stepped surface in question; in the particular
case of (1 0 ll), the set consists of atoms num-
bered 1-12 in Fig. 1(a). (ii) Take every atom m
that has (x, y, s) coordinates within the bounds de-
fined by the repetitive unit ( 2is th-e direction
into the bulk), compute the difference (U —U).
(iii) The summation g„(U —U) is the surface
energy per repetitive unit of the step, or simply,
the step surface energy 8. The quantity 8 is com-
puted by direct lattice sums; it can also be de-
fined as the surface energy per two-dimensional
unit cell. Since the Lennard-Jones pair potential
is rather short range, the bulk value U eonverges
to its exact value to a very good approximation
when the sum is carried out only up to the set of
ten nearest neighbors. In evaluating 8, only the
atoms that axe within the tenth-nearest-neighbor
shell of a surface atom are allowed to contribute
to the difference U - U.

The calculated value 8 for the (1011)single
step [Fig. 1(a)] is 64. 2650x10 "erg, which cor-
responds to 5. 159x 10"' eV/A' [area measured
parallel to the (1011)planej. If this energy is
assigned to the surface atoms exclusively, and in
a uniform fashion, it corresponds to 5.3554&&10"'4
erg per surface atom, which is to be compared
with the bulk cohesive energy of —13.8593x10 ~4
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FIG. 1. Crystal surfaces corresponding to cubic
Miller indices (1011)for (a) an Ar single step; (b) an
Ar double step; and (c) a NaCl single step.

erg per atom. The above value can also be com-
pared with the surface energy 5. 6283&& 10 ' erg
per atom or 4. 990x 10 ' eV/A2 corresponding to
a perfect (0 0 1) surface. The step configuration
which is consistent with the same Miller indices
(1 0 11) but with double atomic step height [Fig.
1(b)] gives 8=131.1568x10 '4 erg. This configura-
tion has the same number of surface atoms as the
single step [Fig. 1(a)]; it yields a surface energy
of 5.4649 && 10 '4 erg per surface atom or 5.264
x 10 ~ eV/A2. Since this is a larger value than the
one quoted for a single step, we predict the forma-
tion of step of monatomic height to be energetically
more favorable than the formation of higher steps.
This, unfortunately, is not a general result but
arises directly from the short-range character of
the pair potential. One can, in fact, arrive at
this result if one only counts the number of nearest-
neighbor bonds broken in different step configura-
tions.

Hitherto, the atoms have not been allowed to
relax. We expect, in general, very little relaxa-
tion in solids with Lennard-Jones pair interactions.
An z 2 repulsive potential resembles very much
a completely "vertical" hard core. An exactly
impenetrable core means no relaxation whatso-
ever, since even in the bulk the atoms are located
core to core. If we include only nearest-neighbor
interactions and a Lennard- Jones potential, we
obtain very smail relaxation parameters. These
are quoted in Table I as 5, and E„which are the
displacements along the x and z axes in units of a
step height (—,

' a), where a is the cubic lattice con-
stant. The results in Table I indicate atom dis-
placements on the order of 2% of the step height
directing outward from the surface. We reem-
phasize that these results in Table I derive from
calculations including only nearest-neighbor in-

III. CALCULATION FOR NaC1

The appropriate ion-ion pair potential needed
for the computation of surface energies is

ft(~ r ~)
Qa A A (P' ' ra~

I I I I'

where r, , is the displacement vector directed from
ion j to i, q;, q& are the respective ionic charges,
and p;, p, the induced electric dipoles on ions i
and j. The quantity R(l r;& I) is the short-range re-

TABLE I. Displacement of surface atoms in an Ar
(1011) surface in units of a step height g g.

Atom label
[see Fig. 1(a)] &x 6g

1
2-11

12

+0.01
0

+0.00 (3)

+0.02
+0.02
+0.00 (3)

teractions. Using the same approximation in the
calculation for the (001) surface, an outward dis-
placement of magnitude 0. 02(—,'a) is predicted for
the surface atoms. However, by taking account of
interactions of pairs up through the set of tenth
nearest neighbor for the (001) surface, one ar-
rives at an inwa, rd contraction of 0.01(—,

' a) for the
surface. The change of sign in the displacement
of surface atoms when neighbors further apart are
included is accounted for by the following: The
attractive part of the Lennard-Jones potential is of
longer range than the repulsive part, when only
nearest-neighbor interactions are included, the
effect of the attractive part is underestimated, thus
resulting in an outward displacement for the sur-
face atoms; when the attractive potential is prop-
erly taken into account by summing over more
neighbors, an inward displacement for the surface
atoms is obtained. One therefore expects 6„, 6, in
Table I also to change sign if one were to include
pairs up to the tenth nearest neighbor in the cal-
culations for (1011). The magnitude of these dis-
placements are, however, still on the order of 1%
of the step height, and therefore negligible.

In summary, for a Lennard-Jones solid, as ex-
pected from general considerations, one finds
fairly large surface energies, as compared with
bulk binding energies, but rather small in an ab-
solute scale. One also finds negligibly small sur-
face relaxation, consistent with the close-packed
structure and the nearly impenetrable core prop-
erties of the repulsive force.
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pulsive potential which we assume to be nonzex o
only for nearest-neighbor pairs; the second term
is the long-range Coulomb potential. These two
terms would have been RQ that is required in a
computation of bulk cohesive energy. %'ith the
presence of a surface, the atoms near the surface
experience a net electric field due to the rest of
the ionic medium; the electric field polarizes the
electrons in these surface atoms, giving rise to
induced dipole moments on them. The last three
terms of Eq. (3) are the polarization energy due
to the presence of surface-induced dipoles. %e
show that these polarization terms are important
in causing relatively large surface distortions by
calculating as a function of surface-atom displace-
ments (a) the surface energy of the (001) surface
and (b) the step surface energy of the (1011)sur-
face. There exists in the literature many theo-
retical results on surface energy for (001) alkali
halides bRsed oD VRrlous methods RDd Qlodels
but none to our knowledge for a high-Miller-index
step. The calculation for the (001) surface is
included here to make the discussion on the cal-
culation for (1 011) stepped surface more trans-
parent, and also to provide a reference for com-
parison with the results of the stepped surface.

The smallest surface repetitive unit for a (001)
surface is simply two nearest-neighbor ions, one
Na' and one Cl; S, the surface energy per re-
petitive unit, as defined in the section fox Ar, is
computed by doing the proper lattice sums for
every term in Eq. (3), allowing the Na' ion to
distort by 6, and the Cl ion by 8 . The symmetry
of the (001) surface, with no superstructure, re-
stricts the displacement to the direction normal
to the surface. The inverse twelfth-power form'4
is used for the repulsive first term R(l r, & I) in Eq.
(3). The Coulomb term (q;q~/ I r, ~ I) is long range;
however, the summation over two-dimensional
Hojendahl squares" and 18 layers is more than ad-
equate to reproduce the exactly calculated bulk
cohesive energy9

—178.6 kcal/mole = -1,269 x10 "erg/(ion pair).

All three terms fox polarization energy in the pair
potential involve the dipoles P, for NR+ Rnd P for
Cl; they are obtained in the following manner:
(i) We compute the net Coulomb field E«on ion i
arising from the rest of the ionic medium, i.e. ,

By virtue of symmetry, all the vectors —electric
fields, dipole moments, and ion displacements-
are normal to (001) surface. We use the con-
vention (+) sign for the outward normal and (- )
sign for the normal pointing inwards, into the
crystal. Our computation for E~, shows that its

value for an ion in the second layer has dropped
to 1/0 of that for a surface ion. Therefore, only
the ions on the surface are assumed to have non-
zero dipoles.

(ii) In addition to the Coulomb field E«, a sur-
face ion experiences a dipole field ED, due to all
the induced surface' dipoles:

3(P~ ~ r„)r„pg

Here I'& takes on the value P, or P depending on
whether j is a surface Na' or Cl ion. The sym-
metry of a (001) surface renders the first term
in Eq. (5) zero when summed over all surface j's.
Therefore, E~; is again parallel to the surface
normal.

(iii) With n, and o.'as the electron polarizability
of Na' and Cl, respectively, the dipole moments
are obtained by solving the coupled implicit
equations

P, = u, (E„+E,.),
(6)

P = &.(Ec +E~ ),
with Ec and Ea as given in Eqs. (4) and (5), re-
spectively. Using the values e, =0.312x10 3'

em and a =3.06x10 24em 3, we obtain for the
perfect undistorted (001) surface, P, = —0.8640
x10 '9 esucm and P„=4.2723x10 esucm.

The polarization-energy terms of the pair po-
tential has no bulk counterpart, the summation
over pairs contribute entirely to S, the surface
eDex'gy. To sum tIlls pRx't of I&& correctly, oDe
should attach a factor of —,

' when both ions of the
pair are on the surface and a factor of unity when
one ion is on the surface and the other is in the
bulk. The surface energy is computed as a func-
tion of F, and 5 . The surface energy per ion pair
is found to drop to a minimum of 4. 7918&&10
erg at 6, = —0.064 (—', a), 6. = y0. 060(—', a). For
reference, the surface energy of the perfect lat-
tice is 1V. V8Vx10 '~ erg/(surface-ion pair), and
the bulk cohesive energy is —1.269x 10 "erg/
(ion pair).

The equilibrium configuration for a NaC1 (0 01)
surface is therefore found to be a, buckled surface,
with all the Cl ions displaced outward and the Na'
ions displaced inward, resulting in R dipole layer
at the surface. The polarization enexgy is entirely
responsible for this buckling. %ere the polariza-
tion effect absent, the whole surface will relax
inward slightly [actual computation shows less
than 0. 01 (-,a)], which is essentially similar to the
x'esult obtRlDed fox' Ar %1th the polRx'lzatlon pl op-
erly included, the driving forces on Na' axe the
Coulomb and polarization pulling it into the crys-

, tal with the repulsive force pushing it out; where-
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as in Cl, given the dipole layer at the surface,
the Coulomb and the dipole-dipole part of the
polarization [fifth term in E1I. (3)] are still the
inward force, but the charge-dipole part of the
polarization [third and fourth term in E1I. (3)]
teams up with the repulsive force to push it out.
A detailed undexstanding of how each of these
driving forces works -to yield the resultant 5„5
is paramount in understanding the x'esults of the
calculation for the NaCI (1011) stepped surface.

The NaCl (1 0 11) surface is shown in Fig. 1(c).
The smallest x'epetltlve sux'fRce unit ls two Rd)a-
cent parallel rows of 12 ions each; one such row,
shown in the figure, ha.s atoms labeled 1-12.
Two Rd]acent x'ows Rl'6 needed becRuse NR Rnd

Cl on the corresponding (same label) lattice site
on the step displace differently. Minimization of
the step surface energy 8 as a function of the dis-
placement of surface ions yields the desired equi-
librium lonlc posltlons of the stepped sulfRce.
In principle, this is the same problem as we have
solved for the (001) surface. In practice, how-

ever, it is not feasible here to perform an exact
calculation as was done for (001) for the following
reasons: (a) Whereas for a (001) surface only
two inequivalent displacement vectox s appear-
one for Na' and one for Cl for —a (1011)sur-
face the number of inequivalent displacement
vectors has increased to 24; (ii) due to surface
symmetry, the direction of the displacem. ent vec-
tors is completely determined for the (00 1) sur-
face, but only restricted to the x-z plane in the
(1 0 11). The variational parameters, taking into
account only surface ions, increase therefore by
a factor of 24. The exact calculation becomes ex-
tremely difficult if not impossible. We pxopose
therefore an approximate procedure to bypass the
difficulty. The approximations are carefully made,
based on the physical insight we have gained in
our exact calculation fol' {001). Tile reliability
of this approximate procedux'e is also checked by
applying it to the (001) case and obtaining from
it results comparable with those from the exact
calculation.

The exact calculation for (00 1) indicates that
on a Na', the repulsive force is the only outwax'd

driving force that counterbalances all the other
inward driving forces: Coulomb and polarization.
If we allow only the Na' displacement to vary while
the Cl are kept fixed at their sites, we may ex-
amine the repulsive contribution U„~ and the Cou-
lomb plus polarization contribution U„« to the sur-
face energy S. In this case, V,«(5„5 = constant)
as a function of 5, turns out to have an essentially
constant positive slope in the relevant range of F„
whereas U„,(8„E =constant) as a function of F,
has a negative but quickly va, rying slope i.n the
relevant range of 5,. Locating the value of F, such

thRt

sv...(6„F =0) sv.„,(F„K =0)
85+ 9Q

(I QQ)
n

(G, Q,Q)'I/2

(Q, I, G)'/2 lOA

s

I IG. 2. Induced electric dipoles on the unrelaxed
NaCl surfaces: (1011}and (001).

()
6~=0

yields the value 6, = —0.07 (—', a), remarkably close
to the exact result 5, = —0.064 {—,'a). Therefore,
this approximate method of equating slopes of the
attra, ctive and repulsive surface energy works well
in giving correct Na' displacement. A similar
appx'oach should not work at all for Cl since the
inward driving forces for Cl are the dipole-dipole
and Coulomb interaction, the outward driving
forces are the hard-core repulsive and the charge-
dipole intex'action. It turns out that U,. and U,„~
have essentially the same slope over a wide range
of 5, which render the balancing of slopes a use-
less tool to calculate 5 . One would have to locate
the actual minimum of the surface energy U„+ U', „~
to get Rn RCCulRte 5,

The procedure for calculating the (1011)stepped
surface structure is the following:

(i) Ass11111e all the ious at their pel'feet-lattice
sites.

(a.) Compute the Coulomb field Ec, on each.
surface ion; the largest field is on the cox'ner site
labeled 1 in Fig. 1(c). Again to within 2% error,
the Coulomb fieM may be assumed to be zero on
all except the 24 surface ions.

(b) Calculate the induced dipoles on the 24
surface ions. Without the benefit of symmetry,
E1l. (5) for the dipole field needs to be applied in
full and E1I. (6) becomes a set of 24 coupled im-
plicit vector equations. The dipoles a,re obtained
by numerical iterations.

(c) Knowing the dipole moments on all the sur-
face sites, the pair potential I,, in Eq. (3) is
summed cox'rectly over pairs to obtain the step sur-
face energy 8 for the perfect undistorted step.

(ii) Keeping all the surface Cl and all but one
of the surface Na' at the perfect lattice sites, we
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FIG. 3. Displacement of the surface ions in the NaCl
surfaces: (1011) and (0 01).

(t,&), (6 &}

is obtained for the Na' surface ion on each site i.
(iii) Compute the repulsive contribution U„, to

the step surface energy as a function of 5„, with
the direction of 6„defined by the direction of the
gradient

(6„),ft) ~1

allow the Na' surface ion on site i to displace by
15„1 = 0. 01(-,' a) in different directions defined by
8„8=0' being along the inward normal and 8
=180 along the outward normal of a (001) sur-
face, 8 increases in the counterclockwise direc-
tion. Repeat procedures i(a), i(b) for each 5, and
compute the attractive contribution U,« to the step
surface energy. With the full 360' range at 8„
the gradient

Equilibrium 5„. is obtained by equating the gradient
of U,«with the gradient of U„» as carried out
for the (001) surface in Eq. (V).

(iv) Procedures (ii) and (iii) are carried out
for each Na' surface ion on the sites 1-12. In
this fashion, the displacements of the Na' surface
ions on every site are calculated.

(v) To obtain the displacements for Cl sur-
face ions, we first allowed all the Na' surface
ions to relax to their equilibrium positions deter-
mined in (iv). Now, Cl surface ions are displaced,
one site at a time. The displacement 5, is varied
both in direction and in magnitude; for each vari-
ation, procedures i(a)-i(c) are applied to obtain
the step surface energy S. The 5; for which S
is a minimum is the desired result. No approxi-
mation is involved at this stage of computation.

Computational procedures (i)-(v) are concep-
tually clear, physically sound but, computational-
wise, rather painstaking. The results are dis-
played in Figs. 2 and 3 and tabulated in Tables
II and III. Figure 2 shows the induced dipoles on
the unrelaxed (i. e. , every surface ion sitting at
the perfect lattice site) stepped surface. The
stepped surface is defined by the two adjacent
rows of 12 ions each. The insert shows the dipole
moments on an unrelaxed (001) surface, which
serves as a reference. Results of Figure 2 are
tabulated in Table II. The surface-ion displace-
ments are shown in Fig. 3 and tabulated in Table
III. A dipole layer is again formed on the terrace
of the stepped surface. The displacements at the
corner sites (1 and 12) result in a shrinking of the
step height by about 10%. Whereas the Na' dis-
place essentially inward, the Cl on the terrace
displace almost parallel to the terrace; therefore,

TABLE II. Induced electric dipoles on the unrelaxed NaCl surfaces: (1011) and (001).

Site label
I,See Fig. 1(c)]

Magnitude I P, l

(esu cm)
(10-")

Direction 8,
(deg)

Dipole moments on Na'

Direction 9

(deg)

Dipole moments on Cl

Magnitude I P I

(esu cm)
(10-19)

1

3

5
6
7
8
9

10
11
12

1.3808
0.7514
0.7610
0.7646
0.7658
0.7657
0.7676
0.7661
0.7615
0.7624
0.9867
0.2316

319
350
351
349
350
350
350
350
349
348

0
172

9.5469
4.4826
4.4433
4.4295
4. 4172
4.4067
4.4094
4.3706
4.0616
4.0616
5.8336
2.8402

127
163
163
162
163
162
163
163
161
161
186
316

For (001), I P, I
= —0.8640x10 esu cm, 8, =0;

I P„ I
= 4.2723 x 10 ~ ~ esu cm, g = 180'.
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TABLE III. Displacement of surface ions in the NaCl surfaces: (1011) and (001) in
units of the step height y a,

Displacement of Na' Displacement of Cl

Site label
[See Fig. 1(c)]

1
2
3

5
6
7
8
9

11
12

Magitude ) p

0. 114
0. 100
0.088
0. 076
0. 071
0. 058
0. 048
0.038
0.032
0.060
0.031
0.084

Direction 0,
(deg)

337
31
25
21
20
15
9

354
349
311
347
195

Magnitude ( Q [

0. 00
0. 03

&0. 01
0.01
0.01
0. 01
0.01
0. 01
0. 02
0. 02
0. 01
0. 05

Direction 8

(deg)

r 255

265- 265
-265
-265
-305- 285

315
~ 355
~95

For (001) surface ( 6, ) =0.064, 6),=0';
i =0.060, 8 =180'.

the geometry of the displacements differ strikingly
from that of the induced dipoles shown in Fig. 2

(the dipole interaction accounts for this). This
calculation is not self-consistent in the sense that
the surface ions are not allowed to move all to-
gether in the process of calculation. The proce-
dure of allowing Na' to displace firstand thenletting
the Cl to displace in the field of the distorted Na'

tends to overweigh the displacements on the Na'.
However, one would expect the relative displace-
ment P„.—E,) thus obtained to be not too different
from the fully self-consistent result.

IV. CONCLUSION

To investigate the actual positions of atoms on

a stepped surface, we deliberately use the two

systems —the noble gas solid and an alkali halide—
which are simple. They have no polarizable con-
duction electrons. For the truly simple case Ar,
the result is also not very surprising. The sur-
face atoms in the stepped structure essentially
remain in the perfect-lattice-site positions.
Polarization of electrons must be present to pro-
duce any appreciable distortion of the surface.
The alkali halides indeed have no conduction elec-
trons, but the ions themselves are polarizable.
This polarization effect accounts for the much larger
displacements [(5-10%) of the stepheightj. It alsoac-
counts for the buckling on the stepped surface.

Low-energy-electron-diffraction (LEED) data
on low-Miller-index surfaces for both an inert gas
solid~6 and an alkali halide~~ are available. Lara-
more and Switendick'7 in their analysis of the
LEED intensity profiles for LiF (100) surface
suggested that the top Li' and F sublayers are
separated by about 0.25 A in a direction normal

to the surface. In terms of interlayer spacing

(—,
' a), 0. 25 A corresponds to 0.124 (—,

' a) in LiF,
coinciding with our calculated displacements of
-0.064(-,' a) for Na,

' and +0.06 for Cl in the NaC1

(001) surface. This comparison between LiF and

NaCl should of course be only an order-of-mag-
nitude one since the numerical ionic displacements
in our calculation are dependent on the electronic
polarizabilities on the different ions and the form
of repulsive pair potential used; furthermore, the
result for LiF from LEED-intensity analysis is
only approximate.

From these calculations of two specific examples
one gains a feeling as to how atoms in other ma-
terials may displace. For example, on a metal-
stepped surface where the conduction electrons
are polarizable, we would expect surface distortions
on the same order of magnitude as those obtained
for NaCl: with the atoms on the terrace moving in-
ward by perhaps 5% and the step height shrunk by
(5-10%). This is a first theoretical calculation on
the stepped surface. A similarly detailed calcu-
lation on a transition-metal surface would be re-
quired for investigating the catalytic properties
of stepped surfaces. Such a calculation is, of
course, orders of magnitude more complex than
the ones reported here, and would require exten-
sive studies of the effects caused by the itinerant
conduction electrons as well as the more localized
unfilled d shells.
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