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Acceptor resonances in zero-gap and small-gap semiconductors
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An extension of the Koster-Slater theory is performed to study the effect of a localized perturbing
potential in zero-gap and small-gap semiconductors. According to this two-band model, the existence of
resonant energies depends upon the ratio of the effective mass of the valence and conduction bands,
respectively. Owing to the large value of this ratio, it is shown that donors do not lead to any
quasidiscrete level. On the contrary, acceptors lead to resonances in the conduction band, provided that
the perturbing potential is strongly repulsive. %'e find that the interband coupling potential mainly
results in a dependence of the location of the resonance upon the density of conduction-band states.
Experiments performed on Hg, „Cd„Te alloys are shown to be in good agreement with these
theoretical results.

I. INTRODUCTION

The problem of impurity states in semiconduc-
tors has been studied by many authors. In partic-
ul.ar, Luttinger and Kohn" have developed an ef-
fective-mass formalism to write the Hamil. tonian
in the case of a strong spin-orbit coupling energy,
for materials having the diamond or, in first ap-
proximation, the zinc-blende symmetry. Lipari
and Baldereschi have neglected the small. terms
with no spherica1. symmetry, and having added to
the Hamiltonian a Coulomb potential. , they solved
the eigenvalue problem in small-gap semiconduc-
tors. ' Gel'mont and D'yakonov have solved the
same problem by different calcul. ation techniques,
not on1y in small. -gap, but also in zero-gap semi-
conductors. ' Nevertheless, the only attempt to
take into account a highly localized central-cell.
coupl. ing was performed by Liu and Brust. '

This paper deals with resonance conditions (io-
cation and width) of donors and acceptors in zero-
gap or small. -gap semiconductors, when the per-
turbing potential is entirely localized on the site
of the impurity or defect. This potential. is ex-
pected to be more appropriate than the Coulomb
potential to describe those of the a,cceptor states
evidenced in Hg Te and Hg, „Cd„re alloys' which
are essentia iiy induced by native defects (mercury
vacancies).

In Sec. II, the scattering problem is solved by
using the Green's-function formalism in the frame-
work of a two-band model. We also discuss the ex-
istence of resonant states, their location and width.
The outline of the theory is exact1y the same as in
Ref. 6. However, some of our results are quite
different, because we take into account a strong
interband coupling potential. underestimated by

Llu and Bru8t. Section III deals with a dlscusslon
of some recent experimental results showing a
typical i1.lustration of our calculations.

II. SCATTERING PROBLEM

This section is split up in four parts: In Sec.
IIA we recall the basic equations previously set
by Liu and Brust. ' The existence and location of
resonances are then investigated in Sec. IIB. The
main features of the resonance, such as the width
and the relaxation time of electrons in virtua1.
bound states, are determined in II C and IID,
respec tive1y.

A. Basic equations

We shall write the Hamiltonian II of the problem
in a tight-binding approximation, and we shall only
take into account the conduction band and the va-
lence band. We must thus define a set of doubly
degenerate Wannier function, i.e., two Wannier
functions i, and i„per site i associated with the
conduction- and valence-band states, respective-
ly. We sha1. l assume that these functions are lo-
calized on the site i. It mill. prove useful to define
the basic projectors I',- mhich select both states at
a given site i, and have then the property

where &;,. is the Kronecker symbol. For i=j,
Eq. (2.1) is nothing but the definition of P, a,s a
projector, and for i+j, this expression results
from the orthogonality of Wannier functions on

different sites. Since we shall only consider the

dilute limit in which the interactions between de-
fects are neglected, we may consider a single
scattering center, on site 0 for examp1e. The
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Hamiltonian then jakes the form G - Go= GOUG . (2 6)

H=H +U . (2.2)

V„V,„)
V=

v„, v„„j ' (2.3)

V„and V„„are the intraband coupling energies of
the conduction and valence bands, respectively;
V,„and V„, are the interband coupling energies.
Let G, and G be the unperturbed and perturbed
Qreen's functions of the problem:

(2.4)

Owing to the local. ized character of the perturbing
potential. U induced by the defect, we can write
U = P, VP, . V is a 2 &2 matrix which, in the Nan-
nier representation, is defined by

%e shall define the 2&&2 matrix I" by the formula
P,GOP, = P,I'P, or

(2.6)

with

P, =&o, l c„lo,&,

z„=&o„lG,„l o„& .
(2.7)

G«and Go„are the unperturbed Qreen's functions
associated with the conduction and the valence
bands, respectively. Taking Eq. (2.3) into ac-
count, the iterative solution of Eq. (2.5) is

G —GO=GOP, (1+ VE+ VFVti+ )VP,GO.

According to the Eq. (2.2), the variation of the
Green's function induced by the perturbing poten-
tial is given by the Dyson's equation

We notice that the sum in the brackets is a devel-
opment of the matrix (1- VF) ' which can be cal-
culated from Eqs. (2.3) and (2.6). The projection
of Eq. (2.8) on the subspace (I i,&, Ii„&I. is then

1 (&~.lc Io.& o l (1-P.v.. v..P, ) (v„&o.lc.,lf, &

P;(G-G )P, =—
0 &i, lc..lf.&j ( V,P. 1-P,v„j E,v„,&o.lc„lf.&

~ ls the fol. l.owing determinant:

(2.9)

(2.10)

&e can sum the diagonal elements of Eq. (2.9) to find the trace of 5G=G- G,:

T 6G= —g Gv..-(v..v..—v..v„.)P„]&o,lc I,&&,lc„lo,&

+ I V..—(v..v..—v..v..)P.l&o. l G,.I
'.

}& .I G,„I o„&f . (2.11)

ft should be noticed that, according to Eqs (2 4)
and (2.7),

(2.14)

(o„l G',„Io„&=—

Equation (2.11) thus takes the form

(2.12)

(2.13)

Im and Re meaning the imaginary and real parts,
respectively, Eqs. (2.13) and (2.14) imply

1 (s&/SE)(Red —i 1mb)
(Re~)'+ (1m~)'

5n(E) is quite small, except in the vicinity of the
enelgy Eg which provided lt exists ls defined by

The change of density of states 6n(E) induced by the
perturbing potential is determined by the usual. re-

Re~(E, ) =0. (2.16)

For energies E= E~, we can replace Re~ by 0 in
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the numerator of Eq. (2.15), and by (E —E~)S
xRen/sz in the denominator. We then obtain

(2.17)

(2.18)

r
m(E —Es)'+ I" '

I' is the resonance half-width determined by

Im4
d Red/dz ~@ s

The symbol P means that only the principal part
of the integrals is considered. This equation is
of fundamental interest, and F,', F,', and F'(E)
will be deduced from the knowledge of the density
of states according to this formula.

In all zero-gap semiconductors, the hole mass
rn~ is much larger than the electron mass m„at
the bottom of the conduction band:

m, /m„»1 . (2.25)
B. Resonance conditions

We must now solve Eq. (2.16). According to Eq.
(2.10)

Red. = 1 —V„F,' —V„„F'„+(V„V„„—V,„V„,) Re(F,F,) .

(2.19)

E', and I „' are defined by

E,' „=ReE,„. (2.20)

Otherwise, the unperturbed Hamil. tonian H, is
invariant under la.ttice transl. ation, so that I', and

E„do not depend on the choice of the site O.
Hence F, , =(1/Ã) TrG„„, %being the number
of atoms in the crystal. We can then write

ImF, „(E)= —wg„„(E); (2.21)

V„=V„„=V,„= V„, . (2.22)

Let V, be the value of these potentials. The reso-
nance position is defined, according to Eqs. (2.16)
and (2.19), by

VIF (E~) =1,

F'(z) =F'(z)+F'(z) . (2.23)

Owing to the form of the potential defined in Eq.
(2.22), we find that Eq. (2.23) is identical to the
equation we would have obtained in a one-ba. nd

model assuming that the conduction and valence
bands are two half parts of a single band. Since
the real and imaginary parts of the Green's func-
tions are correlated by the usual Kramers-Kronig
relations, we can write, according to Eq. (2.21),

g/)
F'(E)=P " ' dE'

C

z'(z) = z (f ~'" ~
'~ ss)' (2.24)

g~(E) and g,„(z) are the density of states per atom
of the conduction and valence bands, respectively.
We now make a fundamental assumption different
from that of Ref. 6, according to which the inter-
band coupling energy induced by the perturbing
potential is large, and has the same order of mag-
nitude as the intraband coupling energy. In other
words, we shall write

Besides, at the first order of the tight-binding ap-
proximation, when we truncate the Hilbert space
to take as a basis only the two Wannier functions
associated with the conduction and valence bands,
m~ is infinite. ' We implicitly take account of the
other bands by considering m~ finite and equal to
the experimental value in order to determine g „(E).
In zero-gap semiconductors which crystallize in

the zinc-blende structure, the conduction and va-
lence bands are degenerate at the I', point. The
main features of the curve F'(E) deduced from Eq.
(2.24) are then reported in Fig. 1. All the curves
F'(E), F„'(E), and F,'(E) exhibit a Van Hove anom-
aly at I', . It follows that F,'(E) is minimum and

F„'(E) is maximum at E(I',), with

F'„[z(r,) J& o,

F',[z(r )J& o . (2.26)

E(I', ) is the energy of the I", level. Because of

Eq. (2.25), the Van Hove anomaly is much more
important for F '„(E) than for F',(E):

F.'[E(r,)]» I F.'[E(r.) JI

The Eqs. (2.26) and (2.2'7) lead to

(2.27)

F '(z) & 0 . (2.28)

This last inequality is fulfilled over a range of
energies equal. to around one half-width of the

peak of the curve F„'(E), i.e. , one half-width of

the valence band. F'(E) is thus positive at ener-
gies extending above I", up to a, few electronvolts
and, in particular, in the whole range of energies
of interest, i.e., in the vicinity of the I', point.

According to Eq. (2.23), the energy of the reso-
nance is the abscissa of the intersection point of

the curve F '(E) with a straight line parallel to the

axis of energies, having an intercept y = 1/V, . It
follows from Eq. (2.28) that the problems of donor

and acceptor states are quite different.
(i) For donors, V, & 0, the straight line y = 1/V,

and the curve F'(E) do not intersect a, t any point.
The variation of the density of states due to the

existence of donors is very small. , and is a smooth
function of energy. Since we do not have any reso-
nance, the additional electrons provided by the

donors are not in virtual bound states localized
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pIG. 1. Hesonance con-
ditions for impurity states
in zero-gap semiconductors,
illustrated by a virtual ac-
ceptor level E~.

in the vicinity of the impurity sites, but in. the
extended states of the conduction band. All the
donor states are thus ionized in such materials.
These results agree with those deduced from the
theory of Gel'mont and D'yakonov, who assumed
that the perturbing potential was of the Coulomb
form. ' Note that our calculations imply that reso-
nant donor states do not exist even in the case of
a strong loca1.ized potential on the site of the de-
fect. This situation would apparently correspond
to HgSe, where extrinsic electrons usually attri-
buted to Se vacancies are systematically observed.

(ii) For acceptor states, on the contrary, Vz& 0.
We can then see in Fig. 1 that there exists a criti-
cal potential Vo defined by V,F'[E(I',)]= l.

For strong potentials (Vz & Vo), the straight line

y = I/Vz intersects the curve F'(E) at an energy
8„=E„inside the conduction band. A resonant,
quasidiscrete level thus appears at this energy,

The weaker the potential V„ the smaller the ac-
tivation energy E» with E„vanishing when V~ = V,.
If V& V, the acceptor states are inside the continu-
um of the valence-band states, and are not local-
ized, since the straight line y =1/Vz does not inter-
sect the curve F'(E). For such weak potentials,
not repulsive enough to generate acceptor states
away from the valence band, the acceptors like
donors exhibit R total. lonlzatlon~ Rt Rll tempera-
tures.

In Sec. II C, we shall consider the case when the
perturbing potential is strong enough to induce a
resonant level.

C. Resonance width, virtual bound states

The resonance width is determined by Eq. (2.18).
Since this resonance lies in the conduction band,
go„(E)= 0 for energies close to E„. Equations
(2.10) and (2.21) then lead to

(Imb, )s s = mgo, (E)V„[l—V„„F'„(E)]

"g..(E)I V..I'F'.(E) (2.29)

Equations (2.23) and (2.27) imply that, in first ap-
proximation,

1 —V„„F„'(E„)= 0 . (2.30)

This approximation may be used to obtain the or-
der of magnitude of I'. According to Eqs. (2.29)
and (2.30), Eq. (2.18) takes the form

I =~g (E„)l V,„I'F'„(E„) —Re — . (2.31)

G(E) ~ IP&&all „,~, l4&&41.
E —E„(k) E —E„ (2.33)

n indexes the conduction and valence bands, k is
the wave vector, I g",& are the Bloch states, and

I g~& is the localized acceptor state on site O.
Equation (2.33) shows that

I«. I I.&
I'= Res(&O. I

G —O. I O.)). .„; (2.34)

Res means the residue. Equation (2.9) with i =0
implies that

«. I
G -G. I O.&

= (I/&) [V..—(V„V.„-V..V.,)F.]IF!I'

(2.35)

According to Eq. (2.22), (V„V,„-V,„V„,)F, =0.

To determine the wave functions of electrons and
holes in resonant states to the first order of per-
turbation, we shall notice that, to the order 0,

(2.32)

In other words, the acceptor states are bound.
The spectral decomposition of the Qreen's opera-
tor can thus be written
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Moreover, Eqs. (2.18) and (2.32) imply that Ima
=0, and as a first approximation

respectively, with a wave vectox' k. In the repre-
sentation f lk, ), l&„)j, the propagator G(E) is a
2X2 matrix which may be written

&0„!G-o, l
o Res (2.36)

I"= ~g (E,) I 1",.I'I
I &O. I (,) I'. (2.3V)

Taking Eqs. (2.30), (2.31), (2.34), and (2.36} into
account) we can write

E -E.(~) -Z. (E) &~. Io.)I'..&O. I~.)&

&~. 10.)y..«. I~.) E-E.(l ) -Z.(E) ~

(2.38)

It should be noticed that this is the same expres-
sion as the one obtained by Liu and Brust. '

D. Relaxation time of electrons located in the vicinity
Of a resonance

We shall call lk, ) and lk, ) the Bloch states of
an electron in the conduction and valence bands,

Z„(E) and Z„(E) are the self-energies of the scat-
tering problem for the conduction- and valence-
band states. E,(k) and E„(k) are the dispersion re-
lations of the two unperturbed bands. The nor-
malization of Ik, ) and I&„) implies that

&f}. I ~.&
= &fl. I ~.&

= I/v&. (2.39)

We can then deduce from the Eq. (2.38)

[E —E,(k} -Z, (E)] '

(I y,„I'/u')[E —E,(k) -Z, (E)][E E„(+)-—Z„(E)] (2.40)

Inthe dilute limit (N- ), Z. , ~& 'and w«an
neglect the terms of higher orders, 0(N '). Equa-
tion (2.40) may then be written

, Z E 1 vg (E)~'
N (Reh)'+ &'g' (E)'u' (2.4V)

Z, is not Hermitian, and we can define the relaxa-
tion time of the electrons 7(E) by the usual formu-
lay

i 1'I" )=E-E,(~) -Z, (E) E-E.P)
'

(2.41)

Otherwise, replacing Ii) by Ik) in Eq. (2.9), we
obtain

(2.42)

(2.43)

Owing to the translational invariance of the un-
perturbed Hamiltonian, G~ is diagonal in 0 space.
It then follows that

(2 44)

Equations (2.39) and (2.42} thus lead to

&a, IG -G, la, &=

The expx'ession of Z, can be deduced from the
identification of Eqs. (2.41) and (2.45), to the first
order inN '.

(2.46)

g is real in the range of energies of interest (E
=E„), and ImF„=O according to Eq. (2.21), since
the resonance is located in the conduction band.
Equation (2.29) then implies

1 ImZ, (E)
7(E) 8' (2.48}

1 2&X g ~ (E)~'
~(E) @ (He&)'+&'1}'g' (E) ' (2.49}

where X is the concentration of scattering centers.
This expression for 7(E) is the same as the one
deduced from the theory of correlations using dou-
ble-time Green's functions. ' The influence of the
hole band on 7'(E) leRds 'to R renolmallzation of the
defect potential V„similar to the one defined by
Biedinger and Gautier, "'"which may be related to
virtual transitions between the conduction and va-
lence bands. In oux particular case, when the con-
dition (2.22) 1s fulfilled~ 'U —Vg. In Rny CRse, Re-
cording to Eq. (2.16), the electrons undergo a res-
onant scattering at E=E„, and

1 2X
'N g w(E~)

(2.50)

Until now we have assumed only one scattering
centex', localized on the site 0. Since the inter-
ferences between the different scattered waves are
negligible in the dilute limit, the value of 1/v(E}
determined above must be multiplied by the number
of such scattering centers:
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III. APPLICATION TO HgTe AND Hg, Cd, Te MATERIALS A. Mercury vacancy

In this section, we confront the model with ex-
perimental results obtained on HgTe and on

Hg, „Cd„Te alloys. Mercury telluride is a semi-
metallic II-VI compound which crystallizes in the
zinc-blende structure. Its band scheme, similar
to the one proposed for a-Sn, " is depicted in Fig.
2. The lack of inversion symmetry makes possi-
ble the existence of an overlap AE of the conduc-
tion and valence bands, which we shall neglect
since it is quite small": hE~ 1 meV. Within
this approximation, HgTe is a zero-gap semi-
conductor. A continuous range of Hg, „Cd„Te
alloys can be obtained by substitution of Cd atoms
in place of Hg atoms, between the semimetal HgTe
and the semiconductor CdTe. We shall neglect
disorder effects like band tailing, for example,
and we shall thus assign to these alloys the band
structure reported in Fig. 2 and detailed in Ref. 13,
deduced from those of HgTe and CdTe by a linear
interpolation of band parameters between these two
materials. We shall consider the compound HgTe
and the alloy Hg, „Cd„Te as simple crystals in
which all the sites are equivalent, and we shall
thus apply the model developed in Sec. II to in-
vestigate the acceptor states in these materials.
Let the energy gap E, be defined by E =E(1;)
—E(I', ). The case E~ &0 corresponds to the semi-
metallic (SM) configuration, while the case E, & 0
corresponds to the semiconductor (SC) configura-
tion.

Three acceptor resonances have been exhibited
in HgTe: The first has an activation energy' "
E»-—0.7 meV, and is assigned to Cu acceptor im-
purities. ' The other two, denoted by Ai and A. 2
in Ref. 7, are due to stoichiometry defects. Their
activation energies E» =2.25 meV and E„,=9.5
meV in Hg Te increase with composition x, ' or
when a hydrostatic pressure I' is applied. " The
effects of an increase of x or P are the same,
namely, an increase of E~, leading to a deforma-
tion of the conduction band, the dispersion rela-
tion of which is given by'

where E~ is the Fermi energy. Owing to the high
degeneracy of the electron gas, the concentration
of electrons in the conduction band, n, , is deduced
from Eq. (3.1) and is related to Ez by the relation

0, is the Boltzmann constant, and m„ is the effec-
tive mass of the electrons at the bottom of the con-
duction band. The density of states at the Fermi

(a) SM (b) SM -SC (c) S C

Eg &0

As a first approximation, we shall assume that
the mercury vacancy is described by a potential
localized on the site of the defect, although it is
rather localized on the broken bonds, i.e., on the
neighbor sites. In this paragraph, we thus mean
to determine the width and the position of the reso-
nance and the strength of the potential VI for the
mercury vacancy, in the framework of the model
developed in Sec. II. We also mean to compare
our theoretical results with the experimental re-
sults described in a previous paper, "which have
been deduced from measurements of transport
properties of a Hgp 86Cdp yyTe alloy at 4.2'K for
various pressures. At this low temperature, we
have found that dE, /dP 8meV—/kbar. This alloy
was in the SM configuration at low pressures and
underwent an SM-SC transition at I'= 5.3 kbars.
At E~ = 0, it has been shown that, for this sample,

E„,= E~ = 15 meV, I = 0.15 meV, (3.2)

(3.1)

where PE is the Kane matrix element.
The two succeeding parts of this section are con-

cerned with different aspects of the acceptor prob-
lem in these materials. In Sec IIIA, we analyze
the main features of the resonance A1 which is
assigned to mercury vacancies. Section III B deals
with the mobility of electrons in virtual bound
states due to Cu impurities.

Pc

Qymposition . w
I

Pre ssL r~ . P

FIG. 2. Simplified band structure of Hg& „Cd„Te alloys
at the zero center versus composition x or pressure P,
(a) in the semimetallic configuration, (b) at the semi-
metal-semiconductor transition, and (c) in the semi-
conductor configuration.
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energy g„(E~) is

g (E„)dE,=(I/3I)dn, (E„). (3.4)

X is the concentration of atoms in the crystal:
X= 10" cm '. At E, =0, Eq. (3.3) shows that

n, (Ez) ~E~ so that Eqs. (2.37), (3.2), and (3.4)
lead to

r = (3mn. /E„, )V', . (3.5)

Here, we have assumed that the probability that
an electron in the state

I $1.) is located on the im-
purity site 0, is I(O„ I/i, ) I'= 1, which means that
the resonance is quasidiscrete. Taking Eq. (3.2)
into account, Eq. (3.5), in which n, =5x 10" cm '
according to the results reported in Ref. 13, allows
us to determine VI.

The expression of g,„(E)in Eq. (3.7), chosen for
mathematical convenience, accounts for the ex-
perimental density of valence-band states in the
vicinity of the l, point, i.e. , in the range of en-
ergies from which the acceptor states are ex-
tracted. The Hubbard model is thus expected to
determine F„[E(r,)] with a good a.ccuracy. On

the contrary, it is not possible to calculate
F, [E(I",)] owing to the nonpa, rabolicity and the
large width of the conduction band. Nevertheless,
an order of magnitude of this parameter may be
obtained in HgTe. In effect, for this material,
the resonanceA1 is located at E» —-2.25 meV
above the r, point. As a first approximation, we

may thus write E» —-0, and taking Eq. (3.11) into
account, Eq. (2.23) leads us to assume

V, = 2.3 eV. (3.6) F,'[E(r,)] v, = -0.1. (3.12)

The determination of the resonance position
yet requires the knowledge of the density of states.
We shall take for g,„(E)the form suggested by
Hubbard":

g~ (E) =(2/vw')(w' —E')'",
I E I

~w

=0, IEIow (3.7)

where u is the half-width of the valence band. In
this equation, the origin of energies for the va-
lence-band states is the middle of the band. The
shape of g,„(E)thus defined is semielliptie. It
is then possible to find the analytic expression of
the Hilbert transform of g,„(E):

F„(E)= (2/w' )[E —(E'-w')'"] . (3.8)

If e is the energy of valence states with respect to
E(l,), we can write E =w —e. The development of
Eq. (3.8) to the first order in e shows that, in the
framework of this model, g,„(E)has a, parabolic
shape in the vicinity of the valenence-band edge
r„ the heavy hole mass m, being related to ~ by
the relation

I =[8'(2s)"'/m ]5I"' (3.9)

xv= 4 eV. (3.10)

At the band edge, E=w, and Eq. (3.9) then be-
comes F„[E(I",)]=2/w. According to Eqs. (3.6)
and (3.10), we can conclude

F„[E(r,)] v, = 1.1. (3.11)

In Hg, „Cd„Te materials, a value of the reduced
mass m~ /m, = 0.5 accounts quite well for the trans-
port properties, "while magneto-optical measure-
ments performed on HgTe lead to" m~/m, = 0.3,
m, being the free-electron mass. We shall then
assume m~/m, =0.4. Replacing the different quan-
tities by their numerical value, we thus find

This formula is only valid for HgTe, which has an

energy gap": E~= -303 meV at 4.2 K. We now

study the variations of E» induced by variations
of E~.

In the semimetallic configurations, the density
of conduction-band states decreases, in the vicin-
ity of the I, point, when E, increases from -303
meV to 0, according to Eq. (3.1). It follows that
F,' increases (i.e. , I F,'(E)

I
decreases) without,

however, becoming positive in the range of en-
ergies which we consider (see Fig. 1). On the
contrary, the shape of the heavy-hole valence
band does not vary significantly with E~ since it
is determined by interactions with the far-lying
bands which do not stem from the r, or r, points, '
and F„' (E) does not depend upon E~.We canthus con-
clude that, according to Eq. (2.23), E„, increases
with E». This allows us to understand firstly the
increase of E» with'x (because dE,/d x = 18 me V//0
at low temperatures"), and secondly the increase
of E„, with" I' (because dE;, /dI'= 8 meV/kbar at
4.2'K). From this, we deduce the plot of E» vs

E, shown in Fig. 3.
In both cases, the variations of Egg in the

framework of our model, are the consequence of
variations of E~. In effect the value of E~ deter-
mines the density of states g~ (E), its Hilbert
transform F, (E), and lastly E„,. The curve E»
vs E~ in Fig. 4 thus comprises the complete in-
formation about the location of this resonance in

the SM configuration. The values of E» in the
range -40 &E, &+8 meV are the values also re-
ported in Fig. 3. The intermediate point at E~
= -92 meV is deduced from the analysi's of trans-
port properties performed on a Hgo»Cdo»Te
sample. " The other points are deduced from the
data given in Ref. 7. The two parts of this curve,
E» vs E, , deduced from measurements of E»
vs x on one hand and E» vs P on the other hand,
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fit into each other, and the curve is continuous.
This result agrees with the theoretical one, ac-
cording to which E~ is the fundamental parameter.

In the semiconductor configuration, the increase
of the energy gap leads to a dramatic decrease of
the density of conduction-band states in the range
of energies E(F,) &E &E(I',)+E, . The activation
energy E» is thus expected to increase, even
more rapidly than in the SM configuration
(dE„,/dE~&0). This result is corroborated by ex-
periments (see Fig. 3). If F„'(E) did not depend on

E, and if the increase of the energy gap only re-
sulted in a shift of the conduction band with re-
spect to the valence band, without any deformation,
we should have dE»/dE, ,=1. Nevertheless, on
one hand, according to Eq. (3.1), the density of
states at the bottom of the conduction band F, in-
creases with Ep. On the other hand, E„(E)de-
creases with E for E&E(F,). These two effects
add together to slacken the increase of E» so
that 0&dE„,/dE, &1. In other words, the acceptor
level moves up with respect to the valence-band
edge F„but moves down in the conduction band,
with respect to the I', level. This result is cor-
roborated by experiments, as can be seen in Fig.
5, illustrating the plot of Egl GEE as a function
of E in the range -40 & E, & 10 meV. The pa-
rameter e is defined by e = 0 if E~ & 0 and e =1 if
Eg 0 so that E&I 6Eg is the energy of the ac-
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ceptor level with respect to the bottom of the con-
duction band. Such a decrease of this energy in
the SC configuration implies that there exists a
well-defined value of E~, beyond which the reso-
nance falls into the gap, and then becomes the
usual localized level. We now determine an order
of magnitude of this energy gap by noticing that,
in the limit of high values of E„E,'(E») vanishes.
In other words, the conduction band is shifted too
far from the valence band to have any significant
effect on the acceptor states, which are then
bound to the valence band. Thus, E» does not
increase further with E, and remains equal to its
extreme value E~, determined by the use of Eq.

FIG. 4. Experimental variations of the activation ener-
gy E~ of the resonance A1 as a function of the energy
gap Ep in the semimetallic configuration for Hgi „Cd„Te
alloys. The crosses are the data points reported in Fig.
3. The full circles are the data points given in Refs. 7
and 19.
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FIG. 3. Experimental variations of the activation ener-
gy E~ of the resonance A1 as a function of the energy gap
E~. This curve has been deduced from the plot of the
pressure-induced shift of this acceptor resonance in a
Hgp ppCdp tpTe alloy, reported in Ref. 13, using dEp/dP
=8 mev/Kbar at 4.2 K.

FIG. 5. Energy difference between the acceptor level
A1 and the bottom of the conduction band as a function
of the energy gap E~ for Hg~ „Cd,Te alloys according
to the results reported in Fig. 3.
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(2.23), in which F,' =0:

V,Z„'(E'„,) =1. (3.13)

times smaller than in the HgTe sample, i.e.,
=500 cm'V 'sec ', which accounts for the small
value expected.

The identification of Eqs. (3.13) and (3.8), in which
E =F»+K according to the choice of the origin of
energies, leads to

(3.14)

Assuming that V~ =2.35 eV and se =4 eV, aeeording
to Eqs. (3.6) and (3.10), we thus find

E~ = 50 meV. (3.15)

B. Mobility of electrons in Cu resonant states

According to Eq. (2.50), the relaxation time of
electrons in virtual bound states is finite. Such
electrons then have a finite mobility p, „, which has
been found equal to" p. ~=9000 em'V 'sec ' in

HgTe when the resonant states were induced by Cu

impurities. However, measurements of galvano-
magnetie properties performed on Hg, „Cd, „Te
showed that the mobility of the same electrons
was much smaller in this material": p.~«2000
cm V sec . All these results were obtained at
zero pressure and T ~4.2'K.

We intend in this paragraph to explain this large
decrease of p, „with x (or E, }. Since Cu is an ac-
ceptor impurity in substitution of Hg atoms, it is
expected that the perturbing potential is mainly
of the Coulomb fox'm. We may thus use the theory
of Gel'mont and D'yakonov according to which F„o
does not significantly depend upon E, (or the
density of conduction states) in the range of ener-
gy-gap values considered. We can thus assume
that E„,has almost the same value in HgTe and in

Hg, „Cd, «Te. Equation (3.1) then shows that
at zero pressure and very low temperature,
g„(E„,) is 18 times smaller in the x=0.14 sample
than in HgTe. According to Eq. (2.50) the relaxa-
tion time, and consequently the mobility p, „of
electrons in resonant states, is proportional to the
density of conduction-band states g„(E„) Al-.
though established in the case of a localized po-
tential in Sec. II, this result is still valid for a
Coulomb perturbing potential. ' The mobility p.

in the x=0.14 sample is thus expected to be 18

This value is in fair agreement with the activa-
tion energy of an acceptox level determined by
optical measurements in Hg, Cd„Te alloys having
a large energy gap." Moreover this high value
allows us to understand that the resonance A1 still
remains in the conduction band for an energy gap"
E~= +40 meV. The acceptor level is thus ex-
pected to move down into the energy gap only when

E~» 50 meV.

IV. DISCUSSION

In this section, we intend giving physical inter-
pretations of the results obtained in this paper.

Firstly, we have shown that donor levels do not
exist in small-gap semiconductors, and we have
emphasized that this is closely related to the rela-
tion m~/m„» I. in all small-gap semiconductors.
To illustrate this feature, let us consider for a
moment an imaginary material for which m~/m„«l. Equation (2.28} must then be replaced by
E'(Z) & 0 in the vicinity of the band edges, Eq.
(2.23) being unchanged. The discussion reported
in Sec. IIB then shows that resonant donor levels
may exist, while acceptors nevex lead to quasi-
discrete levels. This is just the opposite result to
the one found for realistic small-gap materials
with m ~/m „»1.

The nonexistence of donor levels is thus due not
only to the narrowness of the energy gap, but also
to the general features of the band parameters met
in such materials. In particular, the first reason
for the dissymmetry between the behaviors of
3ceeptor and donor states is the dissymmetry
between the conduction and valence bands ex-
pressed by the inequality m~/m„» 1 between the
band parameters sl& and M„.

Such a behavior may be predicted without any
calculation. In effect, the interference of a quasi-
discrete level with the states of a band having the
same symmetry leads to a strong mixing between
the localized and extended states. The xesult is
that the bound states become unlocalized. So, a
perturbation can only produce a virtual bound

state of a given symmetry near a band edge, if
the wave functions of the band states at the same
energy do not contain atomic orbitals of the same
sym m et x'y.

Now in small-gap semiconductors, the strong
interband coupling potential V, „ implies that the
wave function of the localized states gz, is a mix-
ing of orbitals with the symmetry of the conduc-
tion and valence bands. Nevertheless, in a range
of energies around the band edge I'„ the number
of valence states is much larger than the number
of conduction states simply because m~/m„»1.
It follows that the component of $L, having the
valence symmetry is predominant. So, the quasi-
discrete levels are acceptor levels and may only

exist at energies where the density of valence
states vanishes, i.e., in the conduction band.

It should be noticed that this argument has been
advanced without considering the shape of the po-
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V, =(h' /2m~)'(2v)'I'X"'. (4.1)

Let a be the lattice parameter. In the zinc-
blende structure, the unit cell contains eight
atoms, and X = 8a '. Equation (4.1) then becomes

8'v' 2 W2 (2m)"'
Vo= 2' pQ W

(4.2)

The term in the brackets is equal to 1.7. Con-
sidering only the order of magnitude of V» we
shall replace a/1. 7 by the distance 5 between
nearest neighbors, so that

h'm'

8m'(b/2)'
' (4.3)

Let us now consider the energy levels for the
motion of a hole (i.e. , a free particle with the
mass m~ ) with angular momentum I =0 in a cen-
trally symmetric potential well: V(r) = -Vz for
r&&/2, V(w) =0 for r&b/2 The firs.t of these
levels with 3 =0, -E„, is at the same time the
lowest of all energy levels, and corresponds to

tential. This explains why this result is true not
only for the localized potential considered in this
paper, but also for a Coulomb potential. ' Other-
wise, not only the condition m~/m„» 1, but also
the existence of the potential V, „, has been re-
quired in the course of this argument.

In order to show in more details the fundamental
importance of the potential V, „, let us consider
the results which we would have obtained in the
framework of an unrealistic model with V„=V„,
= V, and V, „=V„,= 0 instead of the potential de-
fined ln Eq. (2.22). Equations (2.18) and (2.37)
show that, in such a case, discrete donor levels
lying in the valence band may exist. The problems
of acceptor and donor levels then become quite
similar and are reduced to the usual Koster-Slater
problem in which one band is considered, i.e. ,
the- valence band for acceptor states and the con-
duction band for donor states. Such results are
due to the oversimplified form of the unperturbed
Harniltonian chosen above, according to which the
conduction and valence bands are orthogonal.

Comparing these results with those obtained in
Secs. II and III, we can conclude that the second
reason for the dissymmetry between the behaviors
of donor and acceptor states is the existence of a
strong potential V, „which was underestimated by
Liu and Brust. '

We have also found that even quasidiscrete ac-
ceptor levels could not exist if the perturbing po-
tential is weaker than a critical value V, . Some
elaboration is needed regarding this critical po-
tential strength. According to Eq. (3.8), V,
=1/E„(e) =2/m. Taking Eq. (3.9) into account,
we can write

the normal state of the hole. It is easily shown
in quantum mechanics 'that the minimum well
depth to give the single negative level -E~ is
exactly V, defined by Eq. (4.3). If VI & V„E&&0,
the normal state of the hole is a bound state, and
E„ is a discrete acceptor level. If VI = V„ the
hole in the well has a wave vector equal to m/5

because of the boundary conditions at the edge of
the mell. The kinetic energy of the hole, E„ is
thus equal to V, so that E„=O. If V, & V» we find
E„&VI so that the energy of the hole is E„—V~
&0: The hole cannot stay inside the well and is not
localized.

We can thus conclude that the critical potential
strength for the resonant acceptor states defined
in Sec. II is none other than the critical strength for
the existence of a bound state inside the localized
potential well of width b equal to the intra-atomic
length (when the interaction with the band states
is switched off).

Let us now analyze our results concerning the
location of the resonance A1. It should be noticed
that, according to Eqs. (3.11) and (3.13), 1

&Ev'(E„,)Vz &1.1 or -0.1 &E,'(E„,)Vz &0. We have
shown that the small variation of Il„'(E„,) equal to
10% is large enough to make E„, range from 2.25
to 50 meV. The reason is that E„'(E) is a smooth
function of the energy (except for energies in the
true vicinity of the I", level). The resonance posi-
tion must then be determined by Eq. (2.23) and not
by Eq. (2.30), which is too crude an approximation
to calculate E„,. In other words, E» must be
calculated in the framework of a model in which
the conduction and valence bands are considered
as two parts of a single band. This result shows
that the concept of an acceptor resonance clamped
to the valence band is deficient. In particular,
even in the SC configuration for small energy gaps
0& E~& 50 meV, E» increases with E~ when the
conduction band moves off the valence one. This
resonance is thus also partly attached to the con-
dition band (not entirely, since dE~~/dE~& 1). Ac-
cording to the model described in Sec. II, such a
behavior of the resonance is assigned to a small-
gap effect, since in such materials, virtual transi-
tions between valence- and conduction-band states
become important and widely affect the position of
the resonance. According to Eq. (3.15), we can
consider that the acceptor level is essentially
attached to the valence band only for an energy
gap E~ ~ 60 meV. In effect, E» is then deter-
mined by the Eq. (3.13). This is the usual equa-
tion which determines the location of an acceptor
level in the single-band model of Koster and
Slater, the single band being the valence band.

In the unrealistic model characterized by V, „
=0, the activation energy of the acceptor level is
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determined by V, E„'(E„)=1 and is thus independent
of both E~ and the density of states of the conduc-
tion band. This also illustrates that the large
variations of the resonance energy E'» vs E, are
mainly due to the virtual interband transitions
induced by the potential V, „which couples the two
bands. On the other hand, such transitions do not
significantly affect the width of the resonance
since the approximation which consists in replac-
ing Eq. (2.23) by Eq. (2.30) does not lead to an
error larger than 10%. This only means that the
broadening of the acceptor level is mainly due to
virtual transitions between the acceptor states
and the extended states of the conduction band,
which are also allowed by the potential V, „and
are responsible for the finite mobility p.„of the
electrons in the virtual bound states.

Finally, we are now able to give a more quanti-
tative definition of the concept of "small gap" for
the impurity problem. When E,+&50 meV, Egg
is in the energy gap, and F'(E) goes through zero
at an energy E, which also moves down into the
gap. This is induced by the increase of ~E,' ~

and
the decrease of F„ in the vicinity of the I", point
when E~ increases. But as soon as E& E(I',), the
discussion in Sec. II shows that discrete donor
levels lying in the band gap may also exist. Thus,
the semiconductors with E~» 50 meV cannot be
considered as small-gap semiconductors when
dealing with localized states.

V. CONCLUSION

An over-all agreement has been obtained be-
tween the theoretical model developed in this
paper and the experimental results otherwise ob-
tained on HgTe and Hg, „Cd,Te materials. We
have shown that localized potentials VI strongly
repulsive produce acceptor resonances in the
conduction band. In particular, we have been led
to take V, =2.3 eV for the resonance namedA1,
and we have accounted for the shift of the reso-
nance position when the energy gap E, is in-

creased. In the semimetallic configuration, the
activation energy E» depends upon E, , owing to
the dependence of the density of conduction-band
states upon E, . This effect is the consequence of
our assumption according to which the interband
coupling energy was strong (and of the same order
as the intraband one). This assumption also im-
plies that the acceptor level is not clamped to the
valence band, but is also partly clamped to the
conduction band, for an energy gap up to about
50 meV in the semiconductor configuration. This
may explain why the resonance remains in the
conduction band when 0&E~ &40 meV. All these
features could not be understood in the framework
of the model of Gel'mont and D'yakonov dealing
with the scattering by a potential of a Coulomb
form. This corroborates the assumption accord-
ing to which this resonance is induced by a neutral
native defect, namely, the mercury vacancy, as
was suggested previously in our laboratory. '

Otherwise, taking into account the existence of
an interband potential, the large ratio of the heavy-
hole and electron effective masses results in a
large dissymmetry between the acceptor and donor
problems. It has been shown that any donor state
does not lead to the existence of a quasidiscrete
level. This result is the same as the one given
by the theory of Gel'mont and D'yakonov, and thus
does not depend upon the detailed shape of the
perturbing potential. In particular, donor states
are not virtual bound states, so that electrons in
donor states are unlocalized. In other words,
these electrons are always in conduction-band
states, leading to a total ionization of the donors
at zero temperature.

Dealing with localized states, we were led to
restrict the attribute small gap to semiconductors
like those of Hg, , Cd, Te alloys which have an

energy gap E~ & 50 meV.
On the contrary, when E, ~&50 meV, the semi-

conductor is expected to have a classical be-
havior with both acceptor and donor levels lying
in the band gap. In particular, the existence of
donor levels in InSb is not surprising.
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