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Parametric interaction processes in acoustical noise
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The amplification of acoustical noise in a piezosemiconductor is considered. A system of nonlinear
equations for amplitudes of many interacting sound waves is derived, and a physical interpretation to
the various terms is given. On the basis of this, the equation describing the evolution of the spectral
composition of the amphfied noise is derived. An analytical solution (which is valid for the early
nonlinear stage of the amplification) of this equation is obtained and a comparison with the available
experimental results is made.

INTRODUCTION

In recent years a considerable number of works
have appeared which discuss parametric interaction
of sound waves in piezoelectric semiconductors. A

detailed investigation of parametric effects for three
interacting waves was presented by Conwell and
Ganguly' (there is also an extensive bibliography
there). This paper contains the derivation of a
system of equations governing the spatial variation
of the amplitudes of three monochromatic interact-
ing sound waves. Qn the basis of these equations
various parametric effects have been investigated
(up and down conversion, second-harmonic genera-
tion) .

The problem as formulated in Ref. 1 corresponds,
strictly speaking„ to an experimental situation in
which the sound waves are introduced into the crys-
tal from outside (through the boundary). However,
in many experiments (for example Refs. 2-8) it is
not monochromatic sound waves that are amplified,
but acoustical noise. In this case the amplified
waves have a wide range of frequencies and propa-
gate in. directions within a cone around the direc-
tion of the drift of the electrons (the "amplification
cone"). This means that the interaction of what
is essentially a continuous spectrum of noncoherent
waves (modes) must be considered.

A detailed description. of energetic characteris-
tics of the acoustical noise may be given in terms
of the quantity U;(r, t) which is defined in such a
way that U;d'q is the density of acoustical energy
(at a given place and time) in the interval d'q of
the wave vectors. Such quantities as the density
of the energy in a given range of frequencies, or
the total density of energy, or the energy flux in
R given direction can be easily expressed in terms
of Uq. Because of the 1nteractlon between

differe-

ntt modes the energy may be transferred from one
part of the spectrum to another. The task of a
theory is to derive a nonlinear equation for U~ gov-
erning the variation of Ug 1Q spRce Rnd time.

The theoretical works devoted to amplification
of acoustical noise differ from one another both in

their approach to the problem and in their results.
Yamada and Gurevich et al. ,

"using a method
developed in works"' on turbulent plasma, gave
a rather formal derivation of an equation for a
quantity connected to U». The equation derived in
Ref. 9 contains a nonlinear term, which has the
same structure as the collision term in the well-
known Peierls equation for phonons. " In contrast
to Ref. 9, the equation derived in Ref. 10 contains,
in addition to the "Peierls" term, another nonlin-
ear term, which is called in Ref. 10 the non-
Peierls" term. This term contains the small
electromechanical coupling constant X raised to a
lower power than in the Peierls term, and there-
fore it has been suggested that the Peierls term
may usually be neglected.

On the other hand, in the recent work of Ridley'
the problem was formulated in the simple language
of parametric interaction of many waves. How-

ever, an equation describing the evolution of acous-
tical noise in space and time was not obtained in
this work. Furthermore, in the equations of Ref.
14 for the amplitudes of interacting waves only
nonlinear terms containing products of two ampli-
tudes were taken into account; however (as will be
seen below), in the case of many incoherent waves
also nonlinear terms containing products of three
amplitudes must be taken into account.

In the present work we derive an equation for
U;, using the cleRr RQd trRQspR1 GIlt p1eture Rc-
cepted in Refs. 1 and 14. First, we derive a sys-
tem of equations for amplitudes of many inter-
acting sound waves and give a physical interpreta-
tion to the various terms. Then on the basis of this
we derive the final equation for U~. This equation
is similar to that of Ref. 10, and using the narrow-
ness of the "amplification cone" one ean bring both
equations to the same form. Our analysis of this
equation shows that at the early stage of the non-
linear regime the Peierls term is always impor-
tant. It is this term which gives rise to the up and
down conversion at this early stage. For this case
we obtain an analytical expression for U; and com-
pare it with experimental results. At the later
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stage of amplification the non-Peierls term be-
comes important. In particular, it provides the
stabilization of the sound amplification in the low-
frequency region.

B p B uk+ 4gpik~ + 4+en = 0
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(Ib)

Bn Bn B cp B n B Bc/+'0 ~ —p:np -I) —p. n = 0.
BXi BXiBXi BXiBX BX BX

(lc)
Latin indices denote components of vectors and
tensors and the summation from 1 to 3 over each
repeated index is implied. The drift velocity is
ni = pE;, where E, is the field, averaged in the
above sense; np is the equilibrium concentration
of electrons, p is density, E, p, , X) are the dielec-
tric constant, carrier mobility, and diffusion co-
efficient, respectively; they are all assumed to be
scalars. e,„,P,», and q, » are elastic, piezo-
electric, and viscous tensors, respectively; e is
the electron charge. The condition. q/, «1 is sup-
posed to hold (q —the acoustic wave number, I,—the
electron mean free path).

To become observable the acoustical noise has
to be amplified several orders of magnitude from
the thermal level. Usually only sound waves of
one branch are amplified, so that u can be repre-
sented as a sum of the modes connected only to
this branch:

EQUATION FOR THE AMPLITUDES

There are two characteristic time-scales in our
problem: a short scale associated with the period
of sound waves T, and a big scale associated with
a characteristic time tp, during which the ampli-
tudes of the sound waves (and U;) change essential-
ly. To these times two lengths correspond —the
wavelength Tv, (v, —velocity of sound) and the char-
acteristic "amplification length" tp&, . The strong
inequality 7 « tp allows averaging of the quantities
(such as the electric field, concentration of elec-
trons, the lattice displacement) over the time in-
terval t, where T« t«t, (or over a length I, where
Tv, « l « toe, ). Quantities averaged in such a man-
ner ma, y still vary on the long-time (space) scale.
The instantaneous local values of any quantity can
be represented as a sum of its average value and
a rapidly oscillating part (the latter is obviously
zero on the average). For the rapidly oscillating
parts of the electric field —V'y, lattice displace-
ment u and electron concentration n, the following
system of equations holds (see, for example, Ref.
15): B'QBpBQ)i =c m

p +&p ~ i k lm Bx BX ski B~ Bx

-haik

lm Bx BX Bg
&

(la)

e A„e-i coat+i g r
2 q

q

(4)

where the summation is now extended also over
the region q, &0. This is denoted by the prime.
By definition A;=A-*, co -= —co-, e;=e;.

With any sound wave a wave of electron density
and electric potential is associated. Hence

1 I
n(r t) = — &.(x t)e '" "&'

g.

a

We use the discrete spectrum for convenience, but
in the final formulas we shall go over to the con-
tinuous spectrum, according to g;-t0/(2~)'] f d'q,
where II is a normalizing volume (for instance the
volume of the crystal). The summation in (2) may
be taken over the half-space q„& 0, where q„ is
the q component in the direction of the drift (x axes).
However, only modes propagating in the 'ampli-
fication cone" give an essential contribution to this
sum. The width of the cone may change during the
amplification. e; is the polarization vector of the
mode q; ~; its frequency. By the frequency ~;
we mean the real positive frequency of a pure"
sound wave, i.e. , a wave which would propagate
in a corresponding ideal dielectric without lattice
attenuation and piezointeraction. Thus &q and e
are the eigenvalue and the eigenvector of the equa-
tion

pp~-e« =C k,mqkq, e-m (3)

The complex amplitudes A; depend on the co-
ordinate x and on time because of the piezointer-
action and lattice attenuation. We neglect the pos-
sible dependence of A; on the transverse coordi-
nates y and z which may occur because of the sur-
face effects or anisotropy of the crystal. In par-
ticular cases A; may depend only on x or only on t.
For example, in a region inside a sufficiently long
crystal the noise is spatially homogeneous, i.e. ,
U& and A; do not depend onx for t&t» where t is
the time elapsed from the switching on of the ex-
ternal field, t, is the time required by sound to ar-
rive from the boundary of the crystal to the region
under consideration. A contrary extreme case,
stationary noise, when U; changes along the sam-
ple but does not depend on time. This case is
realized if t )v, (~,—sound propagation time through
the sample) and reflection of sound from the bound-
aries are negligible. We consider below the gen-
eral case when U; depends on both x and t.

It is convenient to rewrite expression (2) in the
form
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It is essential that the complex amplitudes A;,
Bqp and Cq be slow functions of x and t compared
with the rapidly oscillating exponents, i .e . ,

«
i

cu"A- f,
8A, sA

and analogously for B; and C;. Inequalities (6) al-
low the derivation from (1) of a system of equa-
tions for the complex amplitudes by (4), (5) being
substituted in (1) and the terms with identical ex-
ponents being collected. In (lb), (lc) it is suf-
ficient to keep only the dominant terms obtained
by differentiating the exponents. However, in (la)
the dominant terms are cancelled, as according
to (3) they should be, and only the terms connected
to piezointeraction and lattice attenuation remain.
Therefore, in (la) also the terms containing the
derivatives of A; must be kept . Eliminating C;
we get the follow ing equations:

P q
eQq 2enp& q q q

x [(e/q'«) B;,B, —P; A; B; ] exp(iv;;;, ,t),
(va)

a- = ( I +Rq') +i(q v co;) ~„-

where

C 4me p.np

dielectric relaxation time .

~A BA~ 2meP~q+@,. = - ~i+- y-A + j ' B- ——'n{"A- .Bt sq ax 2 q q q ~p~- q 3
q

(vb)
Here

1 2, /
~f & &~&~&eq /~ X q

4~~~~

&TB = (nr, )'"=
4 me'no

is the Debye length (T-temperature in energetic
units).

1
(cwxm +~&sam)qae;~e

~ )2@cog

i.e. , the group velocity of the sound wave in the
x direction.

= (I/)t«) «I;a«qaq e~«e~«

describes the lattice attenuation. Further,

qqlqp q q l qg '

Equations similar to (7) for the amplitudes of elec-
tromagnetic waves in plasma were derived by
Tsitowich . '

It can be seen from Eqs. (7) that the inequali-
ties (6) hold because the parameters }I-, o'-"/to.

q« l. In the nonlinear regime [where the second
term on the right-hand side of (7a) is important],
the condition l &- —w-. —&- -. I «co- is also required;

q q-q
this condition follow s from the narrowness of the
"amplification cone. "

From (va) one can express via iteration the
amplitude of the electron wave B- through the ampli-

tudess

of the sound waves . In the linear app roxima-
tion

B;= P;(q '/ea;) A; . (8)

Substituting (8) in the nonlinear term of (va) we
get B& to the accuracy of quadratic terms with re-
spect to the amplitudes of sound waves. This itera-
tion procedure can be continued (the condition for
its validity is given below). We restrict ourselves
to the terms containing products of three ampli-
tudes of the acoustical waves. Substituting the re-
sultant expression for B- into (7b) we get

q

8A ~Aq 1 {~ 1 f t«o~"~+g '=~(v —n~ «)A-+ —P. Z P P- P -- A-A e ea, a~
ex q q q ~ q ql q2 q qlq2 ql q2

q q l+qp=q

1 I

p; Q.;.„A-,e'",j; ' Z P. P P- .- A. A- e'"( ~ jj2',
q qp qlq2

ql+qp=q

(9)

where

v = —,'i(u- )t. (1 —a-)/a-
q q q q &

~pi««q q, q, (a-„-1)P--
p &en p Q 0 Q

ql qp

Ip1 ~ ~I ~ ~It g
Q q ~ q (a;, —1)-q ~ q2en a~- 2

q q'

(io)

Equation (9) describes the variation of A- in
space and time . The first term on the right-hand
side is the usual linear term and

1 1 {e) 1 Q~v - {«Oq

~ ' ()+q'A')' ~ a 0 —w-)' ')
q C

js the jjnear amplification (attenuation) coefficient
(with respect to the amplitude) connected to the
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piezointeraction.
The imaginary part of v; leads to a change of

phase of the complex amplitude A«„ i.e. , to the
dispersion of the sound velocity due to the piezo-
interaction. It is more natural to describe this
effect by renormalizing the frequency. To do this
we introduce

I 1 ~A-=A-exp(-2i Imv-f) e-=&a- ——,Imv-.
q q ~ q q 2 q'

Then

I
-f uf»t+]Pr

2

and according to (9)

~A 8A,', , 1+ V~» —2Q» A» +-

ett

q eg q q
q

I
I Ip. p- p- p-- - A- A-' e'"~a,a, 'q] q2 'q qlq2 ql q2

ql q2 q

I I
fau»»»+(1/(u ) p p p. Q . ..A, e cq'q" g p p &„-- A'A e~~a"aya2~q q"". - q qqq q - » - ql q2 q"qlq2 ql q2q'+q" =q q+q =q1 2

where

Q =Q —Q

The difference between &u; and u is small (of the
order of y;&u;) . This difference is negligible
everywhere except, perhaps, in the exponential
factors, where the dispersion may be essential.

The nonlinear terms in (12) [or (9)] describe the
parametric interaction between different modes.
A simple physical interpretation can be given to
these terms. In the linear approximation an elec-
tron density wave with an amplitude proportional
to P-A« is associated with every sound wave A»

q q
(first-order electron wave). Parametric interac-
tion of two such waves with wave vectors q, and q2
gives rise to a new wave with a wave vector q
= q, +q, and an amplitude proportional to P- P- A- A-

ql q2 ql q2
(second-order electron wave). This new electron
wave causes, in turn, a sound wave with a wave
vector q and an amplitude proportional to
P-P- P- A- A» . This process is described by the

q, q 1 qg ql q2
second term on the right-hand side of (12). Analo-
gously, the third term describes a process of the
next order, i.e. , the parametric interaction be-
tween first- and second-order electron waves.
This gives a third-order electron wave with an
amplitude proportional to P'A', and the amplitude
of the corresponding sound wave is proportional
to P A'. The exponential factors describe the phase
shift that occurs because of the parametric inter-
action.

Equation for U&

The slowly changing quantities characterizing
the intensity of sound are obtained by taking the
time average of the squares of the rapidly oscil-
lating quantities. For example, we have the den-

I

sity of the acoustical energy 8 = p(d u/dt) '„where
av means the average over the time interval be-
tween t and t+~t. This interval must satisfy an
inequality

1/~ «hf « fo,

where the brackets denote phase average and

&(q- p') =
1 if q=q

0 if qtq
The density of the acoustical energy in RPA is

where + is the characteristic frequency of sound
(for instance the maximum amplification frequency)
and to, the time during which the slow" quantities
themselves change significantly. This time to is
the lesser of the two times: the linear amplifica-
tion time 1/n and the characteristic time of the
nonlinear interaction 7„(the estimate of 7„ is given
below).

If there is no interference between different
modes, the terms containing products of two dif-
ferent modes vanish after averaging. Hence
8 = —,'g- per; IA, I, i.e. , the energy is simply a
sum of the energies of all modes. In such a case
the average over the time may be replaced by the
average over the phases of the complex amplitudes
A-, assuming all the phases to be completely ran-
dom (the phase average is understood in the usual
sense of an average over a statistical ensemble).
This random phase approximation (RPA) is usually
used in problems in which a wide spectrum of inter-
acting modes exists. ' '4 In Ref. 10 some criteria
of RPA validity are given. In our case the RPA
means

I
-k(co -co, ) &+$(q-q')rg=p =4p 6 ~ e (0 co ~ A /e q q'

dt
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I
= -,'P Q (u-'

~

A-'
~

' = -,'tI Q (u-'
~

A [' = Q S-,

i.e. , equal to the sum of the energy densities of different modes, as it should be when there is no correla-
tion between modes.

Now from (12) using (14) one can derive an equation for the quantity IA- I' (written below as S;). For
tllRt oI16 llRs to CRlclllRte Ss~/St, 1.e. , 1/tlt [S (x, t+ est) —S (x, t ) ], wllel'6 4t obviously IIlust 8Rtlsfy the
condition (13). Lt is convenient to integrate (12) over time from t to t+tst, which leads to the integral equa-
tion:

~t+tst SAt (tt) t+kt
A-(t+&t) =A-(t) —It,; ' ' dt + ,II- -A-(t ) dtttq ~X "t

+ p
1

P. P F.
q2 q qyqa

qy+q2~ q ~tt

pt+h, t
P-, Q-;;, P- P- E-„-- I dt A;(t )A- (t)A- (t )e""sa ~ ""s ~ sts1" .

qp q" qyqp I q

(15)

For brevity the argument x of each A. is omitted.
We have introduced P-- - =-,'(P-- - +P-- - ) which

qq&q& qq&qa qq&q~ ~

has the symmetry property F-- - =F»- - .
q q(qp q qpqg

Equation (15) is more convenient than (12) for
solving by 1teratlons. As a zero-older approxi-
mation it is natural to take A;(t). Iterating up to
terms containing products of three amplitudes and
restricting ourselves to the first approximation
with respect to the small parameter a;4t we get

A.,(t+ at) =A-, (t) —v;,t t ' + —,O.-IItA.,(t)
» (t)

+ (O'A'(t)A (t)) + (O'A'(t)A'(t)A'(t))

+ (P'A'(t)A'(t)A'(t)) . (16)
For brevity we have written the nonlinear terms in
(16) schematically, denoting only the power of P
and the number of multiplied amplitudes. The last
term in (16) is obtained from the last term in (15)
by replacing all A (t ) by A (t). Two other non-
linear terms in (16) are generated by the term be-
fore last in (15) in the first and second approxima-
tion, respectively. Multiplying (16) by its complex
conjugate and averaging over phases we get

S (t+tst) =S (t)+II-tt. ts-(t)- a;tsst ' +4tstRe p~p.' Q
ss;(t) 1

q q q ex q'

x z- ... -, s-(t) s-, (t) + —~ p- p.,p- -, —
i
z- -, - -,

i
s-, (t) s- -, (t)

q-q;q -q' q q' ~ ~ q ' - ' ~ q, q', q-q' ' q-q'

"'.'„,"e' + s, s-;--.s.. .., s S)s , (n s~' ' ' . .'' . st" '", ; ;.;")..
q' q q'-q 0

(17)

Tile fll'8't I101111I16RI' tel'III III (17) ( p ) RppeR1'8

after averaging the product (P'A A A )A. (plus
qc.c.); the other nonlinear term (-P ) appears after

Rvel'Rglllg (p A A ) (p A A ) Rlld Rlso (p A A A ) A

(plus c.c.). Although the second term contains

P to a higher power than the first term we still keep
it because the structures of these terms are differ-
ent, and one cannot say in advance which term is
bigger. In the final equation we shall make an
estimate of the value of the ratio of these terms.

During the derivation of the nonlinear terms in
(17) one has to calculate the average of the product
of foul' amplitudes (A A A A ) which spll'ts IIlto

I 1 t qg qy q4
(A- A-)(A A- ), plus two other terms correspond-
ing to the two other ways of pairing. During the

calculation some ways of pairing lead to a condi-
tion q =0 (or q" =0). Such pairings do not have to
be considered because all the above equations de-
scribe only the rapidly oscillating waves.

Now it becomes clear why in (9) it is necessary
to keep the last term. Although it is of higher or-
der (with respect to both P and A) in comparison
with the previous term, after averaging it gives a
contribution in (17) proportional to P', while the
contribution of the first nonlinear term in (9) is
proportional to P .

One obtains the final equation for 8- by calculat-
ing (1/b, t) [S-(t+ tt, t) —S-(t)] and substituting the ex-

Ipressions (10) for P and Q. The sums g must be
transformed to sums g, which means summation
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only over the q, which correspond to positive fre-
quencies (i.e. , over the physical" region in q
space). Finally, replacing S- by

0 1 0
' (27) )

' 2 (2v) ' p

we obtain the following:

~Uq ~U,+v- '=n-U-+ II d q [@ -. +C-.,] U- U;
Bt " ~x ' ' Tn . -q a' q q'

+ '
) d 'q [4- -, (&u-U-, U--, —e-;U-U-, —&u; U-U- -, j 5(&u- —cu-, —&u--, )

Tno q -a' q q' a-a' q-q' a q' q' q q-a' ~ ~ q q' a-q't

where

1 l
+ 2@- ., (&u-U-, U- -, —~-; U-U-, + &u; U-U- -, ) 5(z- + &u; —&u- -, )],q, a' q a' a+q' q+q' a a' q' a q+q' a a' q+a'

.), i )a+i') %+r).~), )), )i+q') vi), ))ia-' la-, 'a. .. q" &' q+q')~
a a a+a

(i8)

(q 'R') (q "R')[(q+q')'8']
8 ' ' '~' ( I+ qB')'(I+q'2Rt)'[1+(q q')2&']t (2O)

equation (18) may be rewritten in terms of the pho-
non distribution function N; using the connection
S~;N; = U;. In (18) we went to the limit of a can-
tinuous spectrum. During the derivation of 4q q,
we used the condition &uw, !v/v, —1 I« l. This is
the condition for the weak activity regime' which
is usually satisfied in sufficiently conducting ma-
terials. Furthermore the factor

(
2

. 2. Isin (—,&u--, - -, bt)atq tq
qtq

appearing during the derivation of the second non-
linear term in (18) (the Peierls term), was re-
placed by 2wht5(v;;, ;;,). For this replacement
to be valid, the factor must have a resonance prop-
erty, i.e. , the argument of the sine must change
rapidly in the integration region. This implies
a certain condition on the width of the amplifica-
tion cone, namely: ~;~t&0»1, where ~Ois the
solid angle occupied by the cone. That means that
the cone must not be too narrow. For example,
if all the waves were to propagate only in one di-
rection, the argument of the sine (in the absence
of dispersion) would be identically equal to zero
and, obviously, the above factor could not be con-
sidered as a resonance. The small dispersion does
not essentially change the situation, because for
the dispersion to manifest itself significantly (i.e. ,
to change the argument of the sine by order of 1)
the time r f ~1/)I;&u; is required. The physical
meaning of the condition co;~F0» 1 is the follow-
ing: for RPA to be valid it is necessary for the
nonlinear interaction to randomize the phases in
the time 4t. Thus, even if there were a correla-
tion between different modes at the beginning, the
nonlinear interaction would destroy this correla-

tion during the time k) = I/~. b, O.

The first integral on the right-hand side of (18)
represents the non-Peierls term. As we have
seen, this term is due to the second nonlinear term
in (9). This non-Peierls term does not appear in
Yamada's equation (or in the more general equa-
tion of Nakamura, ")because these authors con-
sidered only the first nonlinear term in the lattice
motion equation. For the same reason this non-
Peierls term cannot be obtained from the nonlinear
equations derived in Refs. 14 and 18 or (for the
caseq/, » I) in Ref. 19.

The quantities @ and 4 were calculated to the
lowest nonvanishing order of y. This means that
a small correction term (- &I3) to the non-Peierls
term in (18) exists. This correction is always
small in comparison with the leading term (- X')
and can be neglected. On the other hand the sec-
ond nonlinear term in (18), which is also propor-
tional to y', cannot, generally speaking, be ne-
glected, as has already been noted. A rough esti-
mate shows that the ratio of the first nonlinear term
in (18) to the second is of the order (I/y) &u~, l(v/
v, ) —1 I b O. This parameter can be either larger
or smaller than 1. But (what is more important)
is that these two terms have a different structure
and therefore (as we are going to show) play a dif-
ferent role at various stages of the amplification.

To obtain (18) we used iterations with respect to
the nonlinear terms in (9) and (15). This is cer-
tainly correct at the early stage of the nonlinear
regime, when the main part of the energy is still
concentrated in the region of the linear amplifica-
tion, and up and down conversions just begin to
manifest themselves. A careful examination is
required to investigate the limit of validity of (18)
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in the general case. A very rough estimate (based
on comparison of the mean squares of the succes-
sive terms) gives a criterion )tS/Tn~ « I for the
validity of the expansion of B- in terms of A- in (9)
(8—the acoustical energy density in the amplifica-
tion cone). The corresponding criterion for the
validity of the iteration of the nonlinear terms in
(15) is weaker, and contains )i to a higher power
(X').

Now we estimate v„. According to its definition
7„ is the ratio between U; and the nonlinear term in

(18). If the first nonlinear term is dominant the
ratio gives

1Tn 1
n

(i.e. , larger than 1/a) If .the second nonlinear
term in (18) dominates, one can show that 7„ is at
least not smaller than 1/)i~.

Equation (18) describes the regime of a "de-
veloped" instability when the acoustical energy is
concentrated in a narrow cone and the nonlinear
effects may be important. To obtain an equation
describing the amplification of acoustical noise
from the very beginning (i.e. , from the thermal
noise level) one has to add to the right-hand side
of (18) a term G;, which describes the spontaneous
thermal generation of noise. Obviously, in equilib-
rium the thermal generation is exactly compen-
sated for by attenuation. This defines the form
of G- (see, for example Ref. 2): G; = —aP'U;"'.
Here U-' ' = T/(2m)3 and a 0' is th-e value of a- when

(o)v=0 (equilibrium); in other words, —a- is the
equilibrium coefficient of sound attenuation.

The term G« is essential only at the very first
state of amplification, when the level of noise is
comparable to the thermal noise. At this stage
the nonlinear terms in (18) are negligibly small.
In the regime of a "developed" instability, when
the noise is several orders higher than the thermal
noise, the term G- may be neglected.

q
If the amplification begins from the thermal

noise, the initial condition for Eg. (18) is U;(x, 0)
= T(2m)'. In the case of spatially inhomogeneous
noise one needs also boundary conditions to solve
(18). These boundary conditions depend on re-
flective properties of the contacts.

UP AND DOWN CONVERSION ON THE EARLY STAGE
OF AMPLIFICATION

In this section we obtain an approximate ex-
pression for U; which is valid at the early stage
of the nonlinear regime, and compare this expres-
sion with the available experimental results. The
evolution of the spectral composition of the ampli-
fied sound is studied experimentally by Brillouin
scattering techniques. ' ' ' The experimentally
measured quantity is the intensity I» d'q of the
light scattered by the acoustical waves, with wave
vectors in the region d'q near q. Since the light
probes a constant volume in q space, I; is pro-
portional to U-.

We shall be interested in the spectral composi-
tion of the "on-axis" flux only (thi. s corresponds to
the simplest scattering geometry"). Hence we
take q =(q, 0, 0]. We also assume that U- does not
depend on x. This corresponds either to the case
of spatially homogeneous noise or to the case where
the observer moves" with the acoustic flux. The
latter case corresponds to the usual experimental
situation, ' ' when the acoustical energy is con-
centrated in a traveling (with the velocity of sound)
domain.

In spherical coordinates (with g II ox as a polar
axis) U;, depends on the modulus of j and on the
angle 3 between q and q, i.e. , U», , = U-, ~. Similarly
4 a.nd C are functions of q, q, and 3. The 6 func-
tion in the Peierls term provides (neglecting dis-
persion) that only q'll q give a contribution to the
integral, i.e. , only the interaction between col-
linear phonons is possible. On the contrary the
non-Peierls term allows also interaction between
the noncollinear phonons. Under the above condi-
tions we obtain from (18) the following:

=[a, + ai~( )+t~a'~( )]tU, (t)+ — dq'q'(q —q') O'. ..U,.(t)U, , (t)

(21)dqq q+q 4, ~ U~ t U~,~. t +G~
TPgp 4p

Here U,, corresponds to 3 = 0. Also C. .. is the value of 4- -, for q ii q. The nonlinear terms which are
proportional to U, we have written in the form [a,'"'(t) + a~'(t)] U„where a,'"' and a,~' are due to the non-

Peierls and Peierls terms, respectively:

a,'"'(t) = "' d'q'[@;;,+C;;,] U-, (t),
Pl p

(22)

a (P) (t)—
Tfl p a p

dq'q'(q —q') @,.[~, ,.U, .(t)+~, U, , (t)l
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+ dq'q'(q+q') e. .. [(v,, U„,, (t) —(u„,, U; (t)].
TOO 0

The second and third terms on the right-hand side
of (21) describe the up and down conversion, re-
spectively. A formal solution of (21) [with the ini-
tial condition U, (0) = T/(27() '] leads to the following
integral equation:

U (t) s(qqt+rq(t&

t

, + dt'e-"'-"~"'& l., t' +m, t' +C,
(T Q

(24)
Here for brevity we have made the following nota-
tions: L, (t ) and M, (t ) are the second and third
terms (with t instead of t) on the right-hand side
of (21);

r, (l)=I dt'[a,' '(t )+a/'("t')]'.
0

On the early nonlinear stage r, «1 (one can show

U (l) (t) 1 q eq()( 1 + e((q(
(27()

' o, (2)() ' y

(25)
(in the weak-activity regime ()(, = y I

n(q)
I, where

y=v/v, —1). Now substituting (25) in the L and M
of (24) and ini'egrating over t', one obtains

U (t) =U'"(t)+U'"'(t)+U"'(t) (28)

where

I

that r, may not become small only in the strongly
nonlinear regime, when the acoustoelectric current
becomes comparable with the ohmic current). Hence
we may neglect q; in the exponents in (24).

Now we solve (24) by iterations. Neglecting the
nonlinea. r terms L and M in (24) we obtain the usual
linear solution, ' which in the case of the developed
instability (nq t » 1) is

() 1 1
1

1
d ()U, t=(2), 8, +—, qq q —q (2'7)

(q) ( )
& 1 1 ",,(,)

exp[((),, n+„,, ) t]
(2()')' 4)r'n, y

(28)

U,'"' and U,'"" describe the up and down conversion in the early stage of the amplification,
To perform the integration in (27), (28) we shall use an approximate expression for the linear amplifica-

tion coefficient.

c(q =n [1 —(1 —q/q )a],

where e( is the maximum value of u„which corresponds to q =q =1/R (or to the frequency

f =v.q /2((=(f.fo)"',

(29)

where f, =1/2q(v„ fv =v,'/2((S). Using (29) and also the fact that the preexponential functions in the integrals
vary slowly in comparison with the exponents, one may evaluate approximately the integrals in (27), (28).
This leads to

2 3 2 &/2 2
U((o(t) ~ 1 1+ 1 qm 1 q & (()q 1

(2~) 4~~ y 2 4 a 2 t
4'q q / q2xep2G t 1

0 qe nm aq -q]'2+Oq ~(2-nq ™ Q'

(30)

(31)

One obtains the U, (t) by summing (25), (30), and
(31) [with o., given by (29)].

The iteration procedure which we have used to
solve E(l. (24) is valid only if the amount of energy
concentrated in the up and down conversion regions

is small in comparison with the amount of the ener-
gy in the linear amplification region. To obtain a
quantitative criterion we compare the energy spec-
tral density U& (which is proportional to q U, ) at
f= 2f (which corresponds to the maximum of up



O

I I.

f (GH2)

FIG. 1. Plot of log(((2v) /&JU~} vs f=qv, /2v. Curves 1
and 2 correspond to g~ =3.07 @sec,and $2=3.22 psec. The
full and open circles are the experimental points from
Hef. 7 corresponding to f~ and g2, respectively.

conversion) with its value at f=f„. We require
the ratio Uz /Uz (denoted below by 5) to be small.
VVe choose U, ~ because it is much larger than U&

in the down conversion region. From (30), (25),
and (20) we obtain the required criterion:

y n, o. (n t)"'
(32)

Vfe shall compare our calculation with the ex-
perimental results of Parker and Bray. In Ref.
V are presented the first (and as far as we know

up to now the only) quantitative observation of up

and down conversion at the early stage of the
acoustical noise amplification. The scattered light
intensity as a function of acoustic wave frequency
was measured for different times following the on-
set of amplification. Two of them (f, =S.OV p, sec
and ts =3.22 p, sec) correspond to the early non-
linear stage. For the sample of GaAs used in
Ref. V n =6.SxlOs sec ', f =2.6 6Hz; to such
an f corresponds q„=5x 10' cm '

(v, = 3.35
x 10s cm/sec). From qm we estimated no = 4
& 10' cm '. The electromechanical coupling con-
stant X = 3.8 &(10"'. The experimental conditions
in Ref. 7 are such that e» vs hence we have ne
glected I/y with respect to the unity.

In Fig. 1 the log([(2v)s/T]U, ] is plotted as a func-
tion of the frequency f=qv, /2v for two instances of
time: t, =S.OV p.sec (curve 1) and ts=.3.22 Psec
(curve 2). The experimental points of Ref. V are
given in the same plot. In Ref. 7 an arbitrary
logarithmic scale was used. That means that for
one experimental point the ordinate may be chosen
arbitrarily. %e remove this arbitrariness by
bringing together the theoretical and experimental
points for f=f„on the curve corresponding to tt.

One can see that quite a good qualitative agree-
ment between experiment and theory exists, but

the quantitative agreement is not so good. The
main reason for the quantitative discrepancy is
apparently that in the case under consideration the
iteration procedure which we have used to obtain
(30) and (Sl) begins to fail for f R S.0 p, sec. From
(32) it follows that when f = S.3 p, sec the parameter
&=I (at t=3. 0 psec 5=0, 2). This agrees with the
experimental result of Ref. 7, according to which
the flux near the up conversion maximum grows
proportionally to exp2o. t (which is typical for the
early nonlinear stage) only for f & S.0 psec. Hence
one can not expect (for f & 3.0 p, sec) the expres-
sions (30), (Sl) to give a good quantitative descrip-
tion of the up and down conversion. For this pur-
pose the integral equation (N) has to be solved
numericalj, y.

In the low-frequency region there is also an
additional reason for the quantitative disagree-
ment between experiment and theory, namely the
approximate expression (29) for o, This approxi-
mation is good for the up conversion which (near
its maximum) is due to the interaction between
pairs of linearly amplified waves with q =q . But
for the down conversion the situation is somewhat
different. The maximum for down conversion is
not at q = 0 (as one would expect), but is shifted
to, some value q =q„. The reason for this is that
@...-0 for q 0, i.e. , the 'interaction parameter"t Ibecomes very small when the wave numbers (q
and q +q) of the two interacting waves become
close. Therefore two waves from the vicinity of
q cannot interact effectively in the down conver-
sion process, and a wider (= q~) spectrum of wave
numbers is involved in this process. For such
waves (29) may not be a good approximation. A
rough estimate [based on neglect of the lattice at-
tenuation and using (ll) for o!,"' instead of (29)]
gives an increase of the down conversion by a fac-
tor of about 3.

It must also be noticed that for the up conversion
region the parameter q/, for the material used in
Ref. 7 is not small, so it is not clear to what ex-
tent the phenomenological theory is applicable.

In the later stage of amplification (f & 3.3 p, sec
for the experimental conditions in Ref. V) the spe-
cific up and down conversion peaks disappear, and
the maximum of U, is shifted from q to the lower
values of q. At this stage the nonlinear correc-
tions n,'"' and e,+' to the linear amplification coef-
ficient a, play an important role. The equations
(30), (Sl) [and the more general (2V), (28)] do not
hold any more (even qualitatively). Numerical solu-
tion of Eq. (N) would allow comparison with experi-
ment also at this later stage of the amplification.

Finally +e would like to make a remark in con-
nection with the latest stage of the amplification,
when one expects U, (t) to saturate. Yamada'pointed
out an essential difficulty in this problem, namely,
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that U, is not stabilized in the low-frequency re-
gion. This is due to the fact that 0., for small q
is proportional to q', while I1,'~' (which is the only
nonlinear correction to n in Ref. 9) is propor-
tional to q'; hence one cannot satisfy (for q-0)
the condition 0., +u,' ' =0 for any finite U, . We
WRllt 'to polll't oil't 'tllR't 'tRkillg Qq' (wlllcll ls due to
tile lloI1-Pelel'ls tel'111) 111'to account solves 'tllls Iilf-
ficulty, since Rs follows from (22) and (19), n,'"'

for small. q is proportional to q .
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