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Inelastic neutron scattering from amorphous solids. II. Interpretation of measurements*
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The one-phonon scattering law for a disordered harmonic system is related to a frequency-dependent
displacement-displacement correlation function. We suggest a means of investigating this correlation function

by means of a suitable transformation of inelastic neutron scattering data for such systems,

I. INTRODUCTION

In our first paper (referred to below as I), we
developed expressions for the one- and two-phonon
terms in the scattering law for glassy solids, con-
sidering them to be isotropic, harmonically oscil-
lating systems. The results provide practical
means for calculating the inelastic neutron scatter-
ing from models of glassy solids, given atomic
coordinates and normal mode frequencies and eigen-
vectors. Here, we investigate the use of those
results in the interpretation of measurements.
Notation in the present paper is the same as I.

II. FUNDAMENTALS

Frequently measurements of the inelastic neutron
scattering are interpreted in the one-phonon inco-
herent approximation, to extract the density of lat-
tice vibrational states, which is defined

g(~)-=g 5(~- ~'),=1
)

notion of the frequency average of any function f"
of normal mode index X: I et

(f ).-=g 5(~ - ~') f'/»S(~) . (4)

Then (f )„is just the average value of fh for all
normal modes of frequency &oh= &u. (f )„is not
defined (and needs not be) when@(~)= 0.

%ith this notation,

G(Q, ~)=P -""' sm '. g(~) .
vv&

(5)

III. INCOHERENT SCATTERING

In the case of purely incoherent scattering,

= 4v (a„)5„„,,
the double sum on atoms in Eq. (5) collapses to a
single sum which represents the independent-atom
scattering, so that

where X is the number of scattering units, and
which is normalized

& max
d (o g ((o) = n,

0
(2)

thCOh y
G(Q, ~)=G"""(~)=g "-, sm "Q. g(~)

(7)
Here, since b„,= 0, while jo(0)= 1 and jh(0) = 0,

where n is the number of atoms in the scattering
unit. The function thus extracted from mea-
surements, when two-phonon contributions are
ignored, is actually a generalized frequency
dis tr ibution

@'3Q2 -1
G(Q, (d)=

2
— csch(k(o/2k+ T)/2ff(u $~ ~(Q, co),

(2)

then

G& 7 = I (~)s'(~)

where

(10)
which is a function of Q as well as . Using Eq.
(21) of I for the one-phonon scattering law Su'
(Q, ~), we have

G(Q, ~) = — g 5(&- ~') 2 o- &,. (Q)
No )„„,„. ""

Q

In the following, it will be useful to introduce the

(S/m, &o) (~ y„( )„ is the mean- squared vibrational
amplitude of atom v, averaged for all modes of
frequency v; therefore (k/m&o) I' (&o) is the scat-
tering cross section weighted average of the mean-
squared vibrational amplitudes of all atoms in the
system, for modes of frequency &.
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(12)

where C is a constant in.dependent of X, it is also
true that I' (&0) = C and G'"'"(e) =Cg(&o).

In. crystals with more than one atom per unit

cell, equivalent atoms may be classed together.
In glassy solids, all atoms ax'e ln px'lnclple ln dif-
ferent environments, thus inequivalent; neverthe-
less, all atoms of the same chemical species may
be classed together. Then, perhaps with some
advantage, the general result for incoherent scat-
tering can be cast in terms of the mean-squared
displacements for each type. I.et

0„'""=o.&' " if a.tom v is of type t,
m„=m, if atom v is of type t,
e, is the number of atoms of type t in

the scattering unit,

(13)

so that N, =m, N is equal to number of atoms of

type t in the system.
Then decomposing the atom sum into a sum on

species, and a sum on atoms within each species,
one easily obtains

incoh

(15)

is the mean-squared displacement for atoms of
type t.

IV. COHERENT SCATTERING

In the general case including coherent scattering,

o„~ = II,'„'",= 4II (a, ) (a„.), v w v'

h(&o) has the general features of g (hI); sin-
gularities, band gaps, etc. , and where I' {co) is
constant (as for frequencies corresponding to
long-wavelength acoustic-wave modes) G I"'h(&0)

has the same shape asg(Iu). Equation (9) is sim-
ilar in form and content to that describing super-
conducting tunneling measurements. Of course,
G"" {Id) is independent of Q (except for variation
of the Debye-Wailer factor, which is ignored here),
but is equal tog(&s) only under special circum-
stances.

In any crystalline system having one atom per
primitive unit cell (all atoms the same and equiv-
RleIlt) lt ls eRsily sllowll, since go I '/n i

= 1, so thRt

I ((o)= 1, that therefore

G'"""(~)=a(~) .
Under the less restrictive condition, for any sys-
tem, that

(&coh Incoh) 4& ( 2
)

and the generalized frequency distribution is a
function of Q as well as m:

where the one-phonon structure factor F„„,(Q) was
expressed in Eqs. (22) and (23) of I. It is useful
to cast this in the form of a structure factor aver-
aged over all modes of frequency (d which we de-
fine

F(Q ~)=g ""3m "-{Q)
0'

Ql

so that

G(Q, ~)= I'(Q, ~)Z(~)

Recalling Eqs. (22) and (23) of I, it is clear that
F (Q, Io) is sensitive to the structure in a way sim-
ilar to that in which the static and elastic structure
factors are. In the one-phonon structure factor,
however, the contributions from different pairs
v, p' are weighted by vibrational displacements
y'„as well as by scattering lengths. Thus 1 (Q, u)
contains information about the pair density of the
product of vibrational displacements and scatter-
ing lengths, just as the static structure factor
provides the pair density of scattering lengths
through the Zernike-Prius relation. 1 (Q, Iu) is in
fact the displacement-displacement correlation
function for modes of frequency +.

The function G(Q, Ic) has been examined by De
Wette and Rahman for polycrystals. G(Q, Id)

varies significantly with both Q and u, and changes
dramatically at ~'s which correspond to singular-
ities in g(&o).

Et remains a signif'icant question at which values
of Q, 1 (Q, (d) becomes nearly enough cotlstRtlt with

Q and co, to allow interpretation of measurements
in the incoherent approximation, G(Q, Io) ocg(I0).
The answer depends entirely on the details of the
structure, and the nature of the motions at each
frequency. Since for some materials, the diffrac-
tion pattern varies significantly with Q as large
as 20 A

' and more, it is expected that for some
&'s, I (Q, Id) is not constant with Q even for such
large Q's.

For local modes involving only one atom (say
the lI.;th mode), y„'= 0 for all except one atom (say
the v;th). Then

F ' (Q)-5„.5„, , (20)

that is, F,„ (Q)Iis diagonal and zero for all except
the v;th atom. Ef there is a band of frequencies
which contains nothing but such local modes, the
incoherent approximation applies in thai band,
l. e. ,
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I'2(Q, ~) = const for all Q.

V. RELATIONSHIP OF THE ONE-PHONON STRUCTURE

FACTOR TO THE STRUCTURE

In the following, we consider the Q variation
of the inelastic structure factor at constant u.
Therefore we may deal with 1 (Q, &()) (which is not
accessible from measurements) rather than

G(Q, (0) (which is, if multiphonon effects are ac-
counted for). Recalling Eq. (23) of I,

~„',.(Q) =~~ {-'.(y.' y' )j.(Qb.;)~V~

+ [—', (y„" y~ ) —(b„„,~ y„)(b„„,~ y„",)jj~(Qb, ))

we now explore the relationship between the one-
phonon structure factor and the structure of the
system. We may express, as in Eq. (18) above

I 2(Q &) g avv' 3
— vv'(Q)

a Q

(&r. y.* &. jo(Qb )a m„m„e

pairs at distances less than some b „&0. I'„((())
is just the independent-atom contribution and of
course, o,„=4m {a„&. The expression Eq. (26) is
similar to the result of Zernike and Prins, re-
lating the static structure factor to the radial den-
sity function p(r)

A(r, v) is the function describing the density dis-
tribution of the quantity

O„~ AE
{y, y:)

mVIV

The information in A(r, (o) becomes more clear
when one recalls that the radial density function

p(r) derived from diffraction, is the density dis-
tribution of the scattering power o~, /o. Thus
A (r, &o) describes the density distribution of the
product of scattering power, and the (frequency
average) scalar product of mass-weighted dis-
placement vectors, (m/v'm, ,m„.) {y„y~& .

B(r, &o) is similarly the density distribution of
the quantity

{3(b,. ' y.)(b ~ ",*))

+ [ {y„'y„&„—3{(b„„'y„)(b„„y„)))j2(Qb„~)f

(21)
Proceeding in a fashion similar to that followed in
relating the static structure factor to the structure
through the radial density function, we now intro-
duce two new functions related to the radial density
function:

4mr~A(r, u)) -=— Q
'

~
A„„,(~) b(~ —b„„,),

V Vt ~ V4 O M V~V

(22)

4''B(r, &o)-=— Q "" — B„~(u))5(~—b .),
VtV 1V~ O ~V~V

(23)
where

which is the product of scattering power and the
projections of the normal mode displacements upon

the unit interdistance vectors (b„~ y„). A(r, u&)

and B(r, ~) are the real-space displacement-dis-
placement correlation functions for modes of fre-
quency ~. A. and g depend parametrically upon the
frequency ~; the r dependence is expected to differ
for different frequencies.

BothA(r, &) and B(r, &o) have similar behavior to
p(r), the radial density function; where p(x) ex-
hibits a peak, as due to a coordination shell,
A (r, (()) and B(x, +) also may exhibit peaks, either
positive going or negative. Where p(x)=0, A(r, &o)

and B(x, &o) also vanish. The amplitudes and signs
of peaks in A. and 9 however are modified according

A„„.(~)= {y.. y,'&.
and

(~)= 3 ((b ~ y, )(b,. y ~) &. .

(24)

(25)

Then the one-phonon structure factor may be
written

r'((), ~) —r'(a)= f 4m~'A(~, a)j, (Qr)dr+

+ 4m Pr, co —Px, v j~Qx Ch,

(26)
where I'„((d)=limo „I'~(Q, ~). Here, also,

I'~ ((0)=—p —""—A. ((o)
o m„

since limjo (x) as x-~=limjz(x) as x ~=0, and
since jo(0)= 1 and jz(0)=0, while there are no atom

/
I
I

I
1 I

C

FIG. l. Schematic representation of a, p(r) and of
b, either A. (r, ~) or B(r, &). Wkere p(r)=0, A=8=0.
Even though p(r) may be everywhere positive, A and 8
may be either positive or negative, depending on whether
displacements of atoms at distance r have parallel or
antiparallel. components.
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It is rewarding to explore what may be obtained
from Fourier transforms of the one-phonon struc-
ture factor. By expressing'

f n

j„(x)= —2- e'""p„(p, )d)i, (2V)

where P„(p, ) are the Legendre polynomials, the
Fourier cosine transform of I' (Q, &) —I"„(&)can
be shown to be

cos g I jP3 Q (y P8 ~ gQ

4iir A(r, ~)P, —

(28)

By differentiating Eq. (28),

0'i o(Qr')[I'{9, ~) —I".(~)id@

p
) 3 "4 ~(r, +)-B(r, +) dr (28)

Perhaps more readily interpretable, the result

«P(r'; ~)-=-„0'i~(Qr')[I'(0, ~) —I"'(~)]dQ

to the nature of the displacement vectors y„,
At large r, A(r, &o) and B(r, ~) approach zero if.

the modes of frequency e have finite coherence
length. For lowest frequencies, corresponding to
those of infinitely propagating acoustic-wave modes,
A(r, ~) and B(r, e) oscillate at large r. Figure I
shows p(r), and A{r, ~) or B(r, &u) schematically.

Q

I'„((o)= llm —
g

Q'4 I'2(q', io)dq' . (32)g-- 0 o

U'se of the value of I"„(v)determined via Eq. {32)
will ensure that the transform in Eq. (30) is well
behaved near r = 0 [although spurious oscillations
in P{r, +) will in general be induced by inadequacies
in the measured scattering law]. The function
I'„(~) contains only contributions from independent-
atom scattering, as does the function derived from
incoherent scattering.

It seems impossible to extract both A(r, io) and

B(r, io) separately from I' (Q, co), at least without .

introducing further information. Vfe make no at-
tempt here to explore the difficulties of actually
performing the Fourier integrals of Eqs. (28)-(30)
which are subject to termination errors. Pre-
sumably the techniques of introducing modification
functions and/or of peak function analysis ' [which
would have to be modified to fit the form of Eq.
(30)] will be found useful. We note that Cochranev
has suggested an analysis similar to the present
one, to obtain related information from the one-
phonon scattering in single crystals.

By way of interpreting the function P(r, e) of
Eq. (30), and effecting something of a separation
of the two terms, we note that the second term is
just the average value of A(r, u&) in the sphere of
radius r'. Thus if A(r, (o) contains a peak at r =rn
[so also may B(r, &)], then the second term will
rise up in a step at r' = ro, then fall off as (r') 3

The expected behaviors of p(r'), A, (r, Lo), B(r', (o),
and (3/r") f(4iir A(r, ~)dr are shown schemati-
cally ln Fig, 2.

For systems in which p(r) has several isolated
peaks (as at small r), the values of both A and B
can apparently be obtained separately at each value
of s where there is a peak. Thus for such systems,
the nature of the displacements among near neigh-
bors can be extracted from measured one-phonon

= —4mB{r', ~)+~ 4iir g(r, &o)dr (30)

can be obtained using recurrence relations among
the j„(x). Other transforms can also be generated
which yield results of similar appearance. The
transforms (28)-(30) may be calculated for many
values of the frequency.

It is useful to note that Eq. (30) implies an inte-
gral-normalization condition on I' (Q, v) due to the
fact that both A(r, a&) and B(r, &o) must vanish for
~ much smiler than the first-neighbor distance.
Such integral normalizations are commonly applied
to liquid and glass diffraction data, as discussed
by Krogh-Moe, Rahman, and others. In the
present case we have

P(r, io)=0, r&b „,
which leads to the condition

I'IG. 2. Schematic representation of a, p(~), b,
&(r, ~), and o, (1/r ) f047r' A(r', ~)dr' inthe neighborhood
of an isolated peak in p(g).
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scattering. It is not apparent to us how to do this
where peaks in p(r) overlap.

Now, I' (Q, ar) is not accessible from measure-
ment, while G(Q, v) can be extracted from data
according to Eq. (3). In terms of measurable
quantities, Eq. (30) becomes

2 OO

«&(r', &)g(~) = —„Q'i.(Qr')[G(Q, ~)- G (~)]dQ

G„((o)=lim G(Q, (o) .
Q» oo

(34)

The normalization condition (32) then reads

yd

= —4m'�(r', (o)g((o)+~ 4vr~A(r, (o)g(u&)dr,
0

(33)
where

VII. CONCI USIONS

The neutron scattering law can yield detailed in-
formation as to the nature and characteristic fre-
quencies of atomic motions in amorphous solids.
In the case of incoherent scattering, the gener-
alized frequency distribution G(Q, &o) is independent
of Q and is related to the density of lattice modes
by a multiplicative factor which is the mean-squared
displacement for modes of each frequency. For
coherent scattering, G(Q, ur) depends on Q in a way
related to the structure of the system and the
nature of the atomic displacements. We have pro-
posed a method by which, through a certain trans-
formation of G(Q, ~), the real-space displacement-
displacement correlations may be obtained for
each frequency.
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