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Inelastic neutron scattering from amorphous solids. I. Calculation of the scattering law for
model structures*
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We present a method for calculating the one- and two-phonon law S(Q,co) for models of amorphous solids.
The calculation is considerably simplified by explicitly performing the necessary orientation averages. We
illustrate use of the method by calculating the one-phonon scattering from long-wavelength acoustic waves in
an amorphous solid. In the small-Q region a Brillouin scattering is predicted.

I. INTRODUCTION

Inelastic neutron scattering is a powerful tech-
nique for study of the structure and atomic motions
of amorphous solids. Quantitative understanding
of the measured scattering functions is necessary
for any complete interpretation of the results of
measurement of course, but in most cases in
which neutron scattering cross sections have been
computed, the incoherent or other approximations
have been used. These are neither necessary nor
appropriate in the case of coherently-scattering
materials. The purpose of this paper is to provide
means for more accurately computing both co-
herent and incoherent neutron-scattering cross
sections, for one-phonon and two-phonon scatter-
ing. Results are based on earlier work on the co-
herent scattering from molecular gases, to which
the present results are still applicable.

It is appropriate (untii the contrary is estab-
lished experimentally) to treat amorphous solids
as harmonically vibrating systems of atoms with
fixed equilibrium positions. Application of the
present results requires the frequencies and the
displacement vectors for the normal modes of har-
monic vibration and the atomic coordinates for a
model of an amorphous solid. The isotropic nature
of the amorphous system is explicitly accounted
for by performing orientation averages of the func-
tions which appear. For calculations based on
very large modeis, or on a large ensemble of
smaller models, the explicit averaging is super-
fluous, and well-known expressions for the scatter-
ing from molecules or large crystals can be used.
For calculations based on practical, smaller mod-
els, the explicit averaging should enhance the ac-
curacy of the result. The one-phonon inelastic
scattering for acoustic-wave-like modes of amor-
phous solids is computed using this analysis.

The basic theory of neutron scattering from

harmonically oscillating systems was worked out
by Zemach and Glauber. Application of this anal-
ysis to crystalline solids is the basis for phonon-
dispersion measurements in crystals —introduc-
tions to this application are found for example in
Lomer and Low or Marshall and Lovesey. More
recently, Leadbetter has explored the i.nelastic
scattering in the incoherent approximation, and
drawn many useful analogies between the results
for coherent scattering from glasses, and from
liquids and polycrystals.

Amorphous solids differ from crystals at mini-
mum because of the lack of long-range periodicity
among atomic positions. Consequently, there is
not the complete destructive and constructive inter-
ference which gives rise to Bragg peaks in the
elastic scattering, and to momentum-conserving
selection rules in the one-phonon inelastic scatter-
ing. Furthermore, the normal vibrational modes
of amorphous solids cannot be described as prop-
agating waves (except possibly for long-wavelength
acoustic-wave modes).

II. SUMMARY OF FUNDAMENTALS

The differential cross section per scattering
unit for slow neutron scattering is conveniently dis-
cussed in terms of the scattering law (the scatter-
i.ng unit may be one atom in the case of monatomic
substances, one chemical formula unit in the case
of polyatomic substa. nces)

2

exp(- 8(o/2ua T)(o/4w) S(Q', (u) . (1)Gee h &0

S(Q, ru) is written here in symmetric form (incor-
porating the detailed balance factor)

Here, hko and 5&& are neutron initial and final mo-
menta, Sg = h(k~ —ko) and h(u = (82/2m)(kqa —boa) are
neutron momentum and energy gain. For isotropic
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systems such as amorphous solids, the scattering
law is a function of only the magnitude of the mo-
mentum transfer hq = hlQ I. 0 is an arbitrarily
chosen microscopic scattering cross section vrhich
entex'8 fox' normalization pux'poses; 0' hRS beeQ
taken in the folio@ring as the sum of the bound-
atom-scattering cross sections for atoms in the
scRttex'lng unit»

a = 4 w Q 'lip (a] ) p

where m, is the numbex' of atoms of type t in the
scattering unity, (a, }is the mean-squared bound-
atom scattering length of atoms of type f (averaged
over i.sotopes and scattering spin states).

For harmonically oscillating systems, the scat-
tex'lng la%' mRy be developed ln R phoDon expan-
81OD

8(q Qp)
—8 (q (d) y 8 (q (0) y 8 (q (d) y ~ e ~

(4)
in which 8'"(q, &u) is the elastic scattering contri-
bution) 8 (qq 4)) is the contribution due to exci-
tation ox' deexcitatioQ of one quantum ln R Dox'DlRl

mode (phonon), 8'+(q, &u) the two-phonon contribu-
tion; higher-order terms describe 3, 4 phonon
processes.

When the scatterer is polyatomic, it is further
convenient to express each of the terms of the
phonon expansion as a weighted sum

$(f) g $( $) (5)+g ~ VV VP»
t

in vrhich the sum is taken, twice over a, ll atoms v

of the system and N is the number of scattex'ing
units in the system. The O„„are the direct or
lntex'fex'ence cx'oss sections, x'espectively, fox' v = v
OX' V4 V,

o„„ = 4m[&a„}(a„& + (&a'„ )—&a„&')6„„], (6)

where ia„& and ((a'„) —&a„&')'~' are the coherent and
incoherent, bound-atom-scattering lengths for the
atom at site v. The average is taken over isotopes
and scattering spin states.

III. EXPRESSIONS FOR THE SCATTERING LAVf

FOR AMORPHOUS SOI.IDS

A. E1astic scattering

@p (Q. y'„)0 (Q y„',)' coth(8~'/2AT)
m„m„i 4Kb(g)" ')(10

Here y~ is the vector displacement of the vth atom
j,n the Ath normal mode, with normalization

[with this normalization, the y's are of order unity
and the vibrational dispiacement is Iu~ I

= (h/
iV'm„&o') "Iy„'I], and m„ is the mass of the vth atom.
An astex'isk denotes complex conjugation.

It is useful to compare the elastic structure fac-
tor with the static stxucture factor,

8(q) -=cosh2„8(q, &u) du&
SOP

~ avv'&e&Q bpp FBI&(Q&}
o ienia4ion ay

VV
g

%here, ln the tenlperRtux'6 fRctor e

2a„„(Q)=a'g Q &y"
mv

y„""' coth(S'(v'/2u T')

gm„„4ivk&u
Both s0~ and e00 are near unity when q is sm»i,
and @re ignore them in the follovring, taking ea

~38

The radial density function (of equilibrium posi-
tions, since we ignore e and e ) may be intro-
duced»

I

4.ap{~)= —g '-""'~{~-f ..)
cr

VyV

(the primed sum excludes v = v ), which has the
property

(i4)

limp(r) =- p. = n(4m&a}'/a) .

=j0(qf „).
b„ is the equilibrium position vector of the vth
atom,

5„„=b„-b„„ f „„=Ib„„ I,
and j„(x) is the nth-order spherical Bessel function.
e»'(~" ls the Debye-%aller factor, with

The elastic scattering term is

8"'(q, (u) = 8„{q)5 ((o);

(q) Q a, F10),(q)

y(0) (q) &sic'gp„~ RIVqp ~(Ql&

&e
fd b~ ')

(a&-=Qn, &a, &

18 the sum of scRttex'lng 16Dgths fox' Rll atoms ln
one scattex'lng unit, , RQd 8 ls the Dumber density of
scattering units. Then, notj. ng that

iim 8(q) =- 8„=— =""-= i,O'Vf

q
" N v cr
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4~r[p(~) —p.] =-, Q sinq~I~(q) —~.] dQ.
2

7T 0

Thus the radial density function can be extracted
from the measured scattered intensity; this is the
well-known result of Zernike and Prins.

B. One-phonon scat tering

The one-phonon term is

csch(k(9) /2k&) T) r.~vv' 'Q9 ~ —~ 4(@ ~)

+ b (+ + +L)]p(sx) (q) (»)
where +" is the frequency of the Xth normal mode,
the summation extends over all normal modes of
the system, and 7„"„~(Q) is the partial inelastic
structure factor for the Xth normal mode

F"'(Q) = — — =-((r' Q)(r'&" Q)e"'"-'e "vv'"')
VV ~pm ~, V V

(2O)

Again taking the Debye-%aller factor as unity,
and using the results of earlier worke in which the
orientation-averaged one-phonon inelastic struc-
ture factors were computed for molecular gases,
one may express

Q2
P&&.) (q)

q
( x yxy) (qb, )

Pl' VPl V

where E„'P(q) is the inelastic structure factor for
exchange of two quanta with the Ath normal mode,

z('„'&) (q) = (i/!v')((i/m„»&„) (y „" Q)'

X(yk9)9, Q)2 e9(& bvv e ~&VVV (& )V

The distinct-mode terms are

(24)

Q)=+ 2 5fo(qN mVrnV „3 5

2X B
xq, (qb„„,)+ ———+P q, (qb„„.)

0

(„,(,„) t&' csch(h(u'/2k' T) csch(h(u' /2k~ T)
vv 9 i6(k X)(k

x b( + '+ ' )y'„()„,), &(q),

where

&'""" '(Q) =(i/~')((i/~, ~, )(r". Q)(r„"* Q)

x (y„' Q)(r„' *
Q) e"'""'s '"-'e)).

(26)
Both F(„'))(Q) and E("„'~ '(Q) are of the same form:

~(2)!,) ~()i, ,P &

VV VV

Taking the Debye-Wailer factor as unity, the indi-
cated orientation averages which appear are the
same as those which were worked out earlier for
two-quantum scattering by molecular gases'.

)i,
~

)i,+ ~
b )t ~

qb

(2i)
The forms used here are actually first-order

expansions of modified Bessel functions. Thus,
we have expanded I„(x) =

l ,x I"/n! —. Only when

@(Q ~ r„")(Q r". ) „,h &~' „i

where

X12X34+X13X24+ X14X23 )

x12b3b4 + x13b2b4 x14b2b3

+ X23b1 b4 + X24b1 b3 + X34b) b2

I' = b1b2b3b4,

(2'7)

are these approximations valid (this is usua, lly the
case, except for smallest +, or when N is small,
as in small molecules).

in which

y)t1 ~ y X2

C. Two-phonon scattering

The two-phonon terms are of several kinds:
those involving excitation or deexcitation of two
quanta in a single normal mode, and those involv-
ing excitation or deexcitation of one quantum in
each of two distinct normal modes. Thus

g(R) (q ~) P g(t2P) (q ) + g g(9))(sx ) (q ) (22)

The sum on modes in the distinct-mode term in-
cludes each pair only once —thus (X, X ) and (X, X)
are to be counted as only one distinct pair. Here,
the single-mode terms are

4 2
~~( )

k csch (k(9& /2k&) T)
( &) (2~)( )vv 9 32(k g)1/2 vv Q 9

(23)

)t A,2x14 —y„1 ~ y v2,
y)t2 y)t, 1

23 v vr

x24 yv

X34
-—y1 ~ y 2)t

V V

b = (i/b. , )(b.„r'„'),
ba = (i/b. . )(b„„"r". ),
b, = (i/b„„)(b.„"r")),
b4 ——(1/b„„)(b,„~ ~ y~a) .

(Note we have suppressed subscripts v, v on I,
B, P, x;,, andb, ).

The two-phonon terms may now be combined,
taking advantage of the fact that the structure fac-
tors are of the same form for (2l() and (l(i l(').
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s"'.(Q ~)=ps""&(Q &)+ps&""'&(q )

g @ csch (k~'/2k»T)
~ ( „) ( „)~ &1,»( ~ 8 csch(h&u'/2ks T) csch(k&u /2ksT)

x[g( ' '
) g( ' '

) g( — '+ ')+g( — ' ')]F&„'„', &(q). (28)

D. Recombining results

Combining the results for all atom pairs as in

Eq. (4), we obtain for the elastic scattering

$(0& (q ~) — g g $&~0& (Q ~)
VgV

(29)

for one-phonon scattering

S' '(Q, v) = =P a„„s„"„'(Q,~),
VV

(30)

and for two-phonon scattering

s'" (Q, (u) = =Q o„„s„"„'(Q,(u) . (31)

The elastic scattering term is familiar,

S'"(Q, ~) = ~ Qo„„—-jo(qh.. ) f (~) .
VV

The one-phonon term (for v &0) is

(, &
1 ~ ~ k csch(h(u"/2kT)

VV

x 5((d —(u")F„"„'(Q).

(32)

(33)

mF&,"&(q)
(34)

Here, nz is the mass of the scattering unit,

(35)

and the fa.ctor Q has been brought out, making
the first factor dimensionless.

IV. USE OF RESULTS IN COMPUTING FROM MODELS

Use of the results developed above is straight-
forward. For finite models, with a total of Nz

atoms, some number N&N~ of these, which are
remote from boundaries may be considered to con-
stitute the model. The requirement on such a

Since the co-dependent factor can be brought out of
the summation after evaluation at &d = u& (by virtue
of the 5-function) one can write

(1& ( )
k Q csch(k(d/2k T) ~

( 1)S Q~ (d ~6 c0 —co

model is that it be large enough so that there is a
significant interior volume in which atoms do not
experience forces which depend on the presence
of the boundaries. The interior must have a
diameter at least as great as the ordering distance
(dista. nce between atoms beyond which order dis-
appears). All the roughly 3' norma. l modes of
the structure must be included in the sum on nor-
mal modes. In the double atom sum, the first
atom index v ranges over the N interior atoms,
while the second atom index v ranges over neigh-
bors of the first atom which are within the order-
ing distance. The second atom sum may range
outside the interior N atoms. The model is large
enough so that all those second atoms lie remote
from boundaries. When the second atom sum is
confined to the interior N atoms, corrections for
finite model size may be required.

For periodic (thus infinite) models, with &V atoms
per cell, there are no boundaries (the cell bound-

aries can be drawn a,nywhere). All atoms are then
"interior" atoms. The requirement on such a
model is that it have a cell larger on each side
than the ordering distance. The normal mode sum

ranges over all BN modes of the cell. In the dou-
ble atom sum, the first atom index v ranges over
all N atoms in one cell, and the second atom in-
dex v ranges only among neighbors of the vth

atom which lie within the ordering distance, in

whatever cell they lie.

V. SCATTERING OF NEUTRONS FROM ACOUSTIC

WAVES IN DISORDERED SOLIDS

As an illustrative example, we utilize the re-
sults of the preceding sections to calculate the one-
quantum scattering from an analytical model for
traveling plane-wave modes in an isotropic medium.
We consider modes for which the polarization vec-
tors have the simple form

r „=m'„" (&, (q) 8 "", (36)

in which n,.(q) determines the polarization of mode

(j, q) with respect to propagation vector q, and the
mode X is simply renumbered (j, q). The propaga-
tion vectors q are in principle a discrete set deter-
mined by the external dimensions of the system.
The normalization condition (11) applied to these
modes implies e, =m, I the total mass of a scat-
tering unit. For these modes then, Eq. (10) has
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the simple form

F'..'= (e'/M)[:~, (eb..)

+(3 - ~,') jo(Qb..)]e"""', (3'1

with M =—.nm, and p, . the cosine of the angle be-j
tween q,. and b„„.

The mode sum in Eq. (19) is now replaced by a
sum over j and q; we change the q sum to an inte-
g l th l

Vg-(, ), p

(g) AQ V' '~ ")=m(2.) y=r, r j,rp
(2ejq) '

«seh ~2+T &(oj —t,q) [ s jo(Qb„)

+(l- u,') jo(Qb„, )]e""'d'q. (39)

The integral in Eq. (39) ean be evaluated for our
simple modes by noting that

&I. =0 &vv' ~ (4Oa)

where V is the system volume. %e limit the j sum
to a single longitudinal and two orthogoQal trans-
verse polar izations, characterized by distinct
sound speeds

(do (q) =
'july q (38a)

(dr, (q) = &ur, (q) = vr q . (38b)

It j.s important to note that the dispersion relations
(38) will only be valid for small propagation vec-
tors (long wavelengths) in a microscopically non-
uniform medium such as a glass.

Equation (19) can now be written a.s

while

] r, +~', =[1-(q b, )'],

hats denoting unit vectors. Gn evaluation of the
q integral, Eq. (39) can finally be written as

2M 2m'g 8

~[-:j.(e)j.(q.b) -',j,(eb)&,(q. b)].q,'/;[ j.(eb)j.(q, b) --'.j,(eb)~.(q, b)1];
(41)

where q, =oj/vj; j=I., T. (Note we have dropped
the subscripts on b„„.) From a model of the sys-
tem structure, from which to obtain the g„„,„ the
one-phonon scattering law can now be computed.

The one-phonon scattering can also be computed
from the structure factor determined by neutron
diffraction (or from a model). We can transform
the sum on v, v into an integral by introducing the
static pair density p(r) weighted for neutron scat-
tering (this is of course the quantity obtained by
Fourier transformation of the neutron-diffraction
pattern) which was (ieflned in Eq. (14). Any scat-
tering length weighted sum over all the atomic
separations can. be conveniently expressed in
terms of this function, by

=g ~„„j(b„„)
v, t'

g 4''pm+5 r A'-

%'e can therefore express the one-quantum scatter-
ing law in terms of j(o") as

~"'(@ ~) =&~ 2 )o(») 'csch
2 T 4v~pb)(qi/~~[bio(Q~) jo(qi~)+'ohio(Q~bo(q&~)]2M 2a) a~ r=O

+q'/q ]qqjq(()q) jq(q «) qjq(q)q) j)(q q)]]«-+l / +]qqq'/qq) . (43)

Calculations based on (43) require as input only the pair correlation function p(x), e. g. , from neutron dif-
fraction or a model, and sound speeds 8& and p~ either measured or inferred from other data. For
small systems such as the usual random-network physical models, the use of p(r) probably increases
the amount of labor required, by comparison with a straightforward summation of terms such as (41) sub-
stituted into (5).

Equation (43) can be cast in a particularly compact and useful form by introducing the neutron structure
factor via the Zernike-Prins relation, Eq. (18),

( oo - oo 2
8"'(Q, ~) — — -o (2~) ' eseh — — («)'f(&)jo(«) ~[-'jo(q~) jo(q~ )

2M 2o 2&aT' o .=o r=o

+sjq(()q)j)(q, q)]+ ,'(gjq(()q)jq(qqq) qj)(q)q)j—q(qqq)])qjq«+q. —'+-q —"+J qqq'p

2 2
& —'[l jo(@~)jo(qi~)+o jo(e~)jo(q~o)]+~ Iojo(@~)jo(qr~) —ojo(Q~)io(qr~)] «

Vg Vg
(44)
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where i(Q) =- S(Q) —S„. The integration over r is
fairly straightforward but quite tedious, yieMing

AQ V 1 A(()
(Qp (()) =

2~ 2 qa (2(()) csch
2

Ki(K)2M 2v) 2 j-pg T

The Brillouin scattering term represents the
small-Q limit of the acoustic-wave-mode inelastic
scattering. If the BrHlouin scattering term in

Eq. (46) is used in Eq. (12) to determine the in-
elastic contribution to the small-Q limit of the
total structure factor,

&&
~~

ill dK+ Ki(K)
~ (1- ilra

VI, Q g~ Vg Q lim S(Q) =2
Q 0

cosl12 pk(d[S(Qq (())]sqlllogln d(d) (46)

~ —~+——+4m' =()(()—q )),2q 4qr p„
3 vl, 3 8g 'vg

(46) one obtains the well-known result

where p, ~
= (Q'+q& —K')/2Qq~ and && is the interval

of K such that —1& p, ~1 (i. e. , such that Q, q, ,
alld K form a tl'iallgle). Finally) changing tile 111

tegral over v to an integral over p, ~ and p.~,

hQ V Sh)

lim S(Q) = p k7)i, ,
Q 0

where X, is the adiabatic compressibility, and

(49)

"f (Q ~)+&+a S((u —u ()))-

y, (Q, ~) -=p, 'S((Q'+a~ 2Qe-&p)")dp, (47a)
"1

f, (@, )=f (( —u')~((()'+e'-2Qe, t)'")&v.
(47b)

The last term in (46) is equivalent to the Brillouin
scattering in fluids, while the first two terms cor-
respond to phonon scattering in polycrystals. Cal-
culations based on diffraction data using Eq. (46)
do not require the intermediate step of Fourier
transformation to p(r), and relate the inelastic
scattering to the Ineasured structure factor. Any

possible problems with the ever present termina-
tion effects are thereby avoided.

(Of course in a harmonic solid, the adiabatic and

isothermal compressibilities are identical. )

VI. CONCLUSION

%e have developed a computational method for
determining the one- and two-phonon inelastic
scattering from amorphous solids. This requires
as input information atomic coordinates from a
model of the structure, and the eigenveetors and

frequencies of the normal modes of the structure.
%e have also derived means for computing the one-
phonon inelastic scattering due to acoustic-wave
modes in isotropic media, which require as input
the (neutron) weighted radial density function, or
the neutron-diffraction pattern and the sound

speeds.
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