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Transport property of zero-gap semiconductors under tensile stress~
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The band structure of symmetry-induced zero-gap semiconductors under uniaxial tensile stress is studied. It is

found that there exist regions in the reciprocal space where one component of the effective-mass tensor of
either electrons or holes becomes negative. In particular, the anomalous region for holes can be made

suNciently large to allow for the occurrence of negative-differential-resistance (NOR) effect. The I- V

characteristics for p-type a-Sn and HgTe at both zero temperature and finite temperature (4.2 and 77'K) are

obtained by simple transport calculations. From these calculated I- V characteristics, one gets some idea about

the sample requirements and magnitude of stress needed for NOR efkct.

I. INTRODUCTION

For semiconductors like n-Sn or HgTe, the con-
duction band makes contact with the valence band

at one point in the reciprocal space, and hence the

energy gap is identically zero. The band-edge
point, i. e, „ the contact point, is a degenerate quan-
tum state, and the corresponding wave functions
belong to a multidimensional irreducible represen-
tation of the symmetry group of the crystal. In

other words, the degeneracy of the band edge is re-
quired by symmetry. At the beginning, the zero-
gap model was proposed for n-Sn. Later on,
several compound semiconductors like Hg Te, ~

HgSe, HgS, and Cd3AS~, ' were reported to possess
similar band-edge structure. As the list of symme-
try-induced zero-gap semiconductors grows, so
does the interest in investigating their properties,
both theoretically and experimentally.

Since the degenel"acy of the band edge 18 symme-
try induced, the band-edge structure can be signifi-
cantly distorted by applying symmetry-breaking
fields such as uniaxial stress, which destroys the
original cubic symmetry of the sample. For n-Sn,
it has been shown experimentally that compres-
sional uniaxial stress will open up an energy gap
by pulling the conduction and the valence band apart
while tensile stressv will cause band overlap. Let
us consider the case of tensile stress here. Under
tensile stress, the conduction band for k along the
stress direction will move downward in energy
relative to the valence band, and intersect it at
points away from their original contact point, i.e. ,
the center of the Brillouin zone. Thus, part of the

original conduction band will be pulled down in en-

ergy to form a segment of the new valence band.
Correspondingly, one segment of the original va-
lence band will be moved up in energy and become
part of the conduction band under stress. This

interchange Qf roles between the conduction and
the valence bands would make the effective mass
of the charge carriers negative. Therefore, when

charge carriers, electrons, or holes, are trans-
ferred into the negative-mass region, say, by an
external electric field, their masses undergo a
change in sign and magnitude. This makes it inter-
esting to study the electronic transport properties
for such a system. Especially, a negative-differ-
ential-resistance (NDR) effect ' is expected to
occur, which may have important practical appli-
cations.

We limit ourselves to the consideration of motion
of holes in this paper. The reason is that only the
valence-band structure under tensile stress is ca-
pable of producing NDH effect. Although the con-
duction-band structure is also anomalous, the
anomalous region is too small to produce any ap-
preciable non-Ohmic effect. We do a transport cal-
culation specifically for e-Sn and HgTe, whose
band parameters are better known among all the
existing zero-gap semiconductors. The transport
calculation is first done at zero temperature to
demonstrate the existence of the NDH effect at low

temperature and then extended to finite tempera-
ture to see how temperature would affect it.

In Sec. II we discuss the band-edge structure of
zero-gap semiconductors under uniaxial tensile
stress. The transport calculation is described in

Sec. III for the zero-temperature case and in Sec.
IV for the finite-temperature case. In Sec. V we

discuss some related NDH-producing phenomena,
and finally, in Sec. VI questions related to the
oversimplified assumptions made in the present
papel" al 6 cllscussecI.

II. BAND-EDGE STRUCTURE

The band-edge structure for zero-gap semicon-
ductors can be best appreciated by comparing that
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of n-Sn with the well-known band structure of Ge
near the center of the Brillouin zone, i.e. , the I'
point. A sketch of such band structures is pre-
sented in Fig. 1, which also includes a band scheme
for the compound semiconductor InSb. In going
from Ge to n-Sn, the order of the I", and I"7 bands
is reversed. This level crossing causes the light-
hole band in Ge to invert its curvature and become
the conduction band in Q.-Sn. Thus, the conduction
band touches the valence band at the I'8 point in
n-Sn, and the energy gap becomes identically zero.
For compound zero-gap semiconductors, apart
from some insignificant features caused by the lack
of inversion symmetry, the band-edge structure
is essentially the same as that of ~-Sn. As the
I"8 state is the valence-band edge for Ge, it has
been well studied ever since the days of the early
cyclotron resonance investigations. ' Thus, we
have the advantage of applying the well-known hole
structure for Ge to the band edge of zero-gap semi-
conductors, with only minor modifications. For
example, the band edge of zero-gap semiconductors
is represented by the following expression:

E(k) = Ak + [B k' —C (k„k, + k,k, + k,k„)]", (2. 1)

where the plus sign applies to the conduction band
and the minus sign the valence band. Comparing
with the expression applied to the light-hole and
heavy-hole bands of Ge, ' we have only changed
the sign of the warping term. Of course, the band
parameters A, B, and C now should assume a
different set of values from that for Qe. The band
parameters for n-Sn and HgTe are given in Table I.

The valence-band-edge structure for Ge under
uniaxial stress is also a well-studied subject. "'
We can extend these well-known results to zero-
gap semiconductors with 1,' band edge. We shall
consider two cases, one with (0, 0, 1) stress and
one with (1, 1, 1) stress.

A. {0,0,1) tensile stress

Under (0, 0, 1) tensile stress the form of the con-
duction and the valence band near the band edge
becomes

E, „(k) =Ak +(B k' —C [k„k,+ Bk,(1- cos44)I

+ &0 —&~0(2k„—k,)j", (2. 2)

where the plus sign gives the conduction-band and
the minus sign the valence-band structure. The
wave vectors k„and 4, refer to the parallel and
perpendicular component of k with respect to the
stress axis, respectively. The azimuthal angle C

is defined with respect to a cubic axis in the plane
perpendicular to the stress direction. The param-
eter 4o is half of the energy separation between the
conduction and the valence band at k =Q; its actual
value depends on the magnitude of the applied stress
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FIG. 1. Sketch of the energy-band structure of Ge,
InSb, and e-Sn near the center of the Brillouin zone.

and the deformation potential of the material.
Based on experiments done with n-Sn, ' the sign
of 60 is positive. In Eq. (2.2) the identical energy
shifts of the two bands due to the hydrostatic com-
ponent of the stress has been neglected.

As given in Table I, the band parameters for
n-Sn and HgTe are rather similar. Therefore,
we shall use only n-Sn to illustrate the band-edge
structure under uniaxial tensile stress in this sec-
tion. The E vs k relationship for n-Sn at 4, = Q is
sketched in Fig. 2 by assigning a value of 15 meV
to 4o. The drawing shows clearly the crossing of
the two bands at k„=+ v 6078 when stress is applied,
Let us look at the region between the two crossing
points. There is a segment in the lower band
which, unlike the rest of the band, has a positive
curvature. This curvature actually is identical to
that of the original conduction band before stress
is applied. In terms of the effective mass along
the stress direction, this means that holes in this
anomalous region possess negative mass equal to
the electron mass in magnitude. Similarly, the
upper band has a segment between the crossing
points with negative curvature equal to that of the
original valence band. Hence electrons in this
anomalous region also become negative-mass
carriers with the magnitude of its mass equal to
that of the normal holes.

The band structure of the 4~=Q plane is different
from that described above. Now, there is no con-
tact between the conduction and the valence band
and a finite-energy gap exists. However, we still
have an anomalous region for the lower E vs A)~

band so long as the 0, value is not too large. The
anomalous structure for the upper band, however,
disappears much faster as the 4, value increases.
This makes the conduction band a poor candidate
for producing NDB effect. These band-edge struc-
tures for the k, Q plane are also shown in Fig. 2
(with 4=0). Thus, the electronic structure under
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TABLE 7. Band parameters in atomic units.

2

(0,0, I) stress

Q Sn
HgTe" 294

%. Leung and L. Liu, Phys. B,ev. 8 7, 718 (1973).
"%. Zawadzki and J. Kowalski, Solid State Comm. un.

15, 303 (1974}.

uniaxial tensile stress is again with identically
zero-energy gap. But now the valence band makes
contact with the conduction band at two points in-

lG—
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k~ =G. l

FIG. 3. Constant-energy contour for holes in e-Sn
under (0, 0, 1) tensile stress. The parameter 40 is
taken to be 15 meV. The wave vectors k»» and k& are ex-
pressed in units of 10 cm, and the energy associated
with each contour in meV measured downward from the
valance-band maxima. The region between the dotted
lines is where the hole mass becomes negative.
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FIG. 2. Ener~-band -tructure of n-Sn under (0, 0, 1)
tensile stress. The band splitting parameter Do is taken
to be 15 meV, which can be produced by a stress of
about 2 ~ 10~ dyn/cm~.

stead of one in the no-stress case; these are the
crossing points with (k„, k,) coordinates given by
(+ +b,~/B, o) as mentioned previously.

A better way to appreciate the electronic struc-
ture is to study the constant-energy surfaces. %e
shall confine ourselves to the hole surfaces only.
From Eq. (2. 2), it is seen that the constant-energy
surfaces should have fourfold symmetry around
the stress axis as indicated by the cos4C term in
the energy expression. This C dependence is,
however, rather weak at small energies for n-Sn
or HgTe. For example, for n-Sn, at an energy of
8 meV as measured downward from the valence-
band maxima and a fixed 0„, the deviation of k~

from its mean value does not exceed 1%. Therefore,
we shall neglect the C dependence henceforth. The
constant-energy contour for the valence band in a
k»»-k, plane is shown in Fig. 3. Since full axial
symmetry around the stress axis is now assumed,
the constant-energy surfaces may be obtained by
rotating the drawing around the k»» axis. It is seen
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that for small energies («2&o) as measured down-

ward from the two valence-band maxima, the con-
stant-energy surfaces are approximately two dis-
connected ellipsoids compressed along the stress
direction. As the energy increases, the two sepa-
rate pieces gradually join up with each other. The
region where the mass component of the hole along
the stress direction becomes negative is also indi-
cated in Fig. 3.

For our later use, we also evaluate numerically
the number of holes contained within a given Fermi
surface. This is easily done, especially when the
surface is assumed to possess axial symmetry.
The result is shown in Fig. 4. In the small energy
region shown, the density of holes is found to be
proportional to the cubic power of the Fermi ener-
gy. This result can be appreciated qualitatively
as in the following: As we have seen, for small
energies the constant-energy surfaces are approxi-
mately ellipsoids. If we study the dependence of
the three axes of the ellipsoid on the energy, we
find that each one is proportional to the first power
in energy. Hence, the volume of the ellipsoid is
dependent on the energy to the cubic power.

B. (1,1,1) tensile stress
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Fermi Energy (meV)
In this case, the energy expression for the two

bands becomes

E„„(k)= &k + [& k' —C (—,
'

k,', + 4 k,' ——', v 2 k,k„sin34 )

g2 (@2 & g2)1/2 g (2k2 k2)]1/2 (2 3)

FIG. 4. Number of holes in O. -Sn contained within a
given Fermi surface. It is noted that the carrier num-
ber is approximately proportional to Ez within the
Fermi energy range shown here.

if we neglect the energy shift due to the hydrostatic
component of the stress. Here, the azimuthal angle
4 refers to a coordinate system in which 4, is
along (1, 1, 1) and k, along (1, 1, 0). Now, the con-
stant-energy surfaces should possess threefold
symmetry around the stress axis. Again, we as-
sume perfect axial symmetry, and plot the constant-
energy contours in Fig. 5, which also shows the
negative-mass region. For small energies, the
constant-energy surfaces are approximately dis-
connected ellipsoids as in the (0, 0, 1) stress ease,
but now the ellipsoidal axis is elongated instead of
being compressed along the stress axis. For ~o
=15 meV, the anomalous region ceases to exist for
k~ values beyond approximately 2. 1&& 10 cm . The
number of states contained within a given energy
surface is calculated and shown in Fig. 6. As in
the (0, 0, 1) stress ca.se, an E dependence is found
for small values of E.

A brief discussion of the band structure under
tensile stress has been published elsewhere.

C. Compressional stress

The compressional stress is not the topic of this
paper. We mention it only to show later why zero-

gap semiconductors under cornpressional stress
are not expected to show NDR effect even though
there also exists a negative-mass region for holes
in the band structure.

The band structure for n-Sn under compressional
stress has been investigated theoretically by Car-
dona' and experimentally by Roman and Ewald.
As mentioned previously, the conduction and va-
lence bands are pulled apart, and an energy gap is
opened up by the compressional stress. The maxi-
mum of the valence band is shifted from the original
band-edge point (1";state) along a direction perpen-
dicular to the stress axis. Thus, the new maxima
may be situated along a ring around the stress axis
and the constant-energy surfaces for holes become
toroidal in shape. The region near the center of
the toroidal surface is an anomalous region in
which the hole-mass component along a direction
perpendicular to the stress axis becomes negative.
On the other hand, the conduction band is normal
in the sense that the band minimum stays at the
center of the Brillouin zone (BZ), and no negative-
mass region for electrons occurs.

From the summary of Cardona's results above,
we see that the electronic structure of zero-gap
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( I, I, I )

stress

FIG. 5. Constant-ener-
gy contour for holes in e-
Sn under (1, 1, 1) tensile
stress. The parameter
A p is taken to be 15 meV.
The units used are the
same as in Fig. 3. The
boundary of the negative-
mass region is marked by
dashed lines.

to current opposite in direction to that due to nor-
mal carriers, the total current in the sample may
actually decrease as more and more carriers are
transferred into the anomalous region under in-
creasing values of the electric field. When the
electric field is increased further, however, both
ellipsoids may be transferred out of the anomalous
region and then Ohmic behavior should resume. In
the qualitative considerations above we are tacitly
assuming that the sharp boundary of the Fermi sur-
face is not distorted to any large extent by the elec-
tric field, which only drives the hole ellipsoids
away from their positions at equilibrium. To study
the NDR effect quantitatively, we must know how

the equilibrium distribution function is distorted
by the electric field.

To simplify the calculation of the steady-state
distribution function in the presence of an electric
field, we have to make certain assumptions. We
assume that neither the scattering mechanisms nor
the electric field cause any interband transitions.
Therefore, if we start with a p-type sample at zero
temperature, the carriers would always stay in the
valence band. With a relaxation-time ansatz, we
can then solve the following Boltzmann equation to
obtain the steady-state distribution function f for
holes:

semiconductors under compressional stress is very
different from that under tensile stress.

lp
l7

I I I I

III. NDR EFFECT AT ZERO TEMPERATURE

Before we make a transport calculation to show
the existence of NDR effect, we shall first use
qualitative reasonings to indicate why this effect
may occur at low temperature. Let us take as an

example a p-type sample at absolute-zero temper-
ature. If the hole concentration is small, corre-
sponding to a small Fermi energy («260) of, say
4 meV, the Fermi surface consists of two ellip-
soids as shown in Fig. 3. At equilibrium, all the
holes are contained within these two ellipsoids. As
one can see from the figure, only a very small
fraction of the holes are anomalous. With an elec-
tric field applied along the stress direction, the
distribution function is distorted along this direc-
tion in such a way that one of the ellipsoids is
moved into the negative-mass region and the other
is moved away from it. Hence when steady state
is established by the scattering mechanisms, a
larger fraction of the hole carriers becomes anom-

alous. According to the discussion in Sec. II, these
anomalous carriers are much lighter (about ten times

lighter) than the normal carriers on the average.
Since carriers with negative mass should give rise

E IQ
C3

o IOI5

I P l4

I I I I

4 6 8 IG 12

Fermi Energy (meV)

FIG. 6. Number of holes in z-Sn contained within a
Fermi surface. The E~~ dependence is also true for
(1,1, 1) stress.
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e+ sf f-f'
h Bk„v' (3. 1)

E/2

f (k„, k,) = f'(k'„, k,) G(k,'„k„)dk, ', .
-Z/2

(3 3)

where E is the electric field strength applied along
the stress axis and f is the equilibrium distribu-
tion function for holes. If we further assume that
the relaxation time 7. is isotropic and a constant,
we can easily find out the one-dimensional Green's
function for Eq. (3.1) as follows:

G(k,'„k„)= a exp[- (k„—k,', )/a]

[exp(K/a) —1] ', k„&k,',
(7

[1 —exp(- K/a)] ', k„&k,',

where K is the separation between the two BZ faces
along the stress direction and a= eEv/I. The solu-
tion of Eq. (3.1) is given by

The distribution function along the k, axis is not

changed.
At absolute-zero temperature, the equilibrium

distribution function f (k„kJ) is just a step function,
which drops to zero at the boundary of the Fermi
surface. For small Fermi energies (&2&0), the
equilibrium distribution function can be written in
terms of unit step function 9 as

f'(k. k.) =e(k. -k...)[e(lk I- k,.(k.})

—e(~ k„~ —k„,,(k,))], (3.4)

where 0,, is the maximum value of k, allowed for
a particular Fermi surface. One sees from Fig.
3 or 5 that the Fermi contour (for small Fermi en-
ergy) intersects with a given k, axis (k, &k~ ) at
four points, which we denote by + k„& and + k}} p

with kq 2+k„g in Eq. (3.4). From Eqs. (3.2)-(3.4)
we can readily obtain the distribution function:

t exp[(- klan
—2K)/a][sinh(klan, 2/a} —sinh(klan, /a)][sinh(K/2a)], —aK&

klan
~ —k„z

(1+exp(- k„/a)[sinh(k„, a/a- K/2a) —exp(- K/2a}sinh(k„&/a}][sinh(K/2a}] ], —k„,3& k„——k„&

f(k„, k, ) =e(k, —k„.) exp(-k /a)[sinh(k„, /a-K/2a) —sinh(k„, /a-K/2a}][sinh(K/2a)] ', —k„,&k„~k„,

pl+ exp(-k„/a}[sinh(k„z/a- K/2a) —exp(K/2a)sinh(k„, /a)][sinh(K/2a)] 'j, k„,&k„~k„2

( exp(- k„/a+ K/2a}[sinh(k„, z/a} —sinh(k„, /a)][sinh(K/2a}], k„,z & k„—2K.
(3 5)

We show some typical steady-state distribution
functions f(k„kg=0) for o.-Sn under (0, 0, 1) stress
in Fig. 7. As we are considering a case of small
Fermi energy, the distribution function at equilib-
rium consists of two step functions. With the elec-
tric field turned on, the two step functions are dis-
torted and joined together by two exponential tails;
one tail goes through the negative-mass region and
the other goes through the entire BZ. In the figure
we only show a certain portion of the tail which is
not vanishingly small in magnitude. We can see
from the figure that as the field is increased, the
carrier number in the negative-mass region is
first increased and then decreased, as we had an-
ticipated from qualitative considerations.

Since the dependence of the distribution function
on k, is the same as that at equilibrium, the cur-
rent is along the stress axis. With f known, this
current density 4, can be readily obtained by per-
forming the following integral numerically:

1gE
el)( p k~ 2k~ f(k()i k~) dk(( (3 6)

The valence-band energy E„ is given either in Eqs.
(2. 2) (2.3), depending on the stress direction. The

f(k}
I

lO \

A

\

I

-2
IO

0

k](
I

5

FIG. 7. Some typical zero-temperature steady-state
distribution functions f (k) for G.-Sn at the k&= 0 plane in
the presence of electric field F. The total number of
hole carriers is taken to be 10~5 cm 3 (corresponding to
E~ = 2.8 meV) and 60 is taken to be 15 meV for (0, 0, 1)
stress. The curves are for the following values of the
field: (A) Fv =0.72&&10-~ sec V/cm (B) Fv =1.8&&10 9

sec V/cm; (C) F7 =2.9&&10 sec V/cm.
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In two ways does the temperature work against
the NDB effect. First, at finite temperature, both
electrons and holes are present, but only the holes
are capable of producing NDH effect. If the elec-
tron current gets larger than the hole current, the
former may completely cover up the NDB effect
produced in the latter. Second, the equilibrium
distribution function at finite temperature no longer
possesses sharp boundaries. In other words, there
are already a great deal of carriers leaked ther-
mally into the negative-mass region at equilibrium,
and it is difficult for the electric field to cause
enough change in the anomalous carrier population
to give rise to NDR effect. In this section, we
shall study these questions.

Now, we have to consider both the conduction and

the valence band. For simplicity, we continue to
neglect interband couplings, and solve two decou-
pled Boltzmann equations

&»fa fa -f'n
&k)~

(4 1)

We again assume that both the electron relaxation
time z, and the hole relaxation time v„are isotropic
and constants. Then, the electron distribution

current-versus-field relation (I Vc-haracteristic)
for o.-Sn calculated according to Eq. (3.6) is plotted
in Figs. 8-10. In these figures, the stress split-
ting 40 is taken to be 15 meV (corresponding to a
stress value of about 2&&109 dyn/cma). For small
carrier concentrations like n= 10 cm (Fig. 8) or
n = 10" cm 3 (Fig. 9), a NDR region exists in the
I-V characteristic. If we take the relaxation time
y to be 10 sec, inferred from the measured mo-
bility for electrons, ' the threshold field for NDR
effect to occur is a few volts per centimeter for
both (0, 0, 1) and (1, 1, 1) stress. For a fixed stress
splitting 4o, the maximum percentage drop of cur-
rent is larger in (1, 1, 1) stress case. Comparing
Figs. 8 and 9, one sees that as the hole concentra-
tion increases, the NDR region shrinks in width.
When the hole concentration gets to 10" cm ' (Fig.
10), the NDR region disappears in the I Vchara-c-
teristic for (0, 0, 1) stress Ins. tead only a change
in slope occurs. For (1, 1, 1) stress, the NDR ef-
fect disappears at a higher hole concentration. For
the same 4o, the current density under (0, 0, 1)
stress is always larger than that under (1, 1, 1)
stress. This is because of the larger effective
mass of normal carriers in the latter ease.

As mentioned previously, the anomalous region
for the conduction band is too small to produce
NDH effect in a n-type sample.

IV. FINITE TEMPERATURE

1.5

I.O

0
0 I 2

F w (io sec Vcm )

FIG. 8. Calculated current versus field relation (I-V
characteristic) for n-Sn at zero temperature with a hole
concentration of 10~4 cm 3. The direction of stress is
indicated in the figure. For both directions, Do is taken
to be 15 me V.

function f, and the hole distribution function f„can
be obtained by using their respective Green's func-
tions as in Eq. (3.3) of the zero-temperature case.
The equilibrium distribution functions in the pres-
ent case are, of course, no longer step functions,
but given by

f', = (expfP[E, (k) —E,j)I+1)-'

and (4. 2)

Now, in order to preserve the NDR effect at
finite temperature, the Fermi level EI,. has to be

with P=1/ksT. In this section, we continue to mea-
sure the Fermi level EJ, from the contact points of
the conduction band with the valence band. While
in Sec. III we assigned a positive value to the Fermi
energy when it is inside the valence band, E~ can
now be positive or negative; a positive E~ means
that the Fermi level is inside the conduction band
and a negative E~ means that it is inside the va-
lence band.

After obtaining the distribution functions, we can
evaluate the electron contribution and the hole con-
tribution to the current according to Eq. (3.6).
The total current density is the sum of these two

contributions:

(4. 3)
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situated inside the valence band and small in mag-
nitude («260). But it should not be too small, for
otherwise, there will be too many thermally ex-

l50

IOO

JD
50

FIG. 9. Calculated I-V characteristic of z-Sn at zero
temperature with a hole concentration of 10' cm
for both stress directions is equal to 15 meV.

FT (10 sec V cm ')

FIG. 11. I- V characteristic for o. -Sn at 4.2'K under
(0, 0, 1) stress. At the chosen stress and Fermi level,
the electron and hole concentrations are n, =1.6&10~
cm 3 and n& = 0.86 ~ 10 ~ cm, respectively. The elec-
tron current is negligible.

cited electrons to cover up the NDR effect in the
hole current. Hence, a proper compromise has to
be made in the preparation of samples.

We show in Fig. 11 the calculated I- V character-
istic for o.-Sn at 4.2 'K and under (0, 0, 1) stress.
Since in this case the hole current is larger than
the electron current by five orders of magnitude,
the I-V characteristic is given by the hole-current
branch alone, which is not too different from the
zero-temperature characteristic shown in Sec. III.

We also show in Fig. 12 the calculated I- V char-
acteristic for HgTe at 7V 'K and under (0, 0, 1)
stress. The stress splitting ~0 chosen for this cal-
culation is probably unrealistic. We give this re-
sult only to demonstrate the very severe require-
ments with which the NDR effect may be obtained
at moderate temperature according to the simple
calculation presented here. In Fig. 12 we note a
change in slope in the electron curve, produced by
the anomalous electrons.

V. RELATED PROBLEMS

0 I 2

F~ (io sec Vein }

FIG. 10. Calculated I-V characteristic of e-Sn at
zero temperature with a hole concentration of 10' cm
For ooth stress directions, 40 is equal to 15 meV.

It is well known that NDR effect in semiconduc-
tors has practical applications. A proposal was
first made by Ridley and Watkins ' to use carrier
transfer from light-mass to heavy-mass valleys
to produce NDR effect. Bidley 6 further studied in
some detail the nature of the current instabilities
associated with various types of NDR effect. Their
proposal was realized in the discovery of Gunn
oscillations in GaAs. 7

Apart from the Ridley-Watkins mechanism,
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FlG. 12. I-V characteristic for HgYe at 77'K under
(0, 0, 1) stress. At the chosen stress and Fermi level,
the electron and hole concentrations are ge = 0.38 && 10 ~

17
cm and nI, =0.57&&10 cm, respectively. Since the
electron current is much smaller than the hole current,
the I-V characteristic is given by the hole branch only.

Kroemer' proposed to use negative effective mass
to construct practical devices. He noticed that
due to the warping of the valence band of Ge or Si,
a certain component of the effective-mass tensor
becomes negative. If a way is found to confine car-
riers in this negative-mass region, one would have
obtained a circuit element with negative resistance
(not simply NDH), which can then be used to achieve
amplification or generation of microwave signals.
In fact, a name, NEMAG (negative-effective-mass
amplifier and generator) was coined for the pro-
spective devices. This idea, however, had not
been successfully realized. In the next paragraph
we shall give our qualitative understanding for this
failure.

Let us study the band structure for heavy holes
in Ge and Si. Due to warping of the band, the ef-
fective mass for any direction perpendicular to a
cubic axis becomes negative if the carriers are
confined in two narrow cones in 0 space around this
axis, radiating out from the band-edge point (i.e. ,
the I' point). The half-angle that is sustained by
this negative-mass cone in a given plane is around
10' to 15', At equilibrium, the carriers are dis-

tributed around the I" point with distorted spherical
symmetry. (The exact spherical symmetry is de-
stroyed by the warping effect. ) Hence at equilibri-
um, the population of the negative-mass holes is
around 3% of the total. Unless a way is found to
squeeze a large number of carriers into the nar-
row cone of negative mass, this smhLl percentage
point can not be significantly increased. Certainly,
both the electric field and the scattering mecha-
nisms can hardly produce the needed squeezing ef-
fect. Take the electric field for example. Let us
say that the sharp boundary of the Fermi surface
is retained, and the electric field only displaces
the Fermi surface along the field direction. In this
way, the percentage of the anomalous carriers
may be increased by one or two times at the most.
We shall see that this figure actually represents
a gross overestimation. Therefore, the contribu-
tion to the current by the anomalous carriers would
still be swamped by that from the normal carriers,
and no NDH effect (not to say the absolute-negative-
resistance effect) is expected.

By the same argument, we could probably rule
out zero-gap semiconductors under uniaxial com-
pressional stress as potential candidates for ob-
taining NDB effect. If we recall the discussion in
Sec. II, we see that in this case, the constant-en-
ergy surface for. holes is a ring-shaped object
around the stress axis, and the central region in-
side the ring is where the carrier mass turns nega-
tive. With this kind of configuration, it is again
hard to significantly increase the population of
anomalous carriers.

Let us come back to the case of zero-gap semi-
conductors under tensile stress. We see from
Figs. 3 or 5 that the valence-band structure in this
case is much more favorable for producing NDR

effect. If we assume that the sharp boundary of
the Fermi surface is not distorted by the electric
field, we can anticipate a situation in which as much
as 50% of the carriers become anomalous. This
corresponds to t;he ease where one of the two ellip-
soids is shifted into the negative-mass region.
However, from the transport calculation we have
performed in Sec. III, we see that using the argu-
ment of displaced Fermi surface, we would enor-
mously overestimate the population of negative-
mass carriers. This in turn makes it clear that it
is practically impossible to get NDR effect for the
other two eases mentioned in this section in any
realistic quantitative estimate.

Also related to the present work is the NDR ef-
fect observed in the semiconductor superlattice by
Esaki's group~0 at IBM. In fact, if our present
proposal can be used in device applications, one

of the practical approaches may be the use of epi-
taxial layers just as in the construction of super-
lattices. The needed tension in the present case
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could be provided by the thermal stress with a
proper choice of the substrate material.

VI. DISCUSSIONS

We discuss some of the oversimplified assump-
tions made in the present transport calculation.
We have assumed that the conduction and the va-
lence bands are decoupled. As the band edge with-
out stress is a degenerate state and as the two
bands are still in contact with each other even under
tensile stress, this is a rather poor assumption.
On the other hand, if one wants to treat the inter-
band scatterings more realistically than repre-
senting them by relaxation-time parameters, one
makes the collision term in the Boltzmann equation
very complicated. Then, one has to solve two

complicated coupled-integro-differential equations
to obtain the distribution functions for electrons
and holes. We are planning an approach along this
line. But before a complete calculation is done,
it is difficult for us to predict how would the inter-
band couplings affect the calculated I-V character-
istic.

Another factor which has not been properly ac-
counted for by our relaxation-time approximation

is the inelastic scattering processes. In fact, the
"heating" of the hole carriers by the electric field
should favor the transfer of holes from the normal
to the anomalous region and thus enhance the NDR

effect. Therefore, our simple approach here may
have produced more severe requirements than are
actually needed for NDR effect.

Since the original band-edge point is a degenerate
state, the intraband scattering rate is expected to
have a complicated angular dependence. Thus,
the isotropic-relaxation-time approximation used
here is not a good substitute for the integral scat-
tering operator in the Boltzmann equation on this
account. However, it is again difficult to predict
the consequences of this isotropic-relaxation-time
assumption.

In summary, because of some oversimplified
assumptions made, the results presented here
should not be taken too seriously in the quantitative
sense. However, the present work does predict
the existence of a non-Ohmic effect in zero-gap
semiconductors, which potentially may have im-
portant applications. A brief outline of the zero-
temperature I-V characteristic has been presented
elsewher e.
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