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The nonlinear optical susceptibilities, IXP4~(2ce)i for second-harmonic generation of GaAs, InAs, and InSb in

the range 0.05 (he@(3.0 eV are calculated from the band structure obtained by the empirical pseudopotential

method. The spin-orbit interaction has been taken into account, and the transitions from the top four valence

bands to the bottom four conduction bands are included in the calculation. The calculated i)(P4~(2')i with

the fc-dependent dipole matrix elements give much better agreement with the available experimental data than

the results of constant matrix elements, which, in turn, show more structure than the ones calculated by Bell.

In the case of InSb, there are two structures at 1.6 and 1.8 eV due to double resonances. A simplified model

to predict structure in IXP,'(2&e)i from the linear spectrum is discussed.

I. INTRODUCTION

Experiments on the dispersion of the nonlinear
optical susceptibilities, I x t'P(2tc) I, of zinc-blende
semiconductors were first carried out by Chang
et a/. ' Their results indicated that it is possible
to correlate the structures in I XP, '(2') I with the
band-structure effect. However, more systematic
experimental results have become available only

recently with the advent of tunable dye lasers.
A comparison between the experiment and the theo-
ry can now be made more meaningful.

The microscopic expression of I xtts'(2&c) I can be
obtained easily from second-order perturbation
calculations. ' It is seen that for solids, a com-
plete understanding of the dispersion of )(' '(2&c) re-
quires detailed information of the energies and the
wave functions of the electronic states in the first
Brillouin zone (BZ). Since this information is not
readily available, theoretical efforts have been di-
rected to two cases: (a) finding the limiting values
of I xts'(2tc) I as tc-0 (&c well below the electronic
transitions but above the vibrational transitions),
and (b) obtaining a semitluantitative understanding
of the dispersion of Xt '(2&c) by simplifying approxi-
mations. In the first case, both the bond-charge
model and the charge-transfer model ' derived
from the valence-bond theory'3 have been very suc-
cessful. However, the controversy of whether it
is the bond-charge or the charge-transfer model
that is responsible for )(t '(2&c) has not yet been re-
solved. In the second case, Bloembergen et al. '4

showed that the structure in )(t '(2') may be related
to structure in the linear susceptibilities )("'(&c}
and )("'(2+). However, in their formalism, the
possible double-resonance effect, which occurs
when both e and 2+ are near resonance at the same

point in the Brillouin zone, is buried away. Re-
cently, Bell used a simplified three-band model
to calculate i)(ts'(2&c)l for GaAs, InAs, InSb, and

ZnTe in the range 0.05» h(d~2. 0 eV. He made
the following assumptions in the calculations:
(a) The structures in I )(' '(2~) I for Stc ~ 2. 0 eV are
entirely due to v or 2v resonances with the transi-
tions between the top valence band and the two low-
est conduction bands at the critical points of I' and

along A in the Brillouin zone. (b} The energy sepa-
rations between the valence band and the first con-
duction band have a parabolic shape at I' and a hy-
perbolic form with a two-dimensional minimum at
A. The energy separation between the valence
band and the second conduction band has a parabolic
form at both I" and A. (c) The transition matrix
elements are constant and equal to the value eval-
uated at I'. (d) All other transitions from the va-
lence bands to the higher-energy conduction bands
contribute to the smooth background in I XP, '(2&c}l .
Using these simplifications, Bell was able to ac-
count for most of the previously observed struc-
ture in )(,'s'(2to}. We shall discuss his results in
more detail in later sections.

Except for that given by Bell, no other more
realistic calculation of )(t '(2&c) has appeared in the
literature. The major difficulties come from the
lack of detailed information about the band struc-
ture and the transition matrix elements. Recently,
empirical-pseudopotential band calculations have
been very successful in reproducing the experi-
mental linear ref lectivities of solids, in particular,
the IV and III-V semiconductors. '6'7 The result-
ing band structure and momentum (transition) ma-
trix elements can then be used for calculations of
other properties. In this paper, we report calcu-
lations of I)(tts'(2&c)I with 0.05~)Inc~ 3.0 eV for
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GaAs, InAs, and InSb, using the energies and the
transition matrix elements directly obtained from
the empirical-pseudopotential band calculations.
These results, we believe, represent the most
realistic treatment on the dispersion of I y,'4](2&d) I

up to now. A brief discussion on the method of
calculations will be given in Sec. II. In Sec. III,
we shall present the results of our calculations
with and without the assumption of constant matrix
element. We shall then compare our results with
those of Bell'5 and also with the available experi-
mental data. In Sec. IV, we shall discuss the lim-
iting values of I }]$4'(2+)I as &u 0 for the three com-
pounds, and present a simple model for understand-

ing and predicting the semiquantitative features of
y' '(2&@) from the linear spectrum. Finally, a brief
summary is given in Sec. V.

II. METHOD OF CALCULATIONS

In the crystals with zinc-blende structures, the
second-order nonlinear optical susceptibility can
be written as7'

X14 ( ]d) 2~X[1111(

where X',~,'» is the susceptibility with the electric
field and the induced-dipole moment in the [ill]
direction; the explicit expression of XI»]» (2&v)

normalized in a unit volume is given by

3
}t(2) (2~) Q Q ~ (111]

(k) ~]1113(k) ~L1113(k)f (k)
Vt C'sC

1 1 1

]E'.(k) —2Kr)]oE](kl Eral ]E„(k)—a~]]Z...(a) ~ Sw] ]Z..(i]+arel]E. .(&] 2»]) '

where E,„(k) is the interband energy between the
conduction-band state I c k) and the valence-band

rishi ~ .state I v, k), and P,"„"'(k}is the corresponding
momentum matrix element along the [ill] direc-
tion. In terms of the Cartesian components along
the three I100] directions, PD~ '(k) is expressed
as

The product of the matrix elements in Eq. (2} leads
to the fact that at each k point, the contribution to
]t"](2&v) has to involve three states. However, the
Fermi-Dirac functions, f„(k}, restricts the transi-
tions from one valence band to two conduction bands
The obvious 1/uP divergence in Eq. (2) does not
present difficulty in the actual determination of
]tI»»(2&d), as has been discussed in detail by
Aspnes.

We calculate I y,'4](2&d)I directly from Eq. (2) us-
ing the interband energies and the momentum ma-
trix elements obtained from the empirical-pseudo-
potential band-structure calculations. ' '" The
spin-orbit (SO} interaction has been taken into ac-
count in these calculations. At present, the only
available experimental data appear in the range
he~ 3.0 eV, so we include only transitions from
the four top valence bands to the four bottom con-
duction bands. In the momentum matrix elements,
the SO term is neglected because it is several
orders of magnitude smaller than the contribution
of (ck I p I vk). The integration over k space is
performed by a linear interpolation scheme. By
symmetry, we only have to integrate over 4'8 of the
BZ. The interband energies and the product of the

matrix elements are calculated at 152 mesh points
in this 4'8 part of the BZ. Approximately 9.3 x 10'
sampling points are generated by a Monte Carlo
method. The interband energies and the matrix
elements associated with each random point are ob-
tained by linearly interpolating between the points
on the mesh. A phenomenological damping con-
stant of 0.05 eV is introduced in the energy de-
nominators of Eq. (2). We use frequency intervals
of 0. 05 eV for h ~ ~ 2. 0 eV, and 0. 1 eV for 2. 0
~ Au~ 3.0 eV.

We have also calculated I }t,'4](2&v) I with constant
momentum matrix elements for the three crystals,
so that a comparison with Bell's results can be
made and the importance of including the actual
matrix elements in the calculations can be evident.

III. RESULTS

Although the three crystals have the same zinc-
blende structure, there are detailed differences in
their electronic properties; for example, their
fundamental gaps have different values. It is,
therefore, more convenient to discuss the results
for each crystal separately. We shall start with
GaAs, then InAs, and finally InSb. For the first
two cases, we shall first present the result of con-
stant matrix elements I XI4'(2z) I and compare it
with Bell's calculation. The I yI, '(2u&)l with k-de-
pendent matrix elements is then compared with the
one with constant matrix elements and with the ex-
perimental results. For InSb, we shall also point
out some difficulties involved and the occurrence
of double resonances in the calculation.
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FIG. 1. Band structure of GaAs.
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FIG. 2 ~ Comparison of the constant matrix element
Xf 4 (2 ') ( of GaAs with Bell's calculations (B,ef. 15).

The band structure of GaAs used for the present
calculation of I y,'4'(2&v) I was obtained by fitting to
the measured logarithmic derivatives of the reflec-
tivity. It is reproduced in

Fig�.

1, and is used as
a prototype band structure for the three compounds.
The linear optical spectrum obtained from this band
structure agrees with the experimental spectrum to
about 0. 1 eV for 0» A e ~ 5. 0 eV. The important
critical points (CPs) associated with the structure
in the linear spectrum are given in Table I, be-
cause they also contribute significantly to the non-
linear optical spectrum. As seen from Eg. (2),
we expect y~4'(2&v) to show structure when either &u

or 2 (d or both are at resonance with critical-point
trans i tions .

In Fig. 2, I y,''"(2~) I of GaAs with constant mo-
mentum matrix elements for 0.05» @co~ 2. 0 eV,
is shown in solid line and is normalized to the re-
sults obtained by Bell (shown in dashed line) at 0.05
eV. This normalization is purely for convenience
in comparing the two results. The values of

I g'4'(2+) I of Ref. 15 at 0. 05 eV are questionable
because of a possible error in the numerical factor
of the expression'8 of y~P(0). From Table I, we
would expect to see structure in I X&/(2+) I at 0. 76,
1.52, and 1.63 eV for Av» 2. 0 eV due to either
(d or 2' at resonance with the ED and E& peaks. As
shown in Fig. 2, however, the expected structure
at 0. 76 eV is smeared out by contributions from
other transitions, especially along b, (see Fig. 1),
because of the small density of states at I' (for Eo).
We do find peaks at 1.50 and 1.65 eV that can be
attributed to the v resonance with the fundamental

gap at I' (Eo peak) and the 2v resonance with the
SO split peaks (E') of the A(3-5, 4-5) transitions.
The SO effect bo at I'(2-5) has not been included
in our calculations. The dashed curve by Bell,
however, shows peaks at 0. 75 and 1. 5 eV. The
magnitude of the dashed curve is, in general,
smaller than the solid curve. This is also true
in InA s and InSb, as we shall see. The differences
arise from Bell's approximations. As we men-
tioned earlier, Bell has approximated the band
structure by a three -band model which has two
conduction bands and one valence band with only
tyro critical points at k = 0 (I') and k = —',(1, 1, l)g/a
(along A), respectively, where a is the lattice
constant. Therefore, his results of I y&4'(2&v) I

should have a weaker background. Furthermore,
it explains why the structure at 0. 75 eV shown in
the dashed curve is more prominent. The ex-
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Assoc iated critic al points

TABLE I. Critical points as soc iated with the s tructur e in the linear calcul at ed
ref 1ectivity of GaAs .
Ref1ec tivity s true tur e

Theory Location in zone

r (4-5) (o, o, o)

Symmetry C I' energy (eV)

l. 52

3.25

E, r. (4-5) (O. 5, O. 5, O. 5)
~(4-5) (0 ~ 2 0.2, 0 ~ 2)

Ei +4( A(3-5), (0.2, 0.2, 0 ~ 2)

2 ~ 82
3 ~ 02
3.25

4.92

Q (4~5)
a (3-5)
a(4-5)
~(3-5)
Z {4-5)
S(4-6)
~(3-6)

(o.6, o, o)
(o.6, o, o)
(o.2, o, o)
(0.2, 0, 0)
(o ~ 6, o.6, o)
(o.5, o, o)
(o.5, o, o)

Mp

Mp

M,
Mg

M2

Mg

M(

4.23
4.36
4 ~ 38
4.55
4. 88
5.67
5.81

pec ted spin-orbit splitting of the 1 ~ 5-eV peak is
missing in Bell' s curve.

The curve of I yI, '(2&@)I of GaAs with k-depen-
dent momentum matrix elements is given in Fig. 3
for the range 0. 05» 8 co ~ 3.0 eV. The peaks origi-
nating from 2v resonance around the critic al points
are marked by solid arrows, whereas the ones
from ~ resonance around the critical points are
marked by dashed arrows . On the same graph,
we also show three different sets of experimental
results . The results of Parsons a.nd C hang
cover the range 1. 1-1. 7 eV, those of Lotem et
al. ' cover 1.2-1.8 eV, and the results of 8ethune
et al. cover 1.95~ h+ ~ 2. 7 eV. The signals mea-
sured in Ref . 2 were relative to ammonium dihydro-
gen phosphate (ADP), whereas those in Hefs. 3 and
4 were relative to q uar tz .

Similar to the case of constant matrix elements,
the 0. 76-eV s truc ture is smeared out by the near-
by -energy transitions. The twin structure between
1.4 and 1. 7 eV which also appears in Fig. 2 is due
to the 2e resonance with the spin- orbit split of the
E& peaks. The matrix elements enhance the
A(4-5) transitions; therefore, the relative magni-
tudes of the two peaks are reversed in Figs. 2 and
3. The &u resonance of the I"(4-5) transitions pro-
vide only the background to the 1 ~ 45-eV peak in
Fig. 3.

The experimental results of Bef. 2 show a single
peak at 1.26 eV which is 0. 19 eV lower than the
theoretical value at 1.45 eV. Lotem et al. , how-
ever, found a peak at 1.44 eV and a shoulder at
1. 55 eV in their work, as seen in Fig. 3; both the
positions and the general shapes of the structure
agree we 11 with the theoretical curve, except tha t
the experimental peak is broader . This peak was
suggested by Lo tern et al. ' as due to ~ resonance
wi th the ED peak. We believe that their assignment
cannot be true since the density of state associated

— —
Fong and Shen

—- - Bell

In As
CO

3
nJ

I

I .0
li &u (e V )

2.0

FIG. 4. Comparison of the constant matrix element
Xf 4 (2 u) ) of InAs with Bell' s calculations (Ref . 15).

with the Eo peak is small.
In the higher -freguency range, if the exper™en-

tal curve of 8ethune et al. 4 was shif ted up in energy
by about 0. 2 eV, theory and experiment would be
in good agreement. This discrepancy is somewhat
similar to the case of Ref . 2 in the low-energy re-
gion. In other words, the critical-point energies
that are extracted from I y,'P(2&v) I appear to be
0. 2 eV lower than those determined from the linear
spectrum . It is believed that the shifts may be due
to laser heating of the sample surface . We can
assign the theoretical peak at 2. 35 eV to 2~ reso-
nance with n, Z(4-5) and 6(3-5) transitions. These
transitions give rise to the main peak (E2 peak) at
4. 8 eV in the linear spectrum. A large volume ef-
fect in the Brillouin zone near 4 and Z provides
the huge background to this E2 peak. Therefore,
the intensity of the 2. 35-eV peak in I XI4'(2&@) I is
about four times larger than the ones around 1.4-
1. 7 eV contributed by the E& peak. The theoretical
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TABLE II. Summary of the experimental and theoretical structure in ) X~~4 (2x) ) of GaAs.

Structure in
ix~»(2~) i i.

terms of peaks in
linear optical

spectrum
1

y —Ep+ 6p

Ep

Ep+ ~p

~-E&+»

Parsons
aIld

Chang
(Ref. 2)

Experiment

Lotem
Koren,

and
Yacoby
(Ref. 3)

1.43 eV
(background)

1.44 (peak)
1.55 (shoulder)

Bethune,
Schmidt,

and
Shen

(Ref. 4)

2. 1 eV (peak)
2. 5 (shoulder)

Bell
(Ref. 15)

0.75 eV

1.5

1.5

Theory

Fong and Shen
(constant
matrix

e].ement)

smeared out

1.52 eV

1.5
l. 65

Fong and Shen
{k-dependent

matrix
element)

smeared out

1.52 eV
(background)

1.45 (peak)
1.60 (weak

peak)
2.80

2.35 (peak)
2, 75 (broad
weaker pea, k)

peak around 2. 75 eV arises from ~ resonance with

A(4-5) transitions and 2&@ resonance with A(2,
4-6) transitions. We note that in the linear spec-
trum, the contribution from the 3-5 and 4-5 transi-
tions and that from the 3-6 and 4-6 transitions
lead to one broad Ez peak around 5 eV, but in the
nonlinear X' '(2&v) spectrum, they actually lead to
two separate peaks at 2. 35 and 2. 75 eV. A sum-
mary of comparison between the experimental and
theoretical results is given in Table II.

B. InAs

The band structure of InAs is similar to that of
GaAs given in Fig. 1. A list of critical points in

the linear optical transitions is given in Table III.
In Fig. 4, the present calculation of I yI4'(2&@)l

with constant matrix elements is compared with
the result of Bell. In the low-energy region (h&@

(0.5 eV), the solid curve from our calculations
shows two structures at 0. 25 and 0.45 eV. They
correspond, respectively, to 2v and ~ resonance
with the fundamental gap (Eo peak). The 0. 25-eV
peak has not been smeared out because, unlike the
ease of GaAs, the slope of E vs k near 1" along 6
in InAs is considerably large. The dashed curve
of Bell shows only one peak, at 0. 2 eV. The agree-
ment between the two curves in the 1-2-eV range
is much better. Our calculations give two peaks,

TABLE III. Critical points associated with the structure in the linear calculated
ref lectivity of InAs.

Reflectivity structure

Theory Location in zone Symmetry CP energy (eV)

Associated critical points (InAs)

0.46 eV

2. 58

2. 85

4.68

Ep I'(4-5) (0, 0, 0)

A(4—5) (0.3, 0.3, 0.3)
L(4-5) (0.5, 0.5, 0. 5)
A(3-5) (0.3, 0.3, 0.3)
L(3-5) {0.5, 0.5, 0.5)

a(4-5) {0.7, 0, 0)
I'(4-6) (0, 0, 0)
X(4-5) (1.0, 0, 0)
Vol. near (3-5) (0.7, 0, 0)
Z(4-5) (0.7, 0.7, 0)
~(3-6) (0.3, 0, 0)
Vol. near A(4—5) {0.7, 0, 0)
Vol. near D(3—6) (0.7, 0, 0)

1Vl
g

Mg

M(
i',

0.46

2. 47
2. 48
2.74
2.75

4.37
4.43
4.43
4.65
4.69
5.25
5.39
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TABLE IV. Summary of the experimental and the theoretical structure in I Xf4 (2') I of InAs.

Experiment Theory

Structure in

Xf4 (2') I in
terms of peaks

in the linear
optical spectrum

I

y-E)+Q

E)+ 6)

Parsons
and

Chang
(Ref. 2)

l.25 eV
1.4

Bethune,
Schmidt,

and
Shen

(Ref. 3)

2. 5 eV
(shoulder)

2.28

Bell
{Ref. 15)

0.2 eV

1.25
1.42

Fong and Shen
(cons tant
matrix

element)

0.25 eV

0.45

1.3
1.45

Fong and Shen
{k-dependent

matrix
element)

0.3 eV

0.45

1.3
l.45

2. 6

~(shoulder)

2, 3

at 1.3 and 1.45 eV, arising from the 2v resonance
with the E& and E&+~& SO split peaks. Bell's cal-
culations, assuming E, and E~+6, at 2. 5 and 2. 78
eV, respectively, give the corresponding peaks at
1.25 and 1.42 eV. Owing to the reason discussed
in Sec. IIIA, the solid curve is generally larger in
magnitude than the dashed one.

The calculated I )t,'42'(2&v) I of lnAs with the k-de-
pendent matrix elements is shown in Fig. 5 with
the origins of the structures marked. As discussed
earlier, the two peaks at 0. 3 and 0.45 eV are due
to 2m and co resonances with the Eo peak, respec-
tively. The k-dependent matrix elements do not
shift the peaks at 1.3 and 1.45 eV due to 2' reso-
nances with the E~ and E, + 4& peaks, but they do
have an influence on the magnitudes of the peaks.

Comparison between Figs. 4 and 5 shows that the
relative strengths of the peaks have been inverted.
The experimental results of Parsons and Chang
in this frequency range, also shown in Fig. 5, are
in good agreement with the calculated curve, both
in the position of the peaks and in the relative
strengths of the peaks.

In the higher-energy region, the calculated
I y&4'(2u&) I in Fig. 5 shows a broad peak at energy
between 2. 3 and 2. 6 eV. This is due to 2e reso-
nances with the Ea peak arising from 6, X, Z(4-5)
transitions. The & resonances with the E, and E,
+4& peaks also contribute to the 2. 6-eV region
of this broad structure. The measured results in
Ref. 4 show a peak at 2. 28 eV and a broad shoulder
at about 2. 5 eV, in fair agreement with the theo-

TABLE V. The critical points associated with the structure in the linear calculated
ref lectivity of InSb.

Ref lectivity structure

Theory

0.26 eV

Location in Zone

I'(4-5) (o, o, o)

Symmetry

Associated critical points (InSb)

CP energy (eV)

0.26

2.03

2.60

4.1

Eg

E(+4)

A(4-5) (0.3, 0.3, 0.3)
I (4-5) (o.5, o. 5, o.5)
~(3-5) (0.3, O. 3, O. 3)
L (3-5) (0.5, 0.5, O. 5)

D(4-5) (0.7, 0, 0)
~(3-5) (o. v, o, o)
4(3-6) (0.2, 0, 0)
z(4-5) (o. v, o.v, o)
Vol. near D(4-6) (0.5, 0, 0)
D(4-6) (0.7, 0, 0)
I.(4-6) (o.5, o.5, o.5)
w(4-6) (0.4, o.4, o.4)
6(3-6) (0.7, 0, 0)
1.(3-6) {O.5, O. 5, O. 5)
a(3-6) (0.4, O. 4, O. 4)

M(
Mg

M(
Mg

Mg

Mg

Mg

Mp

M3
Mp

Mg

M3
Mp

Mg

1.94
2. 0
2.5
2.55

3.65
3.83
3.95
4. 1
4 4
4.75
4. 86
4. 87

94
5.41
5.43
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FIG. 5. Comparison of ( X&4' (2 &) ) of InAs with avail-
able experimental data.

re tie al calculations. In Table IV, we summarize
the comparison.

C. InSb

There are several difficulties in calculating the
nonlinear optical properties of InSb as compared
with the other two cases. First, the available band

structure of InSb is not as accurate as those of
GaA s and InA s . We have used the pseudopo te ntia 1

parameters given by deA lvarez et al. " In order
to reproduce their interband energies at the criti-
ca1 points listed in Table V, it is necessary to use
the value of 0. 002 37 Ry for the parameter char-

acterizingg

the SO interaction of the metallic ion,
instead of 0. 002 03 Ry given by de Alvar ez et al.
Second, the quality of the calculated optical spec-
trum of InSb appears to be more strongly affected
by the mesh size used in the calculation. We have
used a mesh of 152 points as compared to 356 points
used by deAlvarez ef al. Our &2(&u) spectrum in the

range 0. 5» 0 co» 1 ~ 5 eV shows more fluctuation than
theirs. We also obtain a weak peak at 1 ~ 8 eV; they
found a hump. This structure has not been ob-
served experimentally, and it arises presumably
from inaccuracy of the band structure. Finally,
occurrence of possible double resonances comp li-
cates the I X,'4'(2ur)

I spectrum. There are two local
regions where the energies of the 4-6 transitions
are twice those of the 4-5 transitions: (i) a small
region in the I'KX plane near I' (about -', of I'X),
with transition energies around 3.2 and 1 . 6 eV, and
(ii) a larger region around the 1"IKplane near I
with transition around 3.6 and 1 . 8 eV.

The I y ~+~'(2ur)i with constant matrix elements is
plotted as the solid curve in Fig. 6. The two struc-
tures at 0. 15 and 0. 2 5 eV are due to v and 2+ reso-
nances with the fundamental gap (0.26 eV). A
shoulder at 0. 9 eV arises from the 2' resonance
with the spurious structure at l. 8 eV in the e2(&u),

as discussed earlier. The peaks at 1.05 and 1.35

eV are due to the 2~ resonances with the A-I
critical-point transitions at 2. 03 and 2. 6 eV (E,
peaks). A weak shoulder at l. 6 ~ he ~ l. 7 eV is
the result of double resonance (i), discussed
earlier. Finally, the shouMer at 1.95 eV and

the broad peak at 2. 3 eV come from 2 (d reso-
nance with the broad E2 peak and also partly from
&u resonance with the E, peaks (Table V). The
curve also shows a sharp dip at 1.8 eV. However,
as we mentioned earlier, there is a peak at 1.8
eV in the calculated linear spectrum. One would
therefore expect to find a peak instead of a dip at
this energy. To understand this puzzling result,
we have performed a calculation of I yP~'(2&v)(

with the product of the matrix elements taken as
a constant but with the correct sign as obtained
from the k-dependent matrix elements. The result
shows a strong peak at 1.8 eV. Apparently, in this
case, the matrix elements are important because
the double -resonance contribution can interfere
strongly with the background either constructively
or destructively, depending on the sign.

The result of Bell's calculation is also shown
in Fig. 6 as the dashed curve. He assumed spin-
orbit split E0 peaks at 0. 17 and 0.99 eV and the E&

peaks at 1.88 and 2. 38 eV. They. give rise to the
structures at 0. 08, 0.45, 1.0, 1.24, and 1. 88 eV
in ~ XI4'(2&@) ~ . There is an obvious difference be-
tween the two curves in Fig. 6. In particular,
Bell' s curve shows a pronounced peak instead of
a dip at 1.88 eV. This is because no interference
due to double resonance can occur in his case, and
he has assigned the lower E, peak at 1.88 eV.

The calculated I y,~4'(2e) I with k-dependent ma-
trix elements is shown as the solid curve in Fig. 7.
The identifications of the various transitions are
labeled. The structure at 0. 1 5 eV is due to 2 co

resonance with the fundamental gap. The (d reso-
nance with the fundamental and its SO split gaps

4
4P

CP

C)

3
CV

X

'
o

FIG. 6 ~ Comp arison of the constant m atrix clem ent

X f 4 (2~) I of InSb with Bell 's calcul ations (Ref . 15).
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FIG. 7. Comparison of ) X&42 (2') l of InSb with avail-
able experimental data.

are masked out by the tail of higher-energy transi-
tions. For 0.3» Am»0. 8 eV, the calculated
I yq4'(2&@) I shows appreciable fluctuations which
have been averaged out in Fig. 7. The shape in
this region reflects the slope change'7 in the c2(&u)

near 0. 8 eV. The structure at 0. 95 eV is due to
2v resonance with the 1.& -eV spurious peak in
Eg((d}, discussed ln Sec. III C. The peaks at l. 1 and
1.35 eV come from 2&@ resonances with A f. (3-5, -
4-5) transitions (E, peaks). The shoulder around
l. 6 eV is due to double resonance (i), and the
peak at l. 8 eV is due to double resonance (ii) and
v resonance with the l. 8-eV peak in &2(&u}. Of
the three crystals that we have studied these double
resonances happen only in InSb. The structures
at AM~2. 0 eV conle from 243 resonances with Ole
critical points associated with the E, peak in the
linear spectrum and v resonances with the A-I.
transitions.

Comparison of the solid curves in Figs. 6 and 7
shows that there is a drastic difference at 1.8 eV.
As we discussed earber, the dip of the solid curve
at 1.8 eV in Fig, 6 is due to incorrect signs of the
matrix elements for the double-resonance term,
leading to a destructive interference. Therefore,
the k-dependent matrix elements have significant
effect on I yP~'(2ar) I . Furthermore, the strong
dipole transition matrix elements associated with
the Z(4-5) transitions split the broad peak at 2. 3
eV for the constant matrix element case into two
peaks at 2. 1 and 2. 3 eV, as shown in Fig. 7.

There exist three sets of experimental results
for fnSb. Wynne measured I y~+4'(2e) I„,„/)tl34'
x(2+) I o~, for k&u ~ 0. 117 eV, and observed a
structure at 0.1167 eV. This structure corre-
sponds to the one at 0. 15 eV shown in Fig. 7. The
small discrepancy is due to the limited resolution
of the theoretical calculation. However, the ratio

of the two susceptibilities calculated from Figs.
3 and 7 is less than 2, which is much smaller than
the value of 12.2 given in Ref, 20. A possible
reason is that the calculated dipole matrix ele-
ments of InSb are too small. Even in the linear
case, the calculated ref lectivity is about 20%%uo lower
than the experimental result for he& 4 eV. '7 The
experimental result obtained by Parsons and Chang
in the frequency range 1.2» h~~1. 17 eV is shown
as the dashed curve in Fig. 7, It has two peaks at
1.22 and 1.38 eV and a shoulder at l.65 eV. The
first peak differs from the theoretical structure
by 0. 1 eV, and the other two structures show rea-
sonable agreement. In particular, the shoulder
at l. 65 eV suggests that double resonance (i) in-
deed occurs. It is unfortunate that experimental
data are not available in the 1.8-eV region. There-
fore, whether the strong double-resonance struc-
ture (ii) truly exists or it is simply the result of an
imprecise band structure, remains to be answered.
The data in the range 2. 0» h(d~2. 6 eV measured
by Bethune et aE. 4 are shown as the dotted-dashed
curve in Fig. 7. They observed two structures,
at 2. 2 and 2. 4 eV, which are in rough agreement
with the calculated ones, although the line shapes
are quite different. A summary of the compari-
son between theory and experiments is given in
Table VL.

IV. DISCUSSIQN

In the previous section, we discussed the dis-
persion of the nonlinear optical susceptibilities of
three semiconductors. We shall now discuss our
result for the limiting case where +-0, since
there are several such measurements of I y,'P(2~) I

for these compounds. We shall also present in
this section a simple model for calculating I y.,'4'(2(o) I

from the known ez(&u) of the crystal.
As we see from Figs. 3, 5, and 7, the limiting

values of the calculated I y,'4'(2&v) I are 4 x 10
1.25 x 10 ', and 3 x 10 8 esu for GaAs, InAs, and
InSb, respectively. Compared to the measured

l s ' ' f 90+30 200+60 d 300+150x10 8

esu, the theoretical results are smaller by least
one ordex of magnitude. To see whether these
discrepancies can be due to the neglected higher-
energy transitions, we have calculated the sus-
ceptibility of GaAs at 0.1 eV including two more
valence and conduction bands, and found that the
result was improved only by 10%. It is also un-
likely that the matrix elements calculated from the
pseudo wave functions can account for such a large
difference. We feel that the lower theoretical val-
ues can be attributed to the local field effect. Al-
though the three compounds are not insulators, the
local field effect may not be completely neglected. ~

To support this speculation, we used the expres-
sion given by Bloembergen" to estimate the cor-
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TABLE VI. Summary of the experimental and the theoretic al structure in ( X ~4' (2 e) ) of InSb.

Structure in
I X&4'(») l in

terms of peaks
in the linear

optical spectrum
and double
resonances

-E,
y —Ep+

Ep
Ep+
1

-E, +a(
Double resonance a

Eg+Dg

Double resonance b

g —E

Parsons
Blld

Chang
(ref . 2)

Bethune,
Schmidt,

and

Shen
(ref. 3)

1.22 eV
1.38

1.65
(shoulder)

2.4 eV

2. 2

Experiment

Bell
(Ref. 15)

0.08 eV
0.45

1.0
1.24

1.88

Theory

Fong and Shen
(cons tant
m atrix

element)

0.15 eV

0.25

1.05
1.35

1.6
(should er)

2~ 3

1.8 (dip)

1.95
(should er)

Fong and Shen
(k-dep endent

m atrix
element)

0 ~ 15 eV

0 ~ 25
(sm ear ed out)

1~ 1
1.35

1~ 6

(should er)

2. 05 (background)
2 ~ 5

1~ 8

2 ~ 1
2 ~ 3

2 .5 (background)

rection. The three e((u)'s were approximated by
averaged real and imaginary parts of the die lee tric
func tion in the frequency range h& ~ 6.0 eV. The
values for GaAs, InAs, and InSb are 11.4, 8. 7,
and 8 ~ 8, from the results of the empirical-pseudo-
potential calculation. With the local-field cor-
rection, the limiting values of I y~~~'(2v) ~ are 352,
56 5, and 140, respectively. Although the first
two cases are now larger than the experimental
data by about a factor of 2 and the value of InSb
is still slightly smaller than the one given in Ref .
1 due to the weak matrix elements as we mentioned
in Sec. QI C, the result gives the correct order of
magnitude. These corrections of the local-field
effect are expected to be overestimated because
the expression in Ref . 22 was derived for insula-
to r s .

The dispersion of the local-field correction is cn I .0

Ep

not expected to drastically change the shape of our
calculated y~', since I e(v) I

= [a~(&o) + E2(&u)]' aver-
ages out the strong variations of e~(e) and z2(&o).

Only the (d resonance of L -A structure may be
slightly enhanced because of the corresponding peak
in e((u).

As we have seen in Figs. 3, 5, and 7, the struc-
tures in I yP~'(2&@) I are closely related to the ones
in &2(&u). Therefore, it may be possible to predict
the nonlinear optical spectrum of a crystal simply
from the linear spectrum, without resorting to the
details of the band structure and the use of Eq.
(2). In the following, we suggest a simple scheme
to accomplish this objective. The calculation in-

I(uL (E()), Iyga, (Ep+ ~), e~,
(E,), I»

@~4 (E, + ~,), Sq4
(E2)

6~ ~+6
KRy ~ Spv

5&8 y 5+8
S~eg 5+9
@~1p. @'Yi0

0.46, 0.05 eV
0.64, 0.01
2.58, 0.025
2.8, 0.15
4.7, 0.15
4.4, 0.02
4.58, 0.01
6.12, 0.01
6.34, 0.01
6.8, 0.01

Ay=0. 08
A2 = 0.006
A3 = 0.69
A4= 5.14
A5 = 10.34
A6= 0.38
A)=0. 06

A8 ——0.003
A)=0. 01
Agp = 0.06

TABLE VII. Summary of p arameters used in Eq. (5). I-
Q)
K

0.5
3

Al

Eo+ 6,0
Ep+

,
Oo~

0
%cu 't ev )

FIG 8 I Xf4 (2 (v) [ calculated from Eq. (5).
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volves two steps:
(a) APProximating the linear sPectrum, c~(&u).

The simplest way is to approximate the structures
in e~(e) by a set of i,orentzian lines with proper
strength and linewidths:

10

~2(&) =g a a (4)

I et us take the III-V compounds as an example.
We can use n = 1-5 to approximate the five peaks
Eo, E,+n„E„E,+n„and E„ in the linear e, (&u)

spectrum. Except ED+~0, which is from 2-5
(2nd band- 5th band in Fig. 1) transitions, these

peaks are mainly due to 3- 5 and 4- 5 transitions.
The lines labeled by n = 6-10 are used to approxi-
mate the transitions from the same valence bands
to the 6th conduction band in the same k regions as
those transitions responsible for the n = 1-5 peaks.

(b) Approximating I y~+4'(2&v)I. In principle, one
can calculate I y,', '(2&v) I by considering all possible
transitions among the ten lines. However, in order
to be consistent with the interband transitions in
Eq. (2), we do not allow transitions between states
in different regions of the Brillouin zone. There-
fore, the approximated form of X„'(2~) for a
III-V compound is given by

5

ggg (2(d)=C Q . =. +
((d —&0 —ly ) (2(d —(d ~

—iy 5) {2(d —(d —iy„) ((8 —(d ~
—iy ~)

1 1
+ + A. A ,5,(v —(u —iy ) (a (+u„,, i+y, ) 5((o+(u„+iy, )((u, —(u „—iy „) (5)

where C is a constant which accounts for the
strengths of the 5-6 transitions. In Eq. (5), we
have neglected the nonresonant terms, since they
contribute to the background only.

We have applied Eqs. (4) and (5) to InAs. Tbe
parameters v, A, and y in which cd. =l-'7, which
reproduce the main peaks Eo to E& of the theoretical
a~(&u) in Ref. 17 to within 7%, are listed in Table
VII. ~ to ~,0 were determined from the band
structure of InAs given in Ref. 1'7. The other
parameters were determined by requiring the
z2(~) in Eq. (4) to be a monotonically decreasing
function of ~ for Ru&5 eV. Therefore, they were
not uniquely determined. However, the y~+4'(2&@)

in the range of interest is not very sensitive to the
choice of these parameters. The structure at 6. 1
eV in the e2(x) of Ref. 17 is not accounted for be-
cause it comes from 4- 7 transitions. The resul-
tant I x/4'(2u&)l is plotted in Fig. 8. Again, we use
solid arrows to indicate structures associated with
the 2~ resonances of the lines, and dashed arrows
for the v resonance of the lines themselves. The
resolution of the calculation is 0.05 eV. Except
for the line shapes above 2. 4 eV, the agreement
between the results in Pigs. 5 and 8 is fairly good.

We have calculated I X/4'(2&@) I with either con-
stant or k-dependent matrix elements. The re-
sults are compared with the ones obtained by Bell"
and show definite improvement. Tbe I y,'4'(2&@) I

calculated with k-dependent matrix elements agrees
better with the experimental data. Two structures
in I yg~'(2+) I of InSb have been identified as due to
double resonances. One of them can possibly ae-

count for the structure at 1.6 eV observed by
Chang et al. The limiting values of I y+4'(2&v I as
e-0 in our calculations are smaller than the mea-
sured values by an order of magnitude. This is
presumably because the local-field correction has
not been included in the calculations.

The strong correlations between the structures
in the linear optical spectrum and the nonlinear
susceptibility suggest that it may be possible to find
I x I4'(2~) I approximately from a simple atomlike
model. We have considered such a model and ap-
plied it to InAs as an example.

Several conclusions can be made from the pres-
ent studies: (a) Except those due to double reso-
nances, structures in y~~'(2+) are closely related
io tbe ones ln tbe linear optical spectrum. (b) Dou-
ble resonances which exist in the case of InSb do
not appear in GaAs and InAs. Gne expects to find
double resonances only in crystals with the ap-
propriate band structures. (c) The k -dependent
matrix elements play an important role in deter-
mining the nonlinear optical properties of solids.
The interference effect shown in the case of InSb
provides an illuminating example which does not
happen in the linear case. (d) Tbe local-field ef-
fect is important in the evaluation of the absolute
magnitude of I X,'4'(2+) I. (e) Tbe nonlinear optical
spectrum I x~+4'(2&v)1 is much more sensitive to tbe
details of the band structure and transition matrix
elements than to the linear optical spectrum c(&u).
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