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A density-matrix formalism developed earlier for the evaluation of Ohmic magnetoconductivity is further

elaborated and applied to other magnetotransport effects in nonpolar semiconductors in the presence of a

magnetic field of arbitrary strength. The difference from earlier transport theories lies in a natural extension of
the scattering dynamics beyond the strict Born approximation. The well-known divergence difficulties of older

theories, usually removed by any of a number of ad hoc cutoff procedures, do not appear here. The transverse-

conductivity expression turns out to be equivalent to that of some earlier theories of cyclotron resonance

extrapolated to zero frequency, but derived in a different way. When applied to elastic scattering of electrons

in a simple model of a semiconductor, the theory gives galvanomagnetic and thermomagnetic coefficients

within the range of values usually seen experimentally, showing the basic correctness of the theory. It is then

applied to the magnetophonon effect, where the resonance peaks are shown to be finite. An interesting

inversion of one of the peaks in the Ettingshausen-Nernst coefficient is found. Landau-level broadening and

phonon drag are not included in the present paper, although they can be incorporated when deemed

important.

I. INTRODUCTION

We present in this paper a first-principles theo-
ry for the calculation of galvanomagnetic and ther-
momagnetic effects, in the framework of a density-
matrix formalism given earlier. ' In order to bring
out the essential points of the theory, we develop it
for electrons in the parabolic bands of nondegener-
ate, nonpolar semiconductors, not including this
time phonon drag, anisotropy of the energy surface,
and multiple valleys. ' The theory is illustrated by
applying it to the magnetophonon effect as well as
to elastic scattering of electrons by acoustic pho-
nons.

Transverse and longitudinal magnetoresistance
are two of the most investigated properties of
semiconductors. Although the theories for the
longitudinal case based on the solution of the Boltz-
mann transport equation have been reasonably suc-
cessful, the transverse case appears to be elu-
sive, as can be seen from the conflicting results
obtained by many authors. 7 In this case, the
component of the path of the electron in the direc-
tion of current flow is strongly affected by the mag-
netic field. For low magnetic fields, this effect
may be considered as a perturbation with a. relaxa-
tion time approximated by its zero-field value in
the Boltzmann transport equation. The earlier the-
ories based on this approximation' ' predicted a
saturation in the transverse magnetoresistance.
As we now know from many experimental results
(examples are found in Refs. 2 and 15-17), there
is no such saturation; rather the magnetoresis-
tance increases almost linearly with increasing
magnetic field. The effect of quantization of the

electronic energy levels on the relaxation time re-
moves the saturation.

The curvature in the free path of electrons be-
tween two scattering centers introduces nondiago-
nal elements of the velocity operator in the trans-
verse case. Therefore, off-diagonal elements of
the density matrix are needed to determine the en-
semble average of the current. On the other hand,
for the longitudinal configuration in a parabolic-
band semiconductor, the velocity operator is diag-
onal and hence the Boltzmann transport equation
can be used. For an anisotropic energy surface,
exemplified by n-germanium, even for the longi-
tudinal case some anisotropic effects occur which
cannot be described by the Boltzmann equation, '
and a density-matrix approach is required. Cri-
tiques of the Boltzmann equation and discussions
of the importance of the density matrix in trans-
port problems are given in many papers, e.g. ,
Hefs. 6, 7, 19, and 20.

The best-known recent theories of transverse
magnetoresistance based on a density-matrix ap-
proach still have the unpleasant drawback of diver-
gences, necessitating the introduction of some
kind of cutoff mechanism to achieve finite re-
sults. ' The results are clearly very sensitive
to the cutoff assumed. These theories are essen-
tially expansions in powers of (u&,7) ' with only the
first-order term retained. Here, +, is the cyclo-
tron frequency and v is an average momentum re-
laxation time. The divergence difficulties arise
because the electrons making transitions to the
bottoms of the Landau subbands have relaxation
times which are very small, thus violating the con-
dition ~,~» 1 upon which the theories are based.
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The theory presented here is not a strict Born-
approximation theory, and is not restricted to
a&,r»1. In fact, it is finite for I/r-~, and cor-
rectly reduces to the zero-field theory as B-0.
The expressions for the transport coefficients have
the so-called "classical cutoff" form'; this, how-
ever, is not an ad hoc insertion, but a natural con-
sequence of the theory. Another consideration
sometimes used as a cutoff procedure in previous
theories, that of taking the acoustic-phonon scat-
tering to be inelastic, is unimportant in the present
theory. Likewise, broadening of the Landau levels
through collisions is not responsible for the finite-
ness of the theory. Level broadening can be in-
serted just as in the earlier theories when deemed
important, e. g. , in analyses of resonance ampli-
tudes. ' Phonon drag or disturbance of the phonon
distribution can be important in the crossed-field
configuration as shown earlier, ' but is not taken
into account in the present paper.

In spite of a large amount of experimental and
theoretical work in magnetoresistance, there have
been relatively few attempts to compare the theo-
retical results in detail with existing experimental
data. For thermomagnetic effects, the amount of
work done is relatively smaller than for the gal-
vanomagnetic effects. The derivative techniques
which have been so successful in measurements of
oscillatory galvanomagnetic effects' have not yet
been exploited fully to study these interesting ef-
fects in thermomagnetism. There have been only
a few theoretical calculations to interpret the ex-
perimental data. We hope that the present paper
and its predecessor' will encourage many to at-
tempt to correlate both galvano- and thermomag-
netic data with the type of theory given here.

In Sec. II, the steady-state density matrix for
the electron system is derived, assuming the pho-
non distribution to be in equilibrium, and treating
the electric field as a perturbation. With this den-
sity matrix, the electric and energy currents are
derived in Sec. III, from which the magnetotrans-
port coefficients are obtained. The application of
the theory to elastic scattering and to magnetopho-
non structure by presentation and discussion of
numerical results is the subject of Sec. IV, where
a few concluding remarks are also given.

II. BASIC FORMALISM

The Hamiltonian for a coupled electron-phonon
system having a parabolic conduc. tion band charac-
terized by an isotropic effective mass m* and an
electron charge —e may be written

[P-„+P,+ (P, + m+(u, x) j/2m*,

&~ =Z h~„(N«+-,'),
where

(u, =eB/m+ .

(2. 2)

(2. 3)

(2 4)

The magnetic field B is in the z direction, and the
usual Landau gauge is used in Eq. (2. 2). The sum-
mation in the lattice Hamiltonian is over all pho-
non wave vectors q in each branch i (which are the
longitudinal optic and acoustic branches in the
present paper); X„and &u„are, respectively, the
number operator and frequency of these phonons.
The perturbation H in our treatment is

H= V)+eE ~ r
i

(2. 5)

where V; is the electron-lattice deformation poten-
tial interaction for branch i phonons ';

1/8

V; =iE; Z
2&

'
2 b«e"" +H. c.

2 Qpp 14&
(2 8)

Here r is the electron position operator, p„ is the
crystal density, 0 is its volume, u, is the average
longitudinal sound velocity, b„ is the phonon de-
struction operator, and E; is the deformation po-
tential energy corresponding to optic or acoustic
phonons.

The term eE ~ r describes the interaction of the
electron with the external electric field E, and is
included in the perturbation H since this ensures
the homogeneous distribution of the electrons' in
the absence of the perturbation.

The eigenvalues of H, are

e„z= (n+ —,')Ku, +b b, /2m*, n=0, 1, 2, . . .
(2. 7)

corresponding to electron wave functions which are
products of plane-wave states in the y and z direc-
tions, and harmonic oscillator functions for the
quantized orbital motion. In Eq. (2. 7) and here-
after, the single index A will be used to denote the
pair of electron wave numbers 0, and k,. In the
Appendix we give several matrix elements and re-
lationships used in the calculations.

The eigenvalues of H~ are given simply by re-
placing the N« in Eq. (2. 3) by the phonon quantum
numbers n„. =0, 1, 2, , . . .

The physical quantities of interest here are the
electric and energy currents, which are found by
use of a steady-state density matrix. The com-
plete density matrix pr(t) is the solution to the
quantum-mechanical Liouville equation

H~ = Ho+ H (2. 1)
N

[pT(t) +T(t)1 (2. 8)

where the unperturbed part H, is the sum of elec-
tron and lattice Hamiltonians, H, and H» given by

Using a common procedure, "we assume that the
perturbation is turned on adiabatically at t = —~,
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H (f) =H +He"', (2. 9)

where g is a positive number much smaller than
RDy of tl1e l elaxatloD rRtes of the systenl» Rnd

eveDtually tRkeD to be vRDlshlngly small. The den-
sity matrix should then follow a similar bme be-
havior".

pr(f) = p'(Ho) + pe" (2. 1o)

The initial equilibrium density matr&x p (Ho) fac-
tors into electron and lattice parts

p'(Hp) =f'(H, ) pz, (&s,), (2. 11)

diagonal in the Ii, and H~ eigenfunctions. The di-
agonal elements of fo(H, ) form the Fermi-Dirac
distribution function, which reduces to the Max-
well-Boltzmann distribution for our case of a non-
degenerate semiconduc tor:

f„',=-( u~f'~ nf &
=[e'""' "+1]-'

»IBC 8s

Similarly, the matrix elements of p~(H~) are pro-
portional to exp[ —E~((n,))], where fn,) represents
the set of all phonon quantum numbers. The en-
semble average of N«with respect to p~(HL, ) is the
number of thermal phonons of type q, i:

(2. 14)

Now we proceed to estabbsh the form of the
steady-state density matrix p. Denoting the set of
quantum numbers n, k„k„(n,) by n, and using
subscripts to denote matrix elements, one finds
from Zqs. (2. 8)-(2. 10) at f = 0

s...p...=P.„,+[p, H]... ,

Se ~ = E ~ —i@g,

g, -g g

P...=[p', H]... .

(2. 16)

(2. 17)

(2. 18)

Dividing Eq. (2. 15) by S,. and replacing p on the
right side by the resultant expression, one gets

(2. 19)

P'... =g (S-.'.,P...H.... -H...S-.',.P..., ) (2. 2O)

= n, (2mb'p/m+)'~~ [sinh(-,' s)/s] e "~, (2. 12)

where P = I/ks T, n, is the electron concentration,
Rnd

(Saapae, Hn, a,Hn, a + S~,u Ham, Hn, u2pa, a
el, ep

C-& V v c-l
Otdlg Otic 2p&k 2mg++Olg(R ~&XglX CEO' pQgdf 2HOt 20! )

(2.21)
Thus» Qeee and I eel» Rl"e» respectively» first Rnd

second order in H, while P" ~ depends upon the
steady-state density matrix p. This procedure
could be continued» thus generating an expansion in
powers of II, H0%'evel

» we shRll stop Rt this point
to examine the various terms of the exact Eq.
(2. 19) in order to determine which are the impor-
tant ones.

First we note that the density matrix elements in
the evaluation of the currents are diagonal in pho-
non quantum numbers (see Sec. III). Thus the con-
tribution of the phonon scattering V to these ele-
ments of P „, vanishes, as seen from Eqs. (2. 18)
and (2. 5), because Vis nondiagonal in phonon quan-
tum numbers. Thus only the electric field part of
H "drives" the density matrix elements of interest.
The two configurations of interest are the longitu-
dinal one, in which E is in the direction of the z
axis and for which the diagonal elements are needed,
and the transverse case, with f along the x axis
and for which the needed matrix elements are di-
agonal in phonon and electron wave numbers, but
differ by unity in Landau level n. One finds (see
the Appendix)

longitudinal:

P..=[p', eEz]..=fX'eEPm*-'p'. .u„.

transverse:

(2. 22)

P„-, = [p', eEx]„-„=feE(1 —8 ') p'. „[(n+1)/2]'" .
(2.23)

Here and below we use n to denote the set of quan-
tum numbers identical to the set n except that n
=n+1. The length I is defined in Eq. (A2).

Next we examine P' ~, defined in Eq. (2. 20).
Using

lim S '
~ = K*(E .) =P(l/E ~ )+ i@5(E,.), (2.24)

rf 0+

one finds

{2.25)

P' —=po„g f[l —exp(PE, )]P(1/E „)
—e '[1 —e (PxpE-„„)] (lP/E ))H„, H; . -

(2.26)
To further reduce P'-, we drop all terms of sec-
ond order in E since we are interested only in the
Ohmic regime in this paper. The terms bilinear
in E and V vanish because the field term is diago-
nal in phonon quantum numbers, whereas V is Dondi-
agonal. This leaves just V terms. Most authors



pg P ( „)I;(~, „')V „V-, =0. (2.28)

Again, the arbitrary function g(n, n„n') is not
linear in k„. Since the scattering mechanisms
considered here satisfy Eq. (2. 27), we have the
result that P' and P'- both vanish, for either the
longitudinal or transverse configurations.

Finally, we examine P" ., defined in Eq. (2. 21).
Some of its terms are proportional to p ~ and can
at once be brought to the left side of Eq. (2. 19).
This step is the principal difference between the
present theory and the previous ones which have
the divergence difficulties discussed earlier.
Those theories in effect replace the p in P" ~

0!y CR2

by the electric field part of P, ,/S„, , so that
P" ~ reduces simply to EV types of terms —the
so-called interference terms. " These are thus
Born-approximation theories, going strictly to
second order in the scattering potential. The pres-
ent theory, which retains p itself in all terms which
seem important, thus goes beyond the Born ap-
proximation. Since, as we shall see shortly, the

diagonal term P" has the familiar gain-loss form
and is thus analogous to the Pauli master equation
in the time domain, we see that the present tech-
nique is evidently equivalent to Van Hove's "V t
technique"" which forms the basis for the deriva-
tion of the master equation. (There, the time-de-
pendent density matrix is expanded to all powers
of V and time t, and only those terms proportional
to some power of V~t are retained. ) Thus we argue
that our procedure is logically the one to be used
for evaluating the transverse magnetoresistance
and other properties requiring off-diagonal density
matrix elements, since it is equivalent to that al-
ready used in the longitudinal case, where the di-
agonal elements are needed.

I et us first examine the diagonal elements P",
for the longitudinal case. From Eq. (2. 21) we

have

simply discard all terms containing principal-value
functions, as in Eq. (2. 26), arguing that such terms
play no significant role in transport problems.
However, in the present case P'- vanishes without
that assumption, for the large class of scattering
interactions having the property

g g p~(n, ,)g (n, n.„n') V, , V„,„.= 0 unless o. = o.'.
(2.27)

Here, the second summation is over both phonon
quantum number sets (n,) and (n„). Also, g(n, n&,
n') is an arbitrary function, such as that in square
brackets in Eq. (2. 26), except that it should not be
linear in k» simultaneously with n' = Q.; in that
case, the summation is nonzero. A related prop-
erty, used later, is

, I
'(S ', + s ', )(P .-P.. .)

+ remaining terms. (2.29)

a~
I

v
I

5(E )(p „—p )=
Cg

(2. 30)

in the Ohmic and q-0+ limits. Equation (2. 30) is
identical to that obtained from the Boltzmann equa-
tion. Thus the omitted "remaining terms" con-
stitute small corrections to the Boltzmann equa-
tion, and would be the source of, e.g. , level-broad-
ening effects.

In calculating the heat and electric currents, the
phonon quantum numbers may be summed on. first,
leaving only electron quantum numbers. Thus it
is convenient at this stage to introduce the approxi-
mation in which the steady-state density matrix p
is split into a product of lattice and electron parts.
Assuming that the phonon distribution is unaffected
by the electric field and the electron-phonon scat-
tering, we write

p =pI,f (2. 31)

where p~ is the equilibrium lattice density matrix
of Eq. (2. 11), and f is the steady-state electron-
density matrix. Note that this decoupling cannot

be introduced at the beginning, e.g. , in Eq. (2. 15),
for then the scattering V would vanish when the
summation on phonon numbers is carried out. This
decoupling also eliminates the effects of phonon
drag. We do not mean to imply that phonon drag
and the disturbance of the phonon distribution are
not important in the present context; in fact, Arora
and Miller' and many others' have shown that they
can be important. Instead, our objective here is
to display the appropriate transport expressions

The separating out of the terms displayed in Eq.
(2. 29) is permissible since their number is not
negligible relative to the number of remaining
terms, because of the severe restrictions imposed
by the selection rules for the scattering and field
terms. This is a manifestation of the so-called
Pan Hove singularity condition. " The displayed
term is the familiar gain-loss scattering expres-
sion when the Ohmic and g- 0+ limits are taken.

To determine the importance of the "remaining
terms, " one may replace the p, in them by
P, ,~/S„, „~. Then, merely noting that the longitu-
dinal field term eEz has no off-diagonal elements,
one sees that all Ohmic terms vanish as g-0+.
We conclude that the Ohmic "remaining terms" are
of secondary importance even when p is retained in
them, and shall drop them.

Thus, with use of Eqs. (2. 19), (2. 22), and (2. 24),
the needed density matrix elements in the longitu-
dinal case are determined from
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~ (11'n», n, », f»1»1
—»1»1, »»f»») = keEP1n* kgf, »,

ngkg

(2.32)

f„„=& kIfInk&,

»»»1»1 k
~ Pz{ 1») I V$$1I (ESN1)

S~sff jq

(2. 33)

~ {ink'"6ngkg )
(2 3491j kg » 97k' 9

and f„, is the equilibrium electron-density matrix
element given by Eq. (2. 12). Under the common
assumption that f»~ k„Eq. (2. 32) is solved for
f„» to give

for the simplest cases, and to show (Sec. IV) that
these expressions are indeed broadly correct in
physical consequences and order of magnitude.
Refinements such as the above, along vrith anisot-
ropy of energy surfaces, nonparabolicity of eon-
duetion band, ete. , can be incorporated when needed.

Us1ng the decoupling in Eq. (2. 30), and summing
on phonon numbers (nj, we have

(+n», »1»1f»1»1 +»1»1,»»fn») s

ngAg

which is just the detailed balance condition, re-
sulting in

f.»exp(P~. ») = f.,», exp(Pz. ,», )

Tllus, f„»exp(p»„») is 1ndependent of electl'oil quall-
tum numbers, so that

f„,=ce ""'. (2. 40)

nal elements p -„ the latter are sufficient to de-
scribe both the drift and the Hall currents. Fur-
ther, the vanishing of both p and P' in the
transverse configuration suggest this. Carrying
this a step further, one may write out I'", fox the
transverse case, obtaining the form of Eq. (2. 29).
When Eq. (2. 27) is invoked, all the transverse
"remaining terms" depending upon the off-diagonal
elements of the field term eEx vanish, leaving just
the same terms as in the longitudinal case, which
as we have already seen, collecbvely vanish. Thus
only the gain-loss terms remain. Thus Eq. {2.19)
becomes in the Qhmie and g-0+ limits

f»» = —ff«P111* 'k, f'»T'»

lf rn» ~ (n1»1, n» ~n», n1»1k1»~k»)
njkg

(2. 35)

(2. 36)

Now the equilibrium electron density matrix p, (If,)
has already been properly normalized, requiring
that the nonequilibrium part f have the property

+ remaining t:erms. (2. 37)

The displayed term is proportional to p —and is
carried to the left side of Eq. (2. 19). Of the "re-
maining terms, " some contain the diagonal density
matrix elements in the two forms

The Qhmie contribution to the first of these van-
ishes under the condition (2. 27). The second term
(as well as the first) is also negligible, since the
diagonal density matrix elements themselves are
very small in the transverse configuration. There
are a number of ways of seeing this. They are not
"driven" by the electric field as are the off-diago-

Often, as with the scattering interactions con-
sidered in this paper, the second term on the right
in Eq. (2. 36)—the gain term —vanishes because
se„~,„,~, is an even function of 0„.

Next we turn to the transverse case and the quan-
tity P'„'-, . From Eq. (2. 21),

I ."-.=p.—.g(s-„'., I
a-.„,I'+s-.', —.

I a...I')

(2.41)

where

=2 ' f«(l —e ')(n+ 1)' f (2.43)

which is true only if C=O. Thus p =0 in the
transverse case, under the assumptions stated
above.

Going through the same exercises for the "re-
maining terms" of Eqs. (2. 37) which contain off-
diagonal elements p, i.e. , replacing the p,
by P„»jS,, 3 to estimate the size of the term, one
sees that all such terms vanish under the condi-
tions (2, 27) and (2. 28). Thus Eq. (2. 19), with use
of Eq. (2. 23), becomes in the Ohmic and q-0+
limits

@ —p —= f6+(1 —8»)ll» [(B+1)/2]1/»po

+p.—.Z[g'(E...)I v-...I'+g+(E...)I v...I'j.
(2.42)

This is solved for p —. First carrying out the de-
coupling procedur69 we have

{kl„» —ku, )&nkI f I n+1, k&

«.,=- 2 2 [&"(E...)I p-...I'+&*(E.,-.)I &...I'j O.(,)
Pty kj ff, 91g ~

Equations (2. 35) and (2.43) are the main results of this section. They have the common form
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{nki fin'k) = '"
)

.
/ { ), n' =n, n+1

foI' Rlly scR't'tel'1ng mechanisms sat1sfylng Eqs ~ (2.27) Rnd (2. 28)q Rnd fol' which I Vnn I I (Enn1) ls Rn evell
function of k&,. Here

~.n, n n=~ P
&nq)

for n' = n', k, [n,J,

av„„,(a) =- 2 p, (n, ) g [i V.,„,i'P(Z-.'.,)+ i
V.„,i'P(Z-.',.)],

(n~) fMg

8-/.„„,(u) =.E p, {n,) Z [i V„.,i'«E...)+ i V...i'5(E....)] .
fffq } oft

(2.47)

(2.48)

Vnn'(k) z(vnk Vn'1) ~

1/T„„.(f ) =-,'(~-„,'+ T-„'.,),
(2.49)

{2.50)

Equation (2.45) is the solution, for the desired
matrix elements, to what may be called the quan-
tum Boltzmann equation (2. 19), where Pe ~ is the

drift term and I'" ~ is the scattering term. Vfe

note that I"„,of Eqs. (2.43) and (2.44), from which

v .(k) and v„„.(k) are defined, is equivalent to I' (0)
in the cyclotron-resonance-linewidth theory of
Kawabata. " There, 1/7„„.(k) contributes to the

width Rnd vnn {k) to tile slllft of tile cyclot1011 1'eso-
naDce line.

Vfith the results of the Appendix, we note that
for the two types of scattering considered explicitly
in Sec. IV (as well as some others, e.g. , short-
range impurity scattering '), Eqs. (2.47) and

(2.48) further reduce to

tempting to extract the information from the com-
mutator term. The present paper shows how to do
this more accurately.

ur. MAGmTOTRANSpoRT cOEFFIc&ENTs

To illustrate the use of the theory developed in
Sec. II, we shall evaluate several magnetotrans-
port coefficients. Since the conventions used for
defining these coefficients vary so widely in the
literature, ' '3 and since a consistent sign con-
vention is necessary in the evaluation of the mag-
neto-Seebeck tensox components, we shall briefly
develop some relations among the coefficients.

The linear response (electric current density J
and total energy flux density %) to electric and
thermal drlvlDg fox'cea may be wrlttenq 1D the nota-
tion of Pavlov and Fllsov

Z=o. ~ E -P ~ v T,

v„, = ——2 p~(n, ) Q i V„„i'P{E'„), (2. 51)
ft1q ) Q1

2 p~(n, )g i V„„i'5(E„,) . (2. 52)
(ff J,

Equation (2. 50) shows that the off-diagonal relaxa-
tion rate is the average of the relaxation rates out
of the two states separately, a property which has
been noted previously for electron scattering on
random impurities ' 6 or acoustic phonons, '3~ and

for spin-spin relaxation. " Equation (2.49) shows
that the off-diagonal energy shift is one-half the

difference of two terms. The calculations of Sec.
IP show that scattering on acoustic phonons makes
no contribution, to the energy shift, 5 but that scat-
tering with emission of an optic phonon does.

The presence of the v„„.{k) and 1/v„„.(k) terms in
the denominator of Eq. (2.45) provide a Breit-
Vfigner type of relation for the density matrix,
with the "energy shift" v„„. and "coQision broaden-
ing" I/1„„occurring naturally. Many authors
have achieved a form similar to Eq. (2. 45) by ar-
tificially adding a relaxation term {p~ —p)/7 to the

right side of the i,iouville Eq. (2. 8) while not at-

E"= E + 8 '7 ${8,n„7') . (S.3)

'The absolute thermoelectric power, or magneto-
Seebeck coefficient a is defined by

E*=n ~ ~ T, (S.4)

with the subsidiary condition J=0. The absolute
Peltier coefficient m ( —m in Jan's notations ) is de-
fined by

F —+ ~ J (3.5)

with the subsidiary condition ~ T=O. The Seeback
and Peltier coefficieDts are connected by the Kel-
vin relation

stan(B) =
Toque {-B) . (S.6)

Equations (3.1) and (3.2) together with (3.4) and

(3. 5) show that

(3.7)

F=%+(e J=y ~ E~-X ~ VT', {S.2)

where E* is a sum of the applied field E and the
field genelated by the electx'oDs because of aD 1n-

homogeneous temperature and electron distribution:
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(3.8)

(3.9)

P=ge 0'
~

Tbe Kelvin relation (3.6), together with the On-
sager relation

~~,(B)=L„(-B),
where L(B) represents any of the above tensors,
then shows that P and y are related by

Z

,(1-e ') + (ss+ 1)f.'sg. s,
naA

,{1-e ') ~ (ss+1)f'ag!s,
nak

(3, 24)

(3.25)

The matrix elements of v are given in the Appendix.
From Eqs. (3. 1), (3.2), (3. 12), (3.16)-(3,23),

and (2.45)-(2.48), one finds

L~ —L3 0

L=I LP L1

0 0 I,
(3.11)

(3.10)

where p is the resistivity tensor, inverse to the
conductivity tensor 0.

For isotropic systems with the magnetic field in
the z direction, which is what we are considering,
the tensors are additionally antisymmetric and have
the common form'

os = ~a Z kgb„„(k)f„a,
n, ~

$0'g 8,~( — ')

xZ (n+1)f„', (~„, +-sa(u, )g„„,
na A'

l-e- )

&& ~ (~+1)f.'s(&..+ a k~.)g.'. ,
na 0'

(S.26)

(3.27)

Equation (3.10) then reduces to

r (B) = y P(B) . (3. 12)
dos sa'p ~ a oPs= T —,a~ ~ k&..( )kf. &s. a, (3.29)

We shall evaluate the magnetoresistivity tensor
p(B) and the magneto-Seebeck tensor o.{B), since
they are commonly measured quantities. One
finds their components to be, noting the form (3.11)
as well as p =o ' and Eq. (3. 7),

g„„=7'„~„„(k)/D„,„„{k),
g.'. = [~.—~...,i(k)1/D. ...~(k),

D„,„„(k)= [(u, —v„,„„(k)]'+7„',„,,(k) .

(3.30)

(3.31)

(3.32)

Ps = 0'y/8

pa = —oa/S,

ps =1/o, ,

o'z =(oipg+ oapa)/& ~

~a =(osPa oaPi)/3— ,

o's =ps/os ~

where

8 = o' ) + 0'~ .

(3.13)

(3. 14)

(3.15)

(3.16)

(3.17)

(S.18)

(S.19)

F =Tr(pF„),
where the associated operators are given by

(3.21)

The reason for introducing the relation (3.12) is
so that we may evaluate y rather than L3 in com-
puting the Seebeck tensor n, since y occurs for
v T =0, and the problems associated with introduc-
ing a temperature gradient into the Hamiltonian
formulation are thereby avoided.

The electric and energy current densities are
determined by use of the density matrix from the
statistical-mechanical prescription

J = Tr(pJ„), (3.20)

The resistivity and Seebeck tensor components
are determined from the above equations with the
use of Eqs. (3.13)-(3.19). Tbe results of some
numerical computations are shown in the next sec-
tion.

The expressions for the longitudinal components
o, and Ps, as given in Eqs. (3.26) and (3.29), are
the same as those obtained earlier'4'6 by use of
the Boltzmann equation generalized to include mag-
netic fields and Landau quantization. This is be-
cause the theory of the previous section reduces
to the Boltzmann equation in the longitudinal case,
as discussed there. The transverse conductivity
expression (S.24) is equivalent to the zero-fre-
quency limit of the cyclotron resonance expressions
of Kawabata ' and Ito et al. ,

~7 who used different
means of derivation. Our results are convergent
even when the relaxation rates (proportional to

~ V~ ) diverge, which occurs for electrons making
transitions to the Landau subband edges.

It is of interest, to note that. the expressions
(3.24)-(3.29) correctly reduce in the B-0 limit
to the zero-field Boltzmann-equation results. That
is, o, and Pa vanish, and o, - os-o(0), P, -P, -P(0),
where

Jop = (S.22)

(S.23)

o(O) = ZF, (r, O), (S.33)

(3.34)
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where (3.18), one finds the not-so-familiar expressions

(3.35)
4n, e'k'(2mP)'"p, u',

SEOya (do(no) m+

~ Oo e-x~ n+3/2

F y0)= Cx~ o+ (x+ y) o+ e~(x —y)~~»

(3.36)

k~ 1 s—+ s coth—eT e 2 2

kg 3 S S—+ —coth—eT e 2 2 2

(S.45)

(3.46)
I

(3; 47)

(3.37)

y= pS+0 . (3.38)
Here, E„and E~ are deformation potential energies
corresponding to the optic and acoustic phonons, and
(no) is the thermal number of optic phonons of fre-
quency eo. Thus, when acoustic phonon scattering
dominates, o(0) becomes Z/C, which, when Eqs.
(3.35)-(3.38) are used, is seen to be the usual
zero-field expression for this type of scattering.
Also for this case, the normalized Hall coefficient

xs = —n, eR—s = —n,ep,„/B, (3.39)
which is close to unity at high fields, takes the
usual value" ~8 as B-0. The Seebeck coefficient
in this case becomes

)
p(0) ks 2

t'(0)
(3.40)

e(0) e ks T

which is the standard result, 37 independent of the
scattering. (It should be noted, however, that in
the presence of the inelastic optic phonon scatter-
ing, the zero-field expressions for r„and n do not
take these simple forms, and are scattering de-
pendent. ) The Ettingshausen-Nernst coefficient
for pure acoustic phonon scattering becomes, as
+~0

The Ettingshausen-Nernst term n~ thus vanishes
in this approximation, while the transverse and
longitudinal Seebeck coefficients, n& and aa, are
independent of scattering mechanism. The differ-
ences between these phenomenological expressions
and those containing the details of the scattering
are discussed in the next section.

IV. NUMERICAL CALCULATIONS

We illustrate the theory developed in Sec. II by
calculating the magnetotransport coefficients of
Sec. III for purely elastic scattering on acoustic
phonons, and for combined scattering on acoustic
and optic phonons, the latter giving rise to the
magnetophonon effect.

First, a few remarks about the relaxation-time
and energy shift terms are in order. The relaxa-
tion rate for the combined scattering is the sum of
the separate rates, and may be written

+e'&(s'- y, + sm)-"'], (4. 1)
where the sum on i refers to the acoustic and optic
phonon scatterings, and

@ax Baked Z
B 16n e C (3.41) E,',k &uo(no) s

A, = (4. 2)

The earlier theories for transverse magnetore-
sistance, having the divergence difficulties, do not
extrapolate to the correct B=O results, being es-
sentially high-field theories.

Finally, we note that if v„,„.,(k) in Eqs. (3.24)-
(3.26) is ignored, and the relaxation times o„„,~(k)
and o„„(k)are taken as constant or replaced by
suitably averaged quantities, the familiar expres-
sions"

Oxx = Oi
ne 7.

m+ 1+(e,r}' ' (3.42)

n, e
m+ I+((u,.r)' ' (3.43)

(3.44)

are obtained from Eqs. (3.24)-(3. 26}. The famil-
iar phenomenological resistivity components then
result from Eqs. (3.13}—(3.15}. Applying the
same approximation to the I3 tensor, and then eval-
uating the Seebeck tensor n from Eqs. (3.16)-

A~ = ~A,yC,

yoo = y=Ptf~o ~

y~ =0

z'= pk'k'/2m* .

(4. 3}

(4.4)

(4. 5)

(4.6)

m=~'o

+e"'( —s + y; —sm) '~'] . (4. 8)

Now v„,„„(k)is one-half the diffeoenee of two

shifts, according to Eq. (2.49). Noting that x '~'

The quantity C in Eq. (4. 3) is defined in Eq. (3.37).
The expression (4. 5) is a result of equipartition
for the acoustic phonons:

(n, ) + 1 = e "'(n, ) = (n, ) = (PI cv, )
' . (4. 7)

The quantity [o„„„(k)] appearing in the off-diago-
nal density-matrix expression is the arithmetic
mean of the two rates I/o„(k) and 1/7„„(k),

The energy-shift term may be written
n

v„(k) =Z A& Z [(—so —y, —sm) Uo
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FIG. 1. Transverse (subscript 1) and longitudinal
(subscript 3) magnetoresistance and Hall coefficient as
a function of magnetic field for elastic scattering on
acoustic phonons. Deformation potential E~=10 eV.
Temperature = 3 e= 94 K.

—= 0 whenever x&0, one finds

v„„.,(k) = —,'A„e—"[y s(n-+1) —zz] '~z . (4 9)

Thus, the acoustic phonon scattering makes no

contribution to the line shift, as noted earlier by
Kawabata. ' Further, only the emission term of
the optic phonon scattering contributes to the line
shif t.

Figure 1 shows the longitudinal and transverse
magnetoresistance, and the normalized Hall co-
efficient r„of Eg. (3.39), for purely deformation-
potential acoustic phonon scattering. %e have used
parameter values similar to those of n-InSb in all
the figures: 8 —= K no /ke = 281 K, m+ = 0.016m„p~
=5780 kg/m', u, =3700 m/sec, and E =8-10 eV.
The deviation of r~ from unity is indeed very small
in the figure. However, r„rises to 3v/8 at B=O,
the rise beginning only at about s = Pkv, = 0.01. The
transverse magnetoresistance is of particular im-
portance here, and has a range of values quite rep-
resentative of many substances. " Of course, the

curves are not meant to describe quantitatively any
particular material; they do show, however, that
the theory as developed, with its natural cutoff,
gives correct order-of-magnitude results without

any extra assumptions. This is not to suggest that,
e.g. , level broadening considerations may not be
important, because of course in some circum-
stances they are, e.g. , in analyzing the amplitudes
of the various magneto-oscillatory phenomena. The
point we wish to make here is that level broaden-
ing per se is not necessary to make the transverse
magnetoresistance finite or of the correct magni-
tude. The "natural" theory is able to do this. With-
in it, level broadening can be incorporated as in
the divergent theories.

The interesting region of negative longitudinal
magnetoresistance seen in Fig. 1 perhaps de-
serves some comment. As we have stated earlier,
the underlying formula, Eq. (3.26), is the usual

0.6
I I I I I I I I I 0006

o o4a 0.04

o 02
CS

0.02

I 1 I I I I I I I

I 2 3 4

7lcu /k T

FIG. 2. Magneto-Seebeck components as a function of
magnetic field, for the same conditions as in Fig. 1, and
n~= 5 &&10 cm"~. "E-N" is the Ettingshausen-Nernst
coefficient e~/8 divided by 8/m*T = 77 pV/K T = 7. 7
&&10 ~ m2/K sec.

one, and can be found in many papers, perhaps the
earliest being that of Argyres. " However, Dubin-
skaya was apparently the first to recognize that
it gives a region of negative magnetoresistance for
deformation-potential scattering on acoustic pho-
nons. Our previous work36 confirmed this, and
has shown a region of negative longitudinal mag-
netoresistance for nonpolar optic phonon scatter-
ing as well. Dubinskaya gave the physical reason,
which, in somewhat more detail, is as follows:
For A(d, «k~T, i.e. , small fields, or equivalently,
high temperatures, there are many (elastic) scat-
tering processes which can end near k, =0, near
the bottom of a Landau subband. These processes
are very effective in limiting the mobility because
they correspond to very small relaxation times.
As the field increases from its small values, fewer
of these processes contribute, because La~dau lev-
els are passing up out of the populated energy re-
gion, and the mobility increases (resistance de-
creases). When @co, ~ ke T, the last of these pro-
cesses ceases to be significant. For higher fields,
the scattering details become unimportant; the
available electrons now are progressively crowded
nearer k, = 0 in the bottom Landau level, and con-
tribute less to the mobility, meaning that the re-
sistance now increases. This physical argument
seems to be quite general, and suggests that im-
purity scattering should show a similar behavior.

For the reader who may be thinking that the neg-
ative longitudinal magnetoresistance at low "clas-
sical" fields is inconsistent with the old classical
theory (see, e. g. , Ref. 5) which gives zero longi-
tudinal magnetoresistance, we point out that there,
not only are the magnetic-field effects not quan-
tized, but also the relaxation time is assumed to
be independent of magnetic field. If the latter as-
sumption is made in the present theory, it too will
give no longitudinal magnetoresistance.

Figure 2 shows the analogous results (purely



2294 V. K. ARORA AND ROBERT L. PETERSON

acoustic phonon scattering) for the magnetothermal
components. Vfe show the longitudinal and trans-
verse Seebeck coefficients as well as the dimen-
sionless quantity en2/sos =eTnz/he„whi ch is
proportional to the Ettingshausen-Nernst coeffi-
cient n,„/B. Again, these coefficients are of the
correct order of magnitude. s ' '4 It is useful to
note how well these curves approximate the phe-
nomenological expressions (3.45)-(3.47) in the
high-field region. The longitudinal Seebeck coef-
ficient is seen to have about half the slope of the
transverse coefficient, in agreement with Eqs.
(3.45) and (3.47), and to lie approximately the
prescribed distance below it. The Ettingshausen-
Nernst coefficient is indeed very small at high
fields, in agreement with Eq. (3.46), but rises to
the positive value given by Eq. (3, 41), appropriate
to acoustic phonon scattering. An experimental re-
sult shows this qualitative behavior, ' but the posi-
tive value is there ascribed to impurity scattering.
The transverse Seebeck coefficient no, /n(0) of
Fig. 2 seems to approach the zero-field axis at a
finite value, but in fact turns toward the origin at
s= 0. 01, about where the Hall coefficient makes
its turn. The experimental result of Muzhdaba et
al. 4' shows such an elbow.

In Fig. 3, we show the magnetoresistivity with
combined acoustic and optic phonon scattering at
a temperature equivalent to VV K in InSb. The
transverse magnetoresistance shows resonance
maxima which are finite in amplitude, but larger
than observed experimentally in any material. The
latter shows the need for inclusion of level-broad-
ening techniques for an analysis of resonance am-
plitudes. The longitudinal magnetoresistance
shown in Fig. 3 shows the resonance minima, pseu-
doresonance minima, and off-resonance maxima
which have been discussed in detail earlier. '

30- l.ol —I.5

20—

10—

~oo
0,98 l.00 f.02 ~ l.o

'e
O

—0.5 ~ o

0.5
f

1,0
I

I.5 2.0

Cg / 4'
FIG. 3. Magnetoresistance as a function of magnetic

field for combined scattering on acoustic (E~= 8 eV) and

optic (E,~ = 24 eP) phonons, with T = 9/3. 66 = 77 K, showing

magnetophonon structure in the transverse and longitudinal

magnetoresistance. Magnetophonon structure is also
present in the Hall coefficient but is very small; as shown

in the inset, it has a steplike character.

0.8 —0.08

0.6— —0.06

C
O

0.4—

0.2—

—0.04
I

LLI

—0.02

0.5 I.O
I

I.5 2,5

Finally, the Hall coefficient shows almost no struc-
ture. The structure which exists is rather step-
like, as shown on a greatly expanded scale in the
inset. In view of the smallness of these steps and
the expectation that level broadening would smear
them out considerably, it is somewhat surprising
that magnetophonon oscillations have been observed
experimentally43'44 in the Hall voltage.

Figure 4 shows the magnetophonon structure in
the magnetothermal coefficients, for the same pa-
rameter values as in Fig. 3, The longitudinal See-
beck coefficient n, is similar to curves published
earlier, '4 and qualitatively similar to several ob-
servations, ' 4 showing principally the broad off-
resonance maxima, and scarcely discernible pseu-
doresonance and resonance maxima (actually,
slope discontinuities). No structure is seen in the

transverse Seebeck coefficient n„but there is
very pronounced structure in nz. One should note
the remarkable inverted amplitude at ~, = ~p in the
calculated Ettingshausen-Nernst coefficient in Fig.
4. Calculations for other temperatures and ratios
of elastic to inelastic scattering show that this in-
version relative to the lower-field amplitudes per-
sists. To date, there has been only one report of
observed magnetophonon oscillations in the Et-
tingshausen-Nernst coefficient. There, the sec-
ond and third peaks, corresponding to N=2 and 3
in the resonance condition NM =p were observed
in n-InSb, and were maxima, in agreement with

Fig. 4. The experiment was not carried to fields
high enough to observe the N=1 peak, and so
whether it is a maximum or minimum is still not
known.

To sum up, the theory presented here gives a
straightforward way of calculating magnetotrans-
port coefficients without encountering the tradi-

tel / tal

FIG. 4. Magneto-Seebeck components as a function of
magnetic field, for the same conditions as in Fig. 3, and

n, =6.2 &&10 cm, No magnetophonon structure is dis-
cernible in the transverse component; broad off-resonance
maxima and very small slope discontinuities at the reso-
nance and pseudoresonance fields are seen in the longi-
tudinal component; sharp features occur at the resonance
fields in the Ettingshausen-Nernst coefficient.
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APPENDIX

The eigenfunctions of the electron Hamiltonian
(2. 2) are

g„» = exp[i(k„y+ k,x)]Q„{(x-x»)/I)//(L„L, )'~', (Al)

where the single index k denotes the pair (k„k,),
and L„L,are sample dimensions. The Q„((x-x»)/
I) are harmonic-oscillator functions centered at x,
= —l k» where

Q (y) = (2"n lm' ') "'H (y) e " " (A2)

(AS)I = k/Bl+(d~ )

and H„(y) is a Hermite polynomial.
The matrix elements of the velocity operator

v = iII, '[e„r]= ik.-'[a„r]
between states g„.», and P„» are

(n'k'
~ v„~ nk) = (if~, /2'~»)

(A4)

x[(n+I)'"6„.„„-n"'6„,„.,]6.,..
(A6)

(n'k'
~
v,

~
nk) = (Ev, /2'~~)

x [(n+ 1) 6„,~„+& + n 5„.~„.&]6»,»,
(A6)

(nk ~v, ~nk) =(kk. /m*)6„, „6,,,
The quantities P, defined in Eq. (2. 18) may be

written

tional divergence difficulties. The results for the
transverse magnetoconductivity are identical to
some earlier results of cyclotron-resonance theory
extrapolated to zero frequency. The theory in the
limit of small magnetic fields agrees with conven-
tional zero-field results. The expressions for the
magnetotransport coefficients have the "natural
cutoff" form. The theory has permitted the first
detailed calculation of magnetophonon effects in
the transverse magnetoresistance, the Hall coeffi-
cient, and the Ettingshausen-Nernst coefficient.
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~ =(p —p ~ )I +[p « ~ r] ~ ~ (A8)

The electric field term [p, eE ~ r] is diagonal in
phonon quantum numbers. The following matrix
elements are used in the evaluation of the field
term for the longitudinal and transverse configura-
tions;

&n'k'
~
[f'(&.), ~]

I
nk) = {ik'e/~*)fo»k. 6".6»» (A9)

h f„ 1 —exp[Pk&u, (n' —n)]
2'"m+l nI —n

x [(n+ I)'"6„,
~ „+i —n"'6„, „,] „.„.

(A 10)
The matrix elements of the position operator x

are also used. These are

&n'k'~ x~ nk& = —I'k, 6„,„6...+ I 2-'"

x[(n+I)'"6„, „„+n'~26„,„,]6»» (All)

co ~ m OO

dq, Z„.„(q„,k~, k, ) 8„„.( —q„, k„, k', ) = 2m/I» .
(A14)

The left-hand side of Eq. (A14) occurs with defor-
mation potential scattering when equipartition,
linear dispersion (&u, = qu, ), and collision elasticity
are assumed for acoustic phonons, and no disper-
sion (v, = eo) is assumed for optic phonons. It
also results for other interactions with certain ap-
proximations; e.g. , scattering on screened ionized
impurities can be cast into the form of Eq. (2. 6)
with a coupling coefficient proportional to (q»+ r,2) '
where ~, is a screening length. If here q„+q, is
approximated by a. parameter such as l', then the
combination on the left side of Eq. (A14) results.
Any scattering mechanism with this characteristic
also satisfies Eqs. (2. 27) and (2. 28).

~ ~
The matrix elements of the electron portion e"'

of the scattering term are

&n'k'
~

e"'~ nk) = 6. ». » Z„,„(q„,k,', k,),
where

t+ OO $2 f 2z ( a' a I- ' ~ "**:y ""' ~"
y

"' ~")
4 ~00

(A 13)
The following property of J„.„ is used in this paper:
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