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Crystal equilibrium and phonon dispersion an some bcc transition metals
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A lattice-dynamical model has been developed for bcc metals which considers ion-ion interaction
through second-neighbor central pair potential and electron-ion interaction based on the Sharma-Joshi
theory. In the present model the ionic lattice is in equilibrium in a medium of electrons. The theory
has been applied to calculate the dispersion curves in a number of transition metals. The results when

compared to experimental neutron data show a reasonably good agreement in the [100] and [111]
directions, while suNcient deviations are present in the [110] direction,

I. INTRODUCTION

Recently, a number of phenomenological models
have been proposed by various authors' ' to study
the lattice-dynamical properties of cubic metals.
These models essentially use the effect of the elec-
tron gas on the lattice vibrations explicitly on the
basis of the de Launay, Bhatia, Sharma-Joshi,
and Krebs theories' ' which have been excellently
reviewed in an article by Joshi and Rajagopal. "
However, this review article has missed one im-
portant problem regarding the crystal equilibrium.
In de Launay's analysis' the free-electron gas is
assumed to be superimposed on the point-ion lat-
tice of the crystal and the Cauchy discrepancy is
shown to be equal to the bulk modulus of the elec-
tron gas. This model assumes that the lattice is
in equilibrium under the central forces alone. '
For the Sharma-Joshi' and Krebs' models the
case is similar. These authors are not able to
impose an equilibrium condition on the model solid
and that is why their claim regarding the magni-
tude of the Cauchy discrepancy is not correct. In

fact a consistent model needs that, in equilibrium,
the pressure due to the ionic potential be exactly
balanced by a pressure of opposite sign due to the
electrons, i.e.,

&O= -&0

where the subscript 0 represents the quantity in
equilibrium configuration.

First of all, Bhatia' indicated that in a medium
of electrons the derivative of the ionic interaction
potential alone is not zero in equilibrium. The
problem remained unnoticed for a long time and
in 1968 Cheveau" again pointed out the weakness
of such models, especially that of Krebs'. they
need external forces to put the crystal in equilib-
rium. He proposed a simple model fulfilling this
requirement but, as far as we know, his model
has not been used to calculate the phonon-disper-
sion relations.

In the present work, we have developed a phe-
nomenological model which uses ion-ion interac-
tion through second-neighbor pair potential and
electron-ion interaction on the basis of Sharma-
Joshi theory. ' The proposed model incorporates
the idea of Cheveau" and describes a crystal in
equilibrium under zero external stress. Further
it gives the correct expression for the Cauchy dis-
crepancy. The Sharma-Joshi theory' has been
used in the calculation of electron-ion-electron
part of the dynamical matrix because it is suffi-
ciently rigorous in its theoretical development and

is easy to handle computationally. ' Moreover,
this theory gives satisfactory numerical results"
and therefore it is still used in recent lattice-
dynamical studies. " Section II of this paper deals
with the theoretical development and Sec. III with
the application of the present work in the calcula-
tions of dispersion relations in transition metals,
na, mely Fe, W, Mo, V, Nb, and Ta, crystallizing
in the bcc structure.

II. THEORY

As usual, in a metal the total interaction poten-
tial is assumed to be the sum of ion-ion and elec-
tron-ion potentials, i.e. ,

where P' is the volume-dependent potential energy.
If the ions are interacting through the central

pairwise potential Q (r, )and the. ion-ion coupling
is effective only upto second-nearest neighbors,
the potential energy per unit cell in a bcc metal
can be written

where Q' is the potential energy oi electron-ion
interaction per unit cell and j (=1, 2) represents
the nearest neighbors.

If the solid is in equilibrium at zero external
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stress, the derivative of the total potential p
must vanish, i.e.,

8 = 0, i.e., I'o +I o
= 0,

8Q 0

which is the same as Eq. (1). Further, in view of
Eq. (3), we obtain

e, + e2+2aIO=O,

1d'x,.

Taking P'„= 5 K, for the free-electron gas" the
equilibrium condition (5) assumes the form

+ +2+ ~o

where K, is the bulk modulus of the free-electron
gas.

By considering the central pairwise interaction
between the ion at the origin and the nearest neigh-
bors up to second-nearest neighbor, we obtain the
ionic contribution to the dynamical matrix D(q)
(Maradudin et aE ") i..e. ,

f e

jth neighbors

gives the phonon frequencies m, where m is the
mass of the ion and I is the unit matrix.

When we solve Eq. (9) in the long-wavelength
limit, the following expressions are obtained for
the elastic constants C,, :

aC„=—,'(2o, +P, ) +2P, +aK, ,

aC» = -~e, ++P, -2a, +aK, ,

(10)

(11)

where P, = [d'P'(r, .)/dr, .'], and n, P= 1, 2, 3.
The electron-ion part of the dynamical matrix

is obtained on the basis of the Sharma-Joshi
theory'".

D'e'(q) =K,q qaQG'(v, q),

where ~, is the radius of Wigner-Seitz sphere,
the function G(r, q) =3(sinr, q r,qc—os', q)/(x, q)',
and 0 is the 3tomic volume.

The sum of the ion-ion and electron-ion parts
gives the dynamical matrix elements D„8(q), and
the solution of the secular equation

(9)

aC„=—,'(2o., +P,) +2m, . (12)

III. NUMERICAL RESULTS AND DISCUSSION

The input data for finding the parameters of the
theory are given in Table I and the calculated
parameters o.&, P, and K, are given in Table lI.
Substituting the values of the parameters in the
secular equation (9), the dispersion curves were
calculated for Fe, W, Mo, V, Nb, and Ta in the
three crystallographic symmetry directions [100],
[111], and [110]. The computed results have
been shown in Figs. 1-6 with the experimental

Equations (6) and (10)-(12), together with rela-
tion (13) for the phonon frequency of the zone
boundary, form a sufficient set of equations to
determine the parameters of the theory„n, , P, ,
and K, .

4&'mvz'(100) =~(2o., + p, ) +K, q'QG'(r, q ), (13)

where q is the maximum value of q at the zone
boundary in the [100]direction.

TABLE I. Elastic constants in units of 10' dyn/cm and phonon frequencies (the references
for phonon frequencies are given in the text) in 10~2 cps,

Mo Ta

m (amu)
g (A)

C((
C(2

v~ (100)

55.846
2.86

a

13.81
12.19
8.70

183.85
3.16

53.255
20.495
16.3IH
5,55

95.94
3.14

45.002
17.292
12.503
5.57

50.942
3.04

22.8
11.88
4.26
7.70

92.906
3.3008

24.6
13.40
2.87
6.49

180.948
3.30

26,09
15.74
8.18

~ B. N. Brockhouse et al ., Solid State Commun. 5, 211 (1967).
"F.H. Featherson and J. R. Neighbours, Phys. Rev. 130, 1324 (1963).
c D. I. Bolef, J. Appl. Phys. 32, 100 (1961).
d C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1967), p. 111.
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TABLE II. Force constants in units of 10 dyn/cm and bulk modulus (K,) in 10" dyn/cm .

Parameter Mo V

Q(
Pg

Ap

Pg

K~

-1.0074
53.183
0.3756

16.6542
0.7364

5.1232
77.6064
3.3212

58 ~ 6861
1.9009

-10.3373
54.7034

8.2868
55.8926
2.1768

1.4277
30.3298
—4.5865
18.3295
3.4636

4.5864
33,0153
—9.3261
18.6377
4.7864

0.4442
51.1412
—3 ~ 8462
20.0353
3.4364

C» —C« = K, —(4/a) (n, + o.,) . (14)

points of Minkiewicz et al. ,
"Chen and Brock-

house, "Woods and Chen, "Collela and Batter-
mann, "Nakagawa and Woods, "and Woods, "re-
spectively. The calculated curves are in reason-
ably good agreement with experiment„with effec-
tively a four-parameter theory. The discrepancies
are more pronounced near the zone boundary
especially in [110] direction for V, Nb, and Ta.
However, they compare well with the results of
Bose et al. ,

' using a five-parameter theory and

fitting the parameters to one more zone-boundary
frequency.

The advantages of the present model over simi-
lar other models need to be mentioned: (i) The
model is in equilibrium without the application of
external forces; (ii) the model predicts the dis-
crepancy in the Cauchy relation to be

In view of the equilibrium condition (6), we have

C,z
—C,a=2.2 K

which for K, =0 (in absence of free electrons)
gives the famous Cauchy relation for cubic metals.
This result must be obtained for central pairwise
potentials. " However, the models of Lehman et
al."and Shukla et al."do not lead to the desired
result, while the axially symmetric model used
by them is derivable from central pair potentials.
Further, in de Launay, Sharma-Joshi, and Krebs
models"' the second term of Eq. (14) is zero
but in the present analysis it is essentially non-
zero and the obtained correct magnitude of the
Cauchy discrepancy is equal to 2.2K, for central
pairwise potentials. (iii) In equilibrium this model
considers the derivative of the total potential en-
ergy equal to zero. The models of de Launay, '
Sharma-Joshi, ' and Krebs' assume that in equilib-
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FIG. 1. Phonon dispersion
in Fe: k ~ 0 experimental
points of Minkiewicz {Ref.
15) .
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FIG. 2. Phonon dispersion
in W: k 4 0 experimental
points of Chen and Brock-
house (Ref. 16).
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rium the derivatives of the potential energy for
each set of neighboring ions (i.e., n)) are individu-
ally zero, in addition to the fact that they neglect
electronic pressure. In this context the work of
Thomas" needs to be mentioned. He has also
stressed that energy terms and hence their first
derivatives cannot be set separately equal to zero

in an equilibrium configuration. Further, he has
emphasized that elastic-constant theory only ap-
plies to a solid in equilibrium and that, in utilizing
empirical models of lattice cohesion, an equilib-
rium condition must be imposed explicitly.

Recently, Animalu" has proposed a new transi-
tion-metal model potential (TMMP) of Heine-
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Phonon dispex sion
in Mo: JL 4 0 experimental
points of Woods and Chen
ref. 17).
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FIG. 4. Phonon dispersion
in V: 4 0 experimental
points of Collela and Batter-
mann (Ref. 18).
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Abarenkov-type to study the lattice dynamics of
transition metals. The agreement between theo-
retical and experimental dispersion curves is poor
for bcc metals. The most likely source of dis-

crepancy in Animalu's analysis may be traced to
some form of close-range forces as pointed out by
Pindore and Pynn. " This theory uses second-
order terms in the total electron energy, so that

I ~ T 1

FIG. G. Phonon dispersion
in Nb: k 0 0 experimental
points of Nakagawa and
'Atoods (Bef. 19).
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FIG. 6. Phonon dispersion
in Ta: 400 experimental
points of Woods (Hef. 20).
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it takes account of only central pairwise forces.
Unpaired forces between ions are accounted
through third-order terms and the recent works
of Bertoni et al. 27 based on this approach show the
dispersion curves in simple metals sufficiently
modified in the right direction and give the cor-
rect sequence of branches in the hcp metal Be. It
is expected that in case of transition metals the
third-order corrections may be important. Our
model uses pairwise interactions up to second
neighbors and a small noncentral contribution due
to electrons. %e also feel that the inclusion of
three-body forces in our analysis may improve
the results. Moreover, the present model and
other similar models assume the ionic size to be
negligible. This assumption of point ions in the
actual crystal seems to be incorrect, specially in

case of transition metals. Further, the Sharma-
Joshi theory' for electron-ion interaction and
hence the present work do not take account of long-
range screened Coulomb forces. The problem of
developing a model which considers finite core
size, long-range forces, and three-body interac-
tions in a phenomenological way is under considera-
tion.
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