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Electrical conductivity of the narrow-half-filled-band Hubbard model with nearest-neighbor
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The recent theoretical work on the one-dimensional Hubbard model showed this to be inadequate to
explain the properties of n-methyl phenazinium tetracyanoquino dimethane (NMP-TCNQ) in the regime
of narrow bandwidth compared to Coulomb repulsion; however, it also supported the suggestion existing
in the literature that it is possible to fit both the magnetic susceptibility and the low-T activation
energy of the electrical conductivity by introducing a temperature dependence in the parameters of the
Hamiltonian. Since the Hubbard Hamiltonian neglects important interactions (long-range Coulomb
repulsion, electron-lattice interaction, etc.), it is reasonable to think that these interactions may be
responsible for this temperature dependence. In this paper I add to the Hubbard Hamiltonian a
nearest-neighbor Coulomb interaction and calculate the electrical conductivity in the narrow-bandwidth
regime.

I. INTRODUCTION

The recent theoretical work' on the so-called
"extended" or "modified" Hubbard model was
motivated by a rather wide range of reasons. Be-
fore reviewing them briefly, let me first define
the model in question. The Hamiltonian in one
dimension is written as follows:

H = b P (c~, c;„,+ ct„&,c„)+ U g n„n;,
iy o'

+Van;n;, &
—p. g n;, ,

where c~. . q, , are the creation and destruction
operators for electrons in the Wannier function W,
centered at site i a.nd spin v (a =i, i); n„=- ct„c;,
is the corresponding occupation number operator
(n, , =0, 1) and n, =n, , + n;, . Periodic boundary con-
ditions are used: ct „,=ct, (N, =number of sites ofN~+f, g

the chain). The first term of Eq. (1) is the non-
interacting particle energy in the tight-binding ap-
proximation; this term gives rise to a band of
width w =4b if the interaction is neglected. The
second term represents the Coulomb repulsion be-
tween two electrons on the same site and the third
term represents the Coulomb repulsion between the
electronic charges on nearest-neighbor sites.
Finally, the last term is pN (N=g, , )n, where p.
is the chemical potential and N is the total number
operator. b, U and V are the positive parameters
of the model Hamiltonian. Throughout this paper
JU, is chosen in such a way that the grand canonical
thermal average

equals the number of sites of the chain (half-filled
band). Equation (1) without the third term reduces
to the usual Hubbard Hamiltonians in one dimension.

Bari' first studied the thermodynamics of Ham-
iltonian (1) in three dimensions with bandwidth =—0,
using a Green's-function decoupling technique and
starting from the variational principle. His aim was
to study the role of electron lattice interactions in
a narrow half-filled band, which he can effectively
include in the interaction part of Eq. (1). He first
pointed out' that for large enough V/U the system
might undergo a phase transition to a so-called
charge-ordered state at low temperature, with the
sites of sublattice A doubly occupied and the sites
of sublattice B empty (the total lattice is made up
of the two equivalent sublattices A and B); on the
other hand, for V/Uless than a critical value no
such transition occurs and the ground state has
each site singly occupied. Bari showed that in
one dimension there is no phase transition even
when the ground state has alternating doubly oc-
cupied and unoccupied sites (for V/U greater than
the critical value). Ihle and Lorentz performed
a study similar to Bari's work, by using a more
sophisticated decoupling scheme for the one-par-
ticle Green's function, and found similar results.

Beni and Pincus (BP) and Tu and Kaplan' (TK)
studied in detail the equilibrium statistical me-
chanics of Hamiltonian (1) in one dimension with
b=—0. Both groups of authors were motivated by the
possible connection of the theory with experiments
on the organic solid n-methyl phenazinium tetra-
cyanoquino dimethane (NMP-TCNQ). Several the-
oretical works had been performed previously to
analyze the hypothesis advanced by Heeger and co-
workers ' that magnetic susceptibility, specific
heat, and electrical conductivity of NMP-TCNQ
(Ref. 9) could be explained by the simple half-filled-
band Hubbard model. The results of those
works, suggested, in general, that the Hubbard
Hamiltonian is not sufficient to explain the behavior
of NMP-TCNQ. Without entering into details, I
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mention only that the most striking and convincing
result is contained in Befs. 6 and V where Cabib
and Kaplan show the drastic disagreement of the
magnetic susceptibility measurements with the
theoretical results obtained within the Hubbard
model: namely, the existence in the theory, contrary
to experiment, of a peak, and the very different mag-
nitude of the moment in the Curie-Weiss region.

The work of BP3 and of TK go beyond the Hub-
bard model. The first group~ argued that the exis-
tence of a coupling between the electronic charge on
the TCNQ molecules 3nd the induced dipole mo-
ments on the NMP molecules can be effectively
written in the form of interchain repulsion between
the electronic charges on TCNQ in the same way
as the third term of Eq. (1) (besides reducing the
on-site Coulomb repulsion). The second group
argued that the presence of a nearest-neighbor
Coulomb repulsion might reduce appreciably the
moment in the Curie-%eiss region and therefore
might tend to improve the comparison with experi-
ment; however, they found that their results con-
tradicted this expectation.

BP and TK are concerned with the study of the
static properties of the Hamiltonian (1) in the b=0
limit. They calculated specific heat, ' magnetic
susceptibility, 2' and density-density correlation
functions exactly in one dimension in the grand
canonical ensemble, by use of the transfer-ma-
trix method. '

In the present work, I am concerned with the cal-
culation of a nonequilibirum quantity, the fre-
quency-dependent electrical conductivity, or linear
response to an external electric field. The motiva-
tion ls twofoM: KRplRn Rnd CRblb showed thRt lt
is possible to fit simultaneously the magnetic sus-
ceptibility and the low-temperature gap of the dc
conductivity of NMP-TCNQ with the Hubbard model
if a temperature dependence is introduced in the
parameters 5 and U. They also stressed that it is
reasonable that interactions neglected by the Hub-

bard Hamiltonian may be responsible for this tem-
perature dependence of the parameters. A cal-
culation of the dc conductivity by use of Hamiltonian

(1) might give better insight about the role of the Cou-
lomb repulsion when its range is longer than just
lntrRslte.

The second motivation is purely theoretical. A

calculation of the frequency-dependent conductivity
requires the knowledge of the time-dependent tmo-

particle correlation function. BP calculated the
time-independent average (rtt rt„~) with Hamiltonian

(1) in the limit fr =0 exactly; the calculation of the

time-dependent correlation function (crt(t) e, (t)e„er )
can also be performed exactly in the same limit in

a manner similar to (n; t)t, even though it in-
volves more tedious work. In a very recent paper, 13

I showed this type of calculation in a model quite

simpler than Eq. (1). Qualitatively, the result was
very similar to the one obtained by Bari Rnd Kap-
lan, 3 mho mere concerned with the narrow-half-
filled-band Hubbard model: in short, (1) existence
of optical absorption and emission at ~ equals first
excited energy minus ground-state energy, and (2)
energy-activated de conductivity.

The more complicated Hamiltonian (1) gives a
much more complex structure of the absorption
spectrum owing to the presence of the nearest-
neighbor Coulomb repulsion. One of my cheeks
of the calculation was to recover Bari and Kaplan's
expression in the limit, nearest-neighbor interac-
tion -O.

In Sec. II, I show the calculation and discuss the
results. In the Appendix, I show some of the de-
tails of the calculation.

II, CONDUCTIVITY

'U is the volume of the system, P = I/ItT', J„is the

p component of the current operator,

~(f) etirt ~e-iHt

and H is the Hamiltonian of the system.
It is easy to show that the real part of Eq. (2)

can be remritten as'

[To show Eq. (6) from Eq. (2), one uses R(cr~„)
= A(cr, „)*, the transformation of the integration
VRrlRble g = p —g Rnd the 1nvRrlanee of the trRce
under rotational permutation of the operators. ]

We define

7= —ieab g
j=1

ty=tq I

(cia et+&a ei+1&reia) (6)

Clearly, in Eq. (6) we consider only the com-
ponent of the vector J along the chain, whose lat-
tice parameter is a. If we use Eq. (6) in Eq, (5)
mith x=t+ig, me obtain

The fundamental formula of Kubo for the linear
response to an external electric field yields the
frequency-dependent electrical conductivity tensor
as a Fourier transform of the time-dependent cur-
rent-current correlation function in thermal equi-
librium:

ao ~g
tr, (~) = —

~

dte '"'
l~

if'(&„(-fz)&,(f)), (2)
~0 0

@=1. If A is an operator, we define the thermal
avel age
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2 $2
c((u) = — Q ~

dt e'"'
'U

ra
dh. tl'. [p(cl cl l —cl l cl ) e

-knxt
(Cge' Cycle' el+le' Cle') e ] .

Now we note the following:
(i) In order for (7) to be different from zero, b

must not be 0. This is because the band term of
the Hamiltonian provides the mechanism for the
hopping of an electron from site to site,

(ii) It is very difficult to calculate the trace in
Eq. (7) exactly for any b/U and b/V,

(lli) Ill lowest ol'dex' of b/U Rnd b/V oils can
neglect entirely the band term of the Hamiltonian
for the purpose of calculating the trace inside the
double integral of (t), thus making the problem
exactly solubl, but of course limiting the validity
of the calculation to the regime b/U, b/V«I,
b»&b/U '

To calculate the trace of (I) with b =0, we can
simplify the double sum into a single sum, by not-
ing that now [n„,H] =0 and the eigenstates of H
are single Slater determinants with Wannier func-
tions occupied":

ehac(~) = Q '~ dt e'"'
'U

f fy e' F00

e g

d Z tr [p(c';, c,.l, c';.l, (x) c;,(x)

we have [with ct„(0)= ct„]

c~„(-x) = exp [-i (Un, , + V(n, , + 8...)) x] c]', .

It is now straightforward to see that

c,.l,{-x) c„(-x) c„c;,l,
=exp[i(U- V){n„—n„„)x+iV(n, , —n,.p) x]

&&n„„(l-n„) .

Here I have used the identities

jFn)+) tv
(+1~ )+1&

(14)

(»)
After substituting Eq. (13) into Eq. (10), we can
use the transfer-matrix method" to calculate the
trace. The procedure is the same as the one used
by Cabib' with the Hamiltonian of Cullen and Cal-
len"; BP used it in the easier case of the time-
independent correlation function, which does not
include the exponential factor in (13).

In the Appendix, I will show the details of the
calculation of the trace in (10), whereas here I
display and discuss the results.

The final expression for the dc conductivity ln
the general case U, V40 is

2 2 2 2 2

( 0)
4e b aN, 2xlx0

'U

x(I+V + V(4-1 V ) }8(&)~

+ Cl+1e C&e Cje(X) Cjele(X))] (8)

Tile two tel'ills wltlllll 'tile squRI'8 brackets of (8)
give the same contribution to g. To see this, I
introduce the operator OR, where R reverses the
spin and g ls the time-1 evel sal operator. Obviously
[OR, H] =0, and it is easy to show the equality of the
two terms by performing the transformation of inte-
gration variable g' = 8 —X in the expression:

dte' '
[I distr[ pORc'„c„„c„„(x)c„(x)(OR) '],

N a&40 ~Q

(8)
ORc';, (OR) '=c';, , OiO '= —i .

The same argument applies to the sum on i, and
c = 0, 4 (one has to choose the appropriate sym-
metries of the Hamiltonian) so that

2 2 2() 4ebaN,
'U

~8
~dtrP[c&elc( x) cia( x) c ~c +~1 ~

DQ

(10}
From the equation of motion,

—c';, (-x) = —i (Un„+ V{n„,+ n, l)) cJ,(- x), (11)

8(V/4+@ &XQ=8

Ay —2xQ g
&2 (4x ('&+ (X, —2 xe y) )'

&, ='(t *(P'-w)'"],
y + 28& 2 8&v+U/2&

8 es(F+c/l) (I esv)3

(17)

(18)

(20)

(21)

(22)

(I have followed the notation of BP2).
One also gets emission and absorption lines at

the frequencies ~=U, V, 2V, U- V, U+ V, U-2V,
U —3V, U-3V each of them with different tempera-
ture dependence. These energies (and the ones
with opposite sign —U, —V, —2V, . . .} correspond
to all the possible changes in energy due to the
hopping of one electron from a site to a neighbor
one. Of course, if one wants to check the limits
U-0 and V-Q, of the dc contribution to o, one
cannot simply put U=O or V=O in Eq. (18) because
some of the absorption and emission lines contrib-
ute to the dc conductivity in either of the two lim-
its. %'e checked that when V-0 we recover the
result obtained in the Hubbard model.

Let us examine briefly the low-temperature be-
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havior of Eq. (16). One has to consider separately
the two cases U/2& V and U/2 & V.

A. U/2) V

The ground state has one electron on each site, '
with energy Eo= (N, —1) V, and the lowest excited
state has one doubly occupied site and one un-
occupied site, with energy Eo+ 0'- t/". At very
high temperature o decreases as 1/kT. The low-
temperature behavior is of the form

-BV /2
t

with an activation energy b = U/2. 4 is therefore
different from gap/2, as one would expect in an
ordinary semiconductor, and as one finds in the
Hubbard and in the Cullen and Callen model. '
Equation (2S) shows also the rather surprising
result that V does not affect the activation energy,
which is equal to U/2 and is independent of V.

To calculate the trace in Eq. (10) in the thermo-
dynamic limit (N, -~) with (N) =N, (half-filled
band), one needs the transfer matrix

xo

Xo Xog

0 &Og

Xo

XO g Xo

2
Xo g go

(Al)

(In the half-filled band cvo of Ref. 2 is equal to
xo y ). xo and y are defined by Eqs. (17) and
(18). One also needs the following five matrices:

(A2)

difference between the energies of the ground state
and the first excited state in the two cases U/2& V
and U/2& V.

APPENDIX

e. UjZ& V

Now the ground state has alternate unoccupied
and doubly occupied sites, ' with an energy Eo
=N, U/2 and a first excited energy=EO —U+SV
that corresponds to breaking one pair on one site
by transferring one electron to a nearest-neighbor
site. The existence of this charge density wave
ground state has been of interest' recently, and
it occurs also for V&0, V=O.

The dc contribution to the conductivity is asymp-
totically o= e ~(2~ ~/2' at low temperature. Also in
this case the a,ctivation energy is different from
gap/2, and at high temperature is ~ I/kT. The
reason for this dependence of the activation energy
on the parameters U and t/' is not clear, although
it is interesting to note the following: in both
cases U/2 & V and U/2 & V, the activation energy &

is equal (within the canonical ensemble) to (Ez
Ep)/2 where Eo is the ground-state energy and

12 is the energy of the lowest state, which is -N'-
fold degenerate (the first excited state E, is -N
fold degenerate). This is true also for the activa-
tion energy of the conductivity of the Cullen and
Callen Hamiltonian': there E, is already -N-
fold degenerate (as is E2) and & = (E, —ED)/2.
Furthermore within the grand canonical ensemble,
again for both U/2& V and U/2& V, &=E& —Eo,
where Eo and E& are the lowest and next-to-lowest
eigenvalues of H- p. ¹ This latter remark seems
to be less general than the former, because it does
not apply to the Cullen and Callen model.

%'e point out finally that some of the ac contribu-
tions to 0 may not vanish at 0 temperature, while
most of them do. For U/2& V the tra, nsition of
energy U- V is finite at T=O, and for U/2& V, the
one of energy 3V- Vis finite at T=O. This is
easily understood physically if one considers the

where

1 0

0 i 7'x/2

e i (V-V &x/2

i (V-V')x/2

i (V-V )~/2e 0

T4

0 0 0

0 & 0

-i (U-V')x /2e

P2 ——T~ PT2,

P3 T3 PT4

P4 ——P3,

P5=Pg p

(AS)

(A5)

(A6)

(A7)

(A9)

(A10)
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So we have

W=tr [pc'„„(-x)c„(-x)c'„c„„]
= —tr(P PqPqPGP//, PBP & ) .

Z is the partition function

(A1.1) (&//2 0 0

- livY

-1//s

0
(A14)

Equation (A12) is valid when N, -~, and y, is the
maximum eigenvalue of P defined by Eqs. (20)-
(22). Using the rotational invariance of the trace,
we can write

W= —tr(m "-'8-'sP, PIP, P, P, s-'), (A13)z
where 8 diagonalizes P. 8 is easily written, once
the eigenvectors of P are known:

where x, is defined in Eq. (19), and

2 +0 +1
aXy-2xoy

(A15)

xa and!ya are obtained from g&, y&, by replacing
x&, with yz [Eq. (20)]. After performing the multi-
plication of the matrices in (A12), one has to use
W in Eq. (10) where the integrations are trivial.

The final complete expression for Eq. (All) is
not of great interest and it is quite complicated.
The dc part in the general case U, V&0 is given in

Eq. (16).
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