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The results of nonrelativistic augmented-plane-eave (AP%) band-structure calculations at symmetry points in

the cubic Brillouin zone for V,Si, V,Ge, Nb, Al, and Nb3Sn are fit using the Slater-Koster linear-combination-
of-atomic-orbitals (LCAO) interpolation scheme. This LCAO model involves Bloch sums formed from 30 A-
atom (A = V,Nb) d orbitals and eight B-atom (8 = Si,Ge,A1,Sn) s-p orbitals. In its simplest form, this LCAO
model fits 73 APW energy eigenvalues at I', X, M, and R with an. rms error of 0.020-0.023 Ry by means of
21 trvo-center parameters. Improved accuracy is achieved, particularly for states near Ep, by weighting these
more heavily in the LCAO fit, partially relaxing the two-center approximation, and increasing the number of
LCAO parameters to 39. The results of this AP%'-LCAO model are applied to evaluate the accuracy of the
Labbe-Friedel (LF) linear-chain and the %cger-Goldberg (%6) coupled-chain band models for the A15
compounds. It is concluded that (a) corrections to the LF and %6 models (about 3 and 1 eV, respectively)
are sufHcient to wash out fine structure in the density of states on a meV energy scale; (b) there is no
evidence for describing the electronic structure of these A1S as one-dimensional or quasi-one-dimensional in
character; (c) the density-of-states peak near E+ involves primarily A-atom d states with 5&(x -y )
symmetry, in contrast to the predictions of the LP (5&+b&) and KG (5&) models; (d) the accuracy of the
present LCAO model is insufficient for predicting the precise shape of the density of states near EF from
first prBlclples.

I. INTRODUCTION

The intermetallic +Q compounds with the 415
or p-tungsten structure have been the subje««
widespread interest because they include materials
with the highest superconducting transition tern-
peratures known. In addition, these materials fre-
quently possess anomalies in their electrical,

ag te, 1 t, adt t alp p
These anomalies manifest themselves as an un-
usually strong temperature dependence in prop-
erties that are normally temperature-independent,
particularly in the high-temperature supercon-
ductors such as VSSi (T, =17'K) and Nb~Su (T,
=18 'K). As a result of their unique properties,
these two compounds have been the most thoroughly
studied members of this extensive family of fifty
or more ASB compounds. Hecent review articles
by Testardi' and VVeger and Goldberg~ summarize
the current status of two decades of combined ex-
perimental and theoretical effort to measure,
correlate, and interpret the normal- and super-
conducting-state properties of these and other
closely related A15 compounds.

The pxesent investigation is concerned with four
particular 415 compounds, V38i, VSQe, Nb3Al, and
Nb38n. These include two compounds whose prop-
erties are consistently anomalous (VSSi and Nb, Sn)
and two where these anomalies are either absent
entirely or present on a somewhat reduced scale
(V36e and Nb3Al). Table 1 summarizes the pres-
ence or absence of these anomalies in the various
physical properties within this group of A15 com-
pounds. In regard to the structural transforma-
tion, Testardi' has emphasized that not all VSSi

and Nb, 8n samples undergo a cubic-to-tetragonal
transformation at low temperatures. These dif-
ferences among individual samples are generally
attributed to deviations from perfect stoiehiometry,
though a recent model3 emphasizes the importance
of vacRne1eS.

Two different mechanisms have been proposed to
explRln the or1gln of these anomalous px'opex'ties.
The first involves an unusually sharp peak in the
electronic density of states near the Fermi energy,
X(E~). The detailed shape of the N(E) curve near
E~ is not critical in these models, since qualita-
tively similar results are obtained by Clogston and
Jaccarino4 with a parabolic peak, I abbe and
Friedel with a square-root singularity, and Cohen
et al. with a simple step function. According to
these models~ N(E~) (per A atom) is typ1cally 2-3
times larger than that derived by McMillanv for V
and Nb metals from specific-heat and supercon-
ductivity data. More important, these models
infer that N(E) changes abruptly within a few meV
to a small fraction of its value at Ez.

The second mechanism, which has been proposed
by Testardi, '8 emphasizes the phonon rather than
the electronic density of states, According to this
model, the unusually large anharmonic motion of
the atoms in the A15 lattice at low temperatures is
responsible for significant corrections to the specif-
ic heat and produces a strong temperature-depen-
dent phonon enhancement of the electronic properties
of these materials. Testardi estimates that the
usual methods for analyzing specific-heat data
overestimate the electronic term y by (10-20)%.
This model suggests a somewhat smaller value for
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TABLE I. Correlation between T, and the occurrence of anomalies in the physi-
cal properties of the A15 compounds that are involved in the present study.

T, {'K)

Specific heat

Magnetic susceptibility

Knight shift

Resistivity

Elastic constants

Structural transformation.

V3Si

17.1

yes

yes

yes

yes

yes

6.1 18.6 18.0

no no

yes

yes

yes

no

no

no

no

yes

no

yes

yes

V&Ge Nb&Al Nb3Sn References

a, a, b, c

d, d, b, d

e, e, b, f

g, g, b, h

ly ly e ~ ~ y ]

k, 1, 1, m

n, o, b, p

G. F. Hardy and J. K. Hulm, Phys. Rev. 93, 1004 (1954).
"Reference 46.
'B. T. Matthias et al. , Phys. Rev. 95, 1435 (1954).
Reference 44,

'H. J. Williams and R. C. Sherwood, Bull. Am. Phys. Soc. 5, 430 (1960).
Reference 6.

IW. E. Blumberg et al. , Phys. Rev. Lett. 5, 149 (1960).
"R. G. Shulman et al. , Phys. Rev. Lett. 1, 278 (1958).
M. P. Serachik et al. , Can. J. Phys. 41, 1542 (1963).
D. W. Woodard and G. D. Cody, RCA Rev. 25, 393 (1964).

"L. R. Testardi et al. , Phys. Rev. Lett. 15, 250 (1965).
L. R. Testardi et al. , Phys. Rev. 154, 399 (1967).
K. R. Keller and J, J. Hanak, Phys. Bev. 154, 628 (1967).

"B. W. Batterman and C. S. Barrett, Phys. Rev. Lett. 13, 390 {1964).
B. W. Batterman (unpublished).

~R. Mailfert et al. , Phys. Lett. A 24, 315 (1967).

the band N(Ez) and a less abrupt variation with

energy.
Most simplified band models for the A15 com-

pounds emphasize the fact that the A atoms form
three sets of mutually perpendicular chains for
which the interatomic separation along a given
chain is about 20% smaller than that between
chains. Weger suggested that this would result
in a one-dimensional band structure and Fermi
surface for these compounds, provided that the
second-neighbor inter chain interactions were
negligible. This forms the basis for the Labbe-
Friedel linear-chain model, ' which treats the
A-atom d bands as being purely one-dimensional
in character. These d bands are overlapped by a
broad s-p band such that E~ falls within a few meV
of a square-root singularity in N(E) for the m,
=+2 d subband.

previous augmented-plane-wave (APW) band-
structure calculations for several 415 compounds

(V,Si, V,Ga, V,Ge, etc. ) by the author'0 (hereafter
referred to as I) revealed no evidence for the ex-
tremely flat A-atom d bands that this one-dimen-
sional model implies. In fact, a careful analysis
of these APW results in terms of a tight-binding
model suggests that the effects of second-neighbor
(interchain) d-d interactions on the band structure
are comparable to those arising from nearest-

neighbor (intrachain) interactions. Since these
calculations were limited to energy-band states
at symmetry points in the Brillouin zone, it was
possible to calculate only a rather crude N(E)
curve for a typical compound, V3Ga.

In order to extract more detailed information
from these limited results, %cger, Goldberg, and
co-workers have applied the linear- combination-
of-atomic-orbitals (LCAO) interpolation method
to fit the APW results in I. Their initial efforts
involve a simplified approach that has been de-
scribed as the coupled-chain model or the inde-
pendent-band approximation (IBA). '2 This IBA
model includes both intrachain and interchain d-d
interactions within a given d subband. However,
it omits all hybridization interactions between the
four different A-atom d subbands as well as many
p-d interactions between the B-atom p and the A.-
atom d orbita1. s. As a result of these approxima-
tions, the IBA model produces extremely large
peaks in N(E), resulting from bands that are per-
fectly flat throughout the I'XM plane of the Bril-
louin zone.

Recently, Goldberg'~ has removed many of the
simplifying approximations of the IBA model in
his coupled-band approximation (CBA), which is
essentially equivalent to the standard Slater-Koster
LCAO interpolation method. ~~ Although Goldberg
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(a)

CBA model in two respects. First, it includes
covalency interactions between the B-atom s and
A-atom d orbitals. Second, it treats overlap ef-
fects between the B-atom s-p and the A-atom d or-
bitals explicitly in terms of a nondiagonal overlap
matrix. ~3 "

Some effort has been made to improve the over-
all accuracy of the present APW results relative
to those of the previous calculations in I. For ex-
ample, the present APW calculations include cor-
rections to the muffin-tin potential in the region
between the APW spheres. In addition, the num-
ber of APW basis functions has been increased in
order to reduce convergence errors from about
0.03 Ry in I to 0.003 By in the present study.

Details of the present APW and LCAO calcula-
tions for the A15 structure are summarized in Sec.
II. The results of these combined AP%'-LCAO
calculations are presented in Sec. III, including
E(R) and N(E) curves. The present APW-LCAO
results are then applied in Sec. IV to evaluate the
accuracy of the simplified band models that have
been applied to describe the electronic structure
of these A15 compounds. Finally, in Sec. V, we
discuss the accuracy of the present APW-LCAO
band model in terms of the available experimental
data.

II. DETAILS OF THE CALCULATION

(c)

FIG. 1. (a) Primitive unit cell for 215 compounds.
(b) Brillouin zone for the simple-cubic Hravais lattice.
(c) Symmetry of the irreducible wedge representing 48 of
the unit ce11.

claims that the CBA results justify the validity of
the IBA model, it is clear from his N(E) curves
for V3Ga that interband hybridization washes out
the sharpest peaks in the IBA results. Neither
model predicts a peak in N(E) near E~ for the
high-T, compounds unless substantial adjustments
to the LCAO parameters are introduced. Neither
model provides an accurate fit to the APW energy-
band results of I near E~.

The purpose of the present investigation is to
provide a more accurate band-structure model for
several A15 compounds, including V3Si, V3Ge,
Nb3A1, and Nb3Sn. This study involves the appl ica-
tion of the standard Slater-Koster LCAO interpo-
lation method" to fit the results of a new series of
APW calculations for these compounds. The
present LCAO model is analogous to the one that
has been applied previously to several transition-
metal oxides with the ReO, ,

' rock-salt, ' and
perovskite" structures. It differs from Goldberg's

A. 215 structure

The primitive unit cell for A38 compounds with
the A15 structure is shown in Fig. 1(a). Each
cubic cell contains two A3B molecules or a total
of eight atoms. The two B atoms, B(1) and 8(2),
occupy the body-centered cubic positions a(0, 0, 0)
and a(&, &, &), while the six A atoms [A(1)-A(6)]
are located on the cube faces at the positions a(~,
+ &, 0), a(0, ~, + 4), and a(+ +, 0, ~), where a is
the cubic lattice constant. The A atoms form
three sets of orthogonal chains along the y[A(1),
A(2)], @[A(3), A(4)], and x[A(5), A(6)] axes, re-
spectively. The Brillouin zone for the simple-
cubic Bravais lattice is shown in Fig. 1(b), where
the standard labels are used to identify symmetry
points and lines.

The space group for the cubic A15 structure is
0„, which is a nonsymmorphic space group. With
the origin at a B-atom site, the symmetry opera-
tions for this space group are of two types. First,
there are 24 space-group operations of the form
{oIR„j, where n is a point-group operation in T„
and R„ is a primitive translation R„=a(n, i+ na j
+n~5). Here, the v,. are integers, andi, jand k,

are unit vectors along the x, y, and z axes, re-
spectively. In addition, there are 24 space-group
operations {n'IR„+7], where o.' spans the remain-
ing 24 point-group operations in O„and v is a non-
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TABLE D. Angolar symmetry of atomiclike orbitals
y«(r —rn) =—en which transform irreducibly under the
point group D2„at A-atom sites along the y, z, and x
axes, where rf/2 a(gs T. 4, 0), r3(4=&(0, gs + 4), and

r5 ~ 6
=a ( w g, 0, g), respectively.

WC' (BSW'3

(T(W~)

~(w, )

~, (W2)

0-{W()

n =1/2

Zns Xn

Sn

&ns &n

zn

{3y2 -y )n {3z2-2)„

zion s Xgn

{z2-x )„

Xzns gz n

{g y2)

Zn

(3x —2)„
ZXn

g -z)n
zxn Xgn gzn

aNotation of cger and Goldberg, Ref. 2.
"Notation of Bouckaert, Smoluchowski, and Wigner,

B.ef. 18.

primitive translation, r= & a(i+j + k). The ir-
reducible representations for the 0'„space group
are available in the literature. ~ ' The present
notation is identical with that used in I.

In working out the detailed form of the LCAO
matrix for the A15 structure, it is convenient to
utilize atomiclike functions which transform ir-
reducibly under the point groups at the A-atom

(Ds,) and 8-atom (T„) sites. The s and p orbitals
at a B-atom site satisfy this condition. The proper
choice of basis functions at the A.-atom sites is
indicated in Table II. The irreducible representa-
tions for D~„are identified using the notation of
Weger and Goldberg (WG) and Bouckaert et al. '
(BSW). The A-atom p and d levels (or bands) are
subdivided into two (m, 5~) and four (o, z, 5, , 5s)
components, respectively. These are analogous
to the more familiar separation of a d band or
level into its e, and t& components in an octahedral en-
vironment. We represent the s, p, and d orbitals
at an A-atom site by p, (r —r„)—= o.'„such that an

orbital at site A(3)IA(4)j is denoted by o.,(n, ),

where n= s, x, y, z, &y, y&& «s 3~
—y . The corresponding orbitals at the remain-
ing sites are obtained by cyclically permuting
(x, y, z).

For a given wave vector k, linear combinations
of the Bloch sums formed from these orbitals
transform irreducibly under the 0 „space-group
operations. These results are summarized in
Table III for wave vectors k at 1, X, M, and R
both for the A-atom s-)t)-d and the B-atom s-p
orbitals. The appropriate space-group representa-
tion is identified by its subscript, so that, for ex-
ample, the entries 1, 12, 25 under I" denote the
irreducible representations I', , I'», and I'»,
respectively, Repeated entries indicate that the
same representation occurs more than once.

Both V3Si and Nb3Sn ar e known to undergo cubic-
to-tetragonal structural transformations at low

temperatures. ' ' The crystal structure in the
tetragonal phase has been identified only in the
case of Nb38n. Shirane and Axea' find that the
Nb38n space group reduces from 0 „ in the cubic
phase to D 4„ in the tetragonal phase at tempera-
tures below 43 'K. The number of atoms in the
primitive unit cell is unchanged as a result of this
tetragonal distortion. Lattice-parameter measure-
ments show that this distortion is opposite in Nb3Sn
and V,Si, where c/a = 0.9938 and 1.0024, r espe�-
ctiv�e.

A knowledge of the low-temperature space group
enables one to determine the manner in which the
cubic energy-band states are split in the tetragonal
phase. These results are summarized in Table
IV for D4„. Here, the tetragonal c axis is identi-
fied with the z direction, and wave vectors k are
expressed in units (k, a/m, k, a/v, k, c/m). In the
tetragonal phase, M(+ 1, +1, 0) is no longer equiv-
alent to M(+ I, 0, +1) or M(0, + I, +1), and X(0, 0,
+ 1) is distinct from both X(+ 1, 0, 0) and X(0, a 1, 0).
For the D4„space group, the group of the wave
vector is unchanged for M(+ 1, + 1, 0) and X(0, 0,
+ 1), so that no new splittings occur at these points.
However, degeneracies are reduced at I'(0, 0, 0),

TABLE III. Space-group symmetry of Bloch sums formed from A-atom s, p, and d
orbitals and B-atom s-p orbitals for the A.15 structure at 1, X, M, and R.

Atom Orbital

s(tT)

P (m-)

p(~g)
d(03
d (7t.)
d (6()
d (&2)

1,12, 25
15,25, 15', 25'

2, 12, 15
1,12, 25

15,25, 15', 25'
2, 12, 15

1', 12', 25'

1,2

15,25

1,1,3
1,2, 3, 4, 4, 4

1.1.3
1,1,3

1,2, 3, 4, 4, 4
1,1, 3
2 s 2 s 3

1
1, 3, 4

1,4, 5, 6, 9
2, 3, 6, 7, 9, 9, 10, 10

1,2, 5, 8, 9
1,4, 5, 6, 9

2s 3s 6s 7s 9s 9s 10s 10
1,2, 5, 8, 9

3, 4, 5, 8, 10

9
1,2, 5, 6, 10

1,2, 3, 4

4

1,2, 3, 4
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TABLE IV. Effect of a tetragonal distortion (D4~&) on
cubic (O~q) energy-band states.

TABLE V. Lattice parameters and APW sphere radii
for the A15 compounds included in the present study.

0„ D4„
9

r(o, o, o)

0 D4a
9

M(1, 1, 0) M0. , 0, 1)

D4„
a (A) a„(a.u. ) R~ (a. u. )

r,*'
I 2* M2

r,*+r, M,

M2

Mi

M2

M3

M3f"

M*
2

V3Si
V3Ge
Nb, Al

Nb38n

4. 722
4. 769
5. 187
5.282

2.2307
2. 2756
2.4505
2. 4954

2. 4630
2. 5123
2. 7054
2. 7549

r25

r12 ~

r4~+ r5*,

rP +

r1i + I"2.

r )Jc rg
4 5

r*+r*
3 5

M4

Mo

Mi 0

M5

M7

IO

M4

M5

M9

M1o

MP

Mi.

2

M4

M*+M
3

M~r +M4i

X(0, 0, 1) X(1,0, 0) R(1, 1,1)

X,

X2

X4

X1

X3

X1

X2

X4

X4 +X2.

X3 +X4i

X2 +Xi*

R1 —R2

R3

R4

R*

R2 +R3 +R4

'The representations I',". are equivalent to M; in Table
V of BSW (Ref. 18).

"The representations X,* and M& correspond to ¹,in
Table XII of BSW (Ref. 18), with C4 = C&„, C&, and

Cp~ = C28
'R~ and R2 are time-reversal degenerate.
~~~-R4 are four two-dimensional representations.

M(+ 1, 0, + I) = M(0, + 1, + 1), X(+ 1, 0, 0) =X(0, + 1,
0), and R(a 1, + 1, +1), where the groups of the
wave vector are D,„, D», D», and D4„, re-
spectively.

B. APW calculations

The procedures and techniques that are involved
in the present APW calculations are similar to
those described in I. However, two modifications
have been introduced in order to improve the over-
all accuracy of the present results. First, the
APW calculations now include a sufficient number
of basis functions to reduce convergence errors
from 0.03 Hy in I (particularly at the X, M, and
R points) to about 0.003 Hy in the present study.
Second, the present calculations involve a crystal
potential that is no longer required to be constant
in the regions between the APW spheres.

The lattice parameters and APW sphere radii
for the A3B compounds included in the present
study are listed in Table V. The A-atom sphere
radii are assigned their maximum value, R„=a/4,
such that neighboring spheres touch along the axes
of the chains. This optimizes the convergence of
the APW method. 2~ The B-atom sphere radii are
less critical since they represent nontransition
elements, for which the convergence is more rapid.
These radii are arbitrarily assigned values that
are about 14% smaller than their maximum value,

TABLE VI. Values for the muffin. -tin constants V~p
and the nine lowest-order nonvanishing Fourier coeffi-
cients Vz(K&) (By).

K~ (fI/27I)

&mo

(1, 1,0)
(2, 0, 0)
(2, 1, o)

(2, 1,1)
(2, 2, o)
(2, 2, 2)
(3, 1, o)
(3, 2, o)
(3, 2, 1)

V3Si

—1, 3889
—0. 0004
—O. 0110

0. 0022
0. 0042
0. 0024

—0. 0067
—O. 0009

0. 0029
0. 0012

%3SI

—1, 4541
0. 0029

—0 ~ 0187
0. 0049
0. 0046
0. 0007

—0. 0113
—0, 0027

0. 0078
0, 0035

V3Ge

—1.3550
—0. 0007
—0. 0101

0. 0021
0. 0041
0. 0025

—0. 0065
—0. 0007

0. 0027
0. 0010

Nb3A1

—1.2973
0. 0025

—0, 0130
0, 0007
0. 0025
0. 0009

—0. 0069
—0. 0018

0. 0034
0. 0022

Nb3Sn

—1.2725
0. 0002

—0. 0118
0.0022
0. 0041
0. 0021

—0. 0074
—0. 0012

-0. 0033
0, 0016

Vanadium APW sphere radius reduced by 10%.

Rs(max) = (v 5 —1)R„. This choice, which is simi-
lar to that in I, minimizes the nonspherical cor-
rections to the potential within the B-atom spheres.

As in the earlier calculations, the crystal poten-
tials for each compound are derived from a super-
position of Hartree- Fock-Slater atomic charge
densities. The assumed atomic configuration
for the A atoms (V or Nb) is d's, while that of the
B atoms is either s2p (Al) or s~g 2 (Si, Ge, or
Sn). The methods that are applied to calculate the
muffin-tin potential V (r ) plus the Fourier coef-
ficients V~(Kz) of the corrections to the muffin-tin
potential in the region between the APW spheres
are analogous to those described earlier. " " In
the A15 structure, the latter calculation involves
integrals over —,'8 of the unit cell shown in Fig.
1(c). In the region between the spheres, it is found
that the peak-to-peak variations of the potential
from the muffin-tin constant are in the range
0.70-0. 85 Ry. The Fourier coefficients of these
corrections, V~(K,), are relatively small. Their
magnitude is comparable with that found in the
rock-salt' and perovskite" structures. The cal-
culated values for the lowest-order nonvanishing
coefficients are listed in Table VI along with the
muffin-tin constant, V ~ .

The present calculations neglect the nonspherical
corrections to the muffin-tin potential inside the
APW spheres. These corrections are largest
within a spherical shell in the neighborhood of the
sphere radii. A detailed examination shows that
these corrections are relatively small within the
B-atom spheres, where the variation in the po-
tential along different directions is typically 0.2
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Ry. By comparison, the corresponding variations
within the A-atom spheres are generally twice
as large.

In order to estimate the effect of these non-
spherical corrections on the present energy-band
results, we have performed limited APW calcula-
tions for V38i in which the vanadium sphere radius
is reduced by 10% from its maximum value, Rv
= a/4. This transfers the bulk of the nonspherical
corrections to regions outside the APW spheres,
where they are treated exactly in APW formalism
by means of the Fourier coefficients V~(K&). The
disadvantage of this procedure is that it adversely
affects the convergence of the APW method such
that an additional 100 basis functions are required
in order to achieve the same degree of conver-
gence. By comparing the results of fully con-
verged APW calculations for U~Si with Rv = a/4
and R v = 0.9 R~, we estimate that these non-
spherical corrections will alter the energy eigen-
values by less than 0.01 Ry. The average shift
is about 0.003 Ry. The Fourier coefficients for
this latter calculation are also included in Table
VI.

Approximately 400 APW basis functions are re-
quired in order to reduce convergence errors to
about 0.003 Ry in the A15 compounds with R„at
its maximum value. This precludes the possibility
of performing unsymmetrized calculations for these
materials or calculating E(k) at general points in
the Brillouin zone. It even discourages calculations
along symmetry lines, where the dimension of the
symmetry-reduced APW matrix generally exceeds
100&& 100. Even at the high symmetry points such
as I', X, M, and R, the maximum dimension of the
symmetrized APW matrix is 65' 65.

The present APW programs also exploit the fact
that the logarithmic derivatives u', (R, E)/u, (R, E)
are, to a good approximation, linear functions of
the energy E for l» 4. This greatly reduces the
size of the computer core that is required in APW
calculations and improves the overall efficiency
of the programs with little sacrifice in accuracy.

C. LCAO model

A careful study of the APW results for V3Ga sn

Fig. 4 of I suggests that the combined interpola-
tion seheme34 is probably the optimum method for
interpolating the lowest valence and conduction
bands in the A15 compounds. This is perhaps not
unexpected since each of the constituents can be
treated by either the combined interpolation (V
or Nb) or pseudopotential methods (Si, Ge, Al, or
Sn). The main drawback to this approach is the
large number of pseudo-plane-wave states that
are required. In contrast to the fcc structure'4
where the plane-wave block is 4X 4, it seems likely
that the A15 structure will require a minimum of

24 plane-wave states. These, combined with the
30 A-atom d states, will yield a model Hamiltonian
matrix with minimum dimensions 54& 54.

The main advantage of the combined-interpolation
method over the standard LCAO approach is that
it usually requires about half as many parameters
to achieve the same degree of accuracy. On the
other hand, the LCAO method readily provides
energy-band results that reflect the full symmetry
of the crystal. It is necessary to introduce the
somewhat artificial symmetrizing factors~ ~ within
the plane-wave and hybridization blocks to recover
this symmetry within the framework of the com-
bined-interpolation scheme. This problem is
particularly important in compounds with non-
symmorphic space groups where highly-degenerate
bands are common for wave vectors on the surface
of the Brillouin zone. The point R is an important
example of this phenomena in the 0'„space group,
since each state is either sixfold (R,), fourfold
(R, —R,), or twofold (R, ) degenerate.

After careful consideration of these alternatives,
it was decided to apply the standard LCAO inter-
polation method to the A15 compounds. In the
present application, this LCAO model involves a
total of 38 basis functions of the form

b'( )k=N Qe'"'("J '~'y (r —H,.—r,.), (1)

where q„represents an atomic orbital with quan-
tum numbers n at site r, in the unit cell. These
Bloch sums are formed from 30 A-atom d orbitals
and 8 B-atom s-p orbitals. The A-atom s-p or-
bitals are omitted; their inclusion would increase
the dimension of the LCAO matrix from 38& 38 to
62&&62 and significantly increase the number of
LCAO parameters.

The tedious task of working out the detailed ex-
pressions for the 741 independent matrix elements
of this 38&38 model Hamiltonian is simplified if
the A-atom d orbitals p„ transform irreducibly

.under the Ds„point group. In that ease, one can
generate the entire 30&30 d submatrix H„„from
two 10&&10 submatrices A((, q, f) and B($, q, f) by
cyclic permutation of ($, q, 0) = (k„a, b, a, k, a).
If we denote the 10&10 matrix that describes the
"intrachain" d- d interactions between b~(k) and
b ~(k) by A($, q, N) and the "interchain" d- d in-
teractions between b~(k), b~~(k) and b~~(k), b', (k)
by B($, 0, g), then

&(((, n( &(((, n, ) &(n, &,, (V)
B(f, 5, n)' &($, n, &) B(h, n, (")

B(n~ 4 5) B(t'~ '4 &)' &(n~ &~ &)

Similar simplifications also occur in the 2~30
s-d submatrix II, „and the 6 & 30 p-d submatrix ~H „.

The entire LCAO energy matrix H (as well as
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the overlap matrix S) can be made real by a unitary
transformation. Within H„„, this involves linear
combinations of "intrachain" Bloch sums of the
type (b'„,+ b„',)/W2 and i(b2„, —b„' )/W2, etc. Sim-
ilarly, the H, ~ and H~ „submatrices are real if the
Bloch sums for the B-atom p orbitals b„', 5,', . . . ,
5, are replaced by i b „', i b '„.. . , i b, .

Even with these simplifications, the LCAO ma-
trix H remains rather complicated. For example,
each of the 100 matrix elements in the 10&&10 sub-
matrix B of Eq. (2) is nonvanishing. These matrix
elements involve the appropriate energy integral
E 2(r, —r&) times a product involving +4 (sinn
or cosa)&(sinP or cosP)&(siny or cosy), where
(o', p, y) = (~ $, 2q, & g) for nearest-neighbor inter-
chain interactions. Second-neighbor interchain
d-d interactions involve a sum of two such terms
with (o.', P, y) = (—, $, 27), —,

'
g) and (—,

'
$, 2q, —,

'
4), re-

spectively.
Briefly, we consider the simplifying assumptions

that successively reduce this 38&38 LCAO matrix
to the Weger-Goldberg IBA model and finally the
Labbe- Friedel linear- chain model. In their IBA
model, Weger and Goldberg neglect off-diagonal
interband matrix elements in A and B of Eq. (2)
between 0, r, 6, , and ~ 2 states. This is an ap-
proximation since, even at symmetry points (see
Table III), nonvanishing off-diagonal matrix ele-
ments are expected between states that transform
according to the same representation. The neglect
of these interband matrix elements reduces the
30&&30 matrix H„„to three noninteracting 6&6
submatrices (o, 6, , and 62) and one 12&12 sub-
matrix (v).

The IBA model also simplifies the s-d and p-d
interactions. It sets H, ~=0 and restricts p-d
interactions to those between p and 5,-type states.
The net result is to reduce the full 38&& 38 LCAO
matrix into five noninteracting submatrices that
include one of order 2 (B-atom s states), two of
order 6 (A-atom o and 62 states), and two of order
12 (m and b-6& states). We shall examinethevalid-
ity and consequences of these approximations in
Sec. IVB.

The linear-chain model of Labbe end Friedel sets
H, „=~H ~

= B=O, and assumes that the submatrix
A in Eq. (2) is diagonal. These diagonal matrix
elements are given by Eq. (2) in I. As shown in
Sec. IVA, these simplications produce a band
structure with a large number of accidental de-
generacies at symmetry points and along symmetry
lines in the Brillouin zone. They produce bands
which are perfectly flat everywhere in the I'XM
plane. These flat bands are the source of the
square-root singularities in N(E) for the linear-
chain model. While the IBA model removes many
of these accidental degeneracies, this approxima-
tion does yield a band (62) that is perfectly flat

everywhere in the I'XM plane, thereby producing
a, sharp peak in N(E).

D, Determination of LCAO parameters

In order to fit the APW results at I', X, M,
and R, one must reduce the full 38&&38 LCAO ma-
trix into its noninteracting submatrices H for
these wave vectors. According to Table III, this
yields five submatrices H of order one (I'&, I",2,
1"'„, M7, R, —R2), eight of order two (I', , I'2,
r121 r25 & M21 M41 M81 R3)i six of order three
(r„, r», X„Mf M2 M2), three of order four
(X4, M, , M,o), three of order five (X2, M2, R~),
and one of order seven (X,). (We treat the time-
reversal degenerate states B,—R3 as a single
four-fold degenerate level. ) Weighting each eigen-
value equally, regardless of its degeneracy, this
yields a total of 73 APW energies which are to be
fit by this LCAO model.

The problem of determining optimum values for
the LCAO parameters requires a nonlinear-least-
squares fitting technique, since it is only in those
cases where H is of order one that the energy is
a linear function of these parameters. In all
other cases, the LCAO eigenvalues are nonlinear
functions of the parameters. The methods that
have been applied to determine the present A15
LCAO parameters are analogous to those described
earlier in a similar study involving compounds with
the rock-salt structure. '4

Of course, the A15 structure is much more com-
plicated than that of rock salt, and this leads to a
large number of independent Slater-Koster LCAO
energy integrals, E 2(r& —rz). If each of these is
varied independently, this can lead to spurious
minima in the nonlinear least-squares fitting pro-
cedure such that the final set of parameters is de-
pendent on the assumed starting values. To elimi-
nate this difficulty, we have determined the present
LCAO parameters in two stages. In the first stage,
we apply a very simplified two-center model to fit
the APW results in terms of 21 independent parame-
ters. This two-center model includes first- and
second-neighbor B-atom s-s, p-p, and A-atom
d-d interactions plus nearest-neighbor overlap and
covalency effects between the A-atom d and the
B-atom s-p orbitals. With these approximations,
the above nonlinear least-squares procedure leads
to the unique two-center parameters that are listed
in Table VII within ten interations.

These parameters are then used as starting val-
ues for the final stage, where the two-center approx-
imation is partially relaxed and twelve states near
E~ are weighted more heavily in the fitting proce-
dure. At this stage, first- and second-neighbor
d-d interactions are treated in terms of the energy
integrals E 2(r, —r~) rather than in the two-center
approximation, while third- and fourth-neighbor



TABLE VII. APW-LCAO hvo-center para, meters (By)
for V3Si, V30e, Nb3Al, and Nb3Sn.

Parameter

Zs

(sso')2

(PyfT)f

(PP7f)1

(pffft)&

(p)j) m)~

(ddo)1
(ddt)q
(dd 6)l
(ddo)2
{dd7r))

(ddt)2
(sda}
Ss
(pdo)
~a

(pdx)

sv

rm8 error
Maximum error

—0. 7217
—0. 0084
—0. 0047
—0.2076

0. 0247
—0. 0144

0, 0256
0. 0016
0. 0265

—0.0730
0. 0938

—0, 0325
—0, 0537

0. 0391
—0, 0087
—0, 0840

0. 1362
—0, 0777

0, 1828
0. 0629

—0, 0250

0. 022
0, 062

-0.793

Vsoe

—0. 7676
—0, 0075
—0. 0041
—0.2154

0. 0265
—0, 0137

0, 0265
0. 0007
0. 0286

—0. 0719
0. 0897

—0.0303
—0. 0518

0. 0366
—0. 0077- 0, 0856

0.1237
-0, 0767

0. 1832
0.0607

—0, 0314

0, 020
0, 054

—0. 769

NbgAl

—0.4390
—0. 0075
—0, 0065
-0.0503

0. 0265
—0. 0098

0. 0178
—0, 0028

0. 0549
—0, 1025

0. 0950
—0. 0286
—0. 0700

0. 0351
—0. 0091
—0, 0574

0. 1585
—0. 0543

0, 2098
0. 0596

—0, 0417

0, 023
0. 065

—0.666

Nb3Sn

—0 5707
-0.0062
—0.0048
-0.1265

0. 0212
-0.0092

0, 0212
-0.0030

0. 0482
—0. 0963

0. 0941
—0. 0272
—0. 0665

0. 0335
—0. 0083
—0. 0743

0. 1235
—0. 0681

0. 2053
0. 0578

—0. 0373

0. 020
0. 056- 0.652

d-d interactions are added in the two-center ap-
proximation. These represent a total of 5+ 13+3

+ 3 = 24 parameters, or a net increase of 18. 5 With
these 39 LCAQ parameters, the rms error is re-
duced to the range 0.014-0.018 Ry. If each state
is weighted equally, the rms error is further re-
duced to 0. 013-0.015 Ry.

Qne complicating feature of the APW results for
the 215 compounds is the overlap of the lower
portions of the A-atom s-P and d bands at I'(1 ~,
r»), X(X,), and M(Mt, Mt) (see Figs. 4 and 5 of
I). This difficulty is not present in the analogous,
results for transition-metal oxides, 3 where the
metal +-P bands are raised well above the d bands
by strong covalency interactions with the oxygen
s-P orbitals. As Goldberg» points out, these in-
teractions are less effective in the A15 compounds
where the A atoms outnumber the 8's by a 3 to 1
ratio.

The main effect of this band overlap is to in-
troduce some ambiguity in distinguishing between
these A. -atom s-P and d levels. This identification
is important since, in the present LCAQ model,
the eigenvalues for the former levels are neglected
while those for the latter are utilized in the non-
linear-least-squares fitting procedure. It is be-
lieved that the combined interpolation scheme wouM
be particularly effective in x esolving these ambigu-
ities. After some experimentation, it was found that
the most accurate LC AQ fit is obtained if, among the
ambiguous states (I', , rtt, Xt, Mt, and M9), those
with lowest energy are assigned to the 8-atom &-P

and A. -atom d bands. In addition to improving the

The present AP'gf-LCAQ energy-band results for
VSSi, V&Ge, Nb3Al, and Nb~Sn are shown in Figs.
2-5. These E(k) curves are derived from the
39-parameter I CAO fit (weighted near Er) to 73
APW energy levels at symmetry points in the Bril-
louin zone that is described in Sec. IID. These
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FIG. 2. AP%-LCAO energy ba, nds for &3Si.

accuracy of the LCAO fit, this assumption has the
important feature that all bands near and below the
Fermi level are described by the LCAQ model.
This allows one to determine the Fermi energy
entirely within the framework of this LCAQ model.

This identification of levels differs from that of
%cger and Goldberg in the2 IBA and CBA models.
Their identification assigns two levels below Ez
(rtt and X,) to the A-atom & bands. Consequently,
they are unable to calculate the Fermi energy di-
rectly from their IBA or CBA results. As dis-
cussed in Sec. IVB, the present 21 two-center
parameter LCAQ model has been applied to fit
both the present and the IBA-CBA assignment of
APW levels 1n V3oa. The former asslgnQlent yields
an rms error of 0, 021 By and a maximum error of
0.06 By; these errors increase to 0.031 Hy and
0. 12 By, respectively, with the IBA-CBA assign-
ment of APW levels.

For convenience in comparing E(k) and Ã(E)
curves for different compounds in the following
sections, the reference energies for the LCAQ
parameters in Table VII have been shifted x elative
to the muffin-tin constants V~0 in Table VI by an
amount h. This corresponds to setting E(1",2) =0
for the I'» state just below Ez=0. 1 Ry for VBGa
in I. This shift is such that both the d-orbital en-
ergy E„and the Fermi energy E~ are approximately
zexo in each coxnpound.

III, APK-LCAO RESULTS
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APW-LCAQ results include all the bands shown in
Fig. 4 of I for VSGa except for those that are identi-
fied as 2-atom s-P states (the highest-energy states
with Fy q I yp q Xy ) Mg ~ RDd Me symmetry ln Flg. 4
of l). ~

Neglecting for the moment the effects of covalent
mixing between the A-atom d and the 8-atom +-p
states, we can identify the lowest pair of bands as
8-atom + states, the next six bands as 8-atom p
states, and the upper complex of thirty bands as
A-atom d stR'tes. (Bands Rl'e I11ost eRslly collllted
along the RX line, where each is doubly degener-
ate. '6'7) In each compound, the Fermi energy
falls slightly above the zero of energy. Each unit
cell contains either 36 (Nb, Al) or 38 (V,Si, V,Ge,
Nb~Su) valence and conduction electrons, so that
the Fermi level occurs in the vicinity of the 18th or

19th band, assuming each is doubly occupied.
In each compound, there is a total of 20 bands be-
low EF at the I' and X points and 14-18 bands at the
M and 8 points of the Brillouin zone.

This sharp distinction between the A-atom d and
the 8-atom s-P bands is blurred by the effects of
covalent bonding, particularly that between the
A-atom d Rnd 8-atom p orbitals~ fox' %'hlch the
energy SepRx"Rtlon ls smRll6rt As R result of p-d
bond formation, the LCAQ P charge density in
V~Si, for example, occurs not only in the energy
range of the occupied bands (bonding states be-
tween —0. 20 and —0. 45 Ry in Fig. 2), but also
among the unoccupied bands (antibonding states
between 0. 15 and 0. 35 Ry), with lesser amounts at
intermediate 6Del gles.

In comparing the results of Figs. 2-5, it is
clear that the main difference between the band
structures for the various A.SB compounds is in
the position of the B-atom ~-P bands relative to
the 2-atom d bands. These trends are reflected
in the two-center LCAQ parameters of Table VII,
where Eg —Es Rnd Eg —Ep Rx'6 lRrgest fox' V38l Rnd

V~Ge, intermediate for Nb~SD, and smallest for
NbsAl. In Figs. 2-5, the d-band width tends to be
slightly greater in the Nb (0. f Ry) than in the V
(0. 6 Ry) compounds, which is a typical feature of
calculations for transition metals and transition-
metal compounds involving 4d Rnd 3d elenleDts.

A more detailed plot of these AP%-LQAQ bands
in the vicinity of Ez is shown in Fig. 6. The
twelve states near E~ that were weighted in the
LCAO fit are enclosed in parentheses in Fig. 6(a).
The Fermi level for each compound is indicated by
a dashed horizontal li.ne. The results of Fig. 6
indicate a possible limitation of the present APW-
I.CAQ model. In particular, it is not clear whether
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the complicated shapes of the band profiles near
Er are an artifact of the I CAO model (caused by
fitting APW results only at symmetry points),
or whether they truly reflect the AP%' bands along
these symmetry lines. The LCAQ fit to the X&

state just below E is particularly poor. In each
compound, it is found that the LCAO eigenvalue
for this state 18 con81steIltly above the AP% re-
sult by about O. 015 Ry. It is believed that this
error is due primarily to the effects of s-d hybridi-
zation, which are omitted in the present LCAQ
model.

Despite these uncertainties in the band shapes,
it is clear from Fig. 6 that the bands below E~
teIld to be relatively flat 1n comparison %'ith those
at higher energies. As a result, one expects a
minimum in the density of states X(E) slightly above
the Fermi energy in these compounds. This fea-
ture is reflected in the N(E) curves shown in Fig.
7. These results have been obtained by sampling
E(k ) at 64 000 lllllfol'lllly dlstr1buted polllts 111 'tile

Brillouin zone (21 points along the I'X line in Fig.
6, 17VI points in ~«of the zone). Only minor
changes are found in these curves when the number
of sampling points is reduced to 32768. These
curves exhibit the gross features of the crude N{E)

curve for VGQa that is shown in Fig. 8 of I.
The detailed structure in X(E) near Ez involves

either a single relatively sharp peak (V,Ge), a pair
of such peaks (V,Si and Nb, Sn), or a ~i~ster «
smaller peaks (Nb~AI). It seems likely that these
differences in N(E) near Ez reflect-. the basic limita-
tions of the present AP%'-LCAO model in repre-
senting the band profiles along symmetry lines and

at general points in the Hrillouin zone. It will be
necessary to extend the LCAO fit to AP% results
along symmetry lines in order to obtain a realistic
estimate of the band-structure density of states
near E„in these 215 compounds.

Using the LCAO wave functions, one can also
calculate the contribution of individual subbands to
the total N(E) curves for these compounds. In

such a calculation, each LCAO eigenvalue is
weighted by the sum of squares of the appropriate
eigenvector coefficients. Since the present LCAO
model involves orbital overlap, the appropriate
weighting factor is the atomic population of Mul-
liken in which the overlap charge is distributed
equally among each pair of atoms. It turns out
that these atomic populations are very similar in
magnitude to the sum of squares of the eigenvec-
tors of Lowdin'8 symmetric orthogonalization
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FIG. 7. N(E) curves for (a) V,Si, (b) VSGe, (c) Nb3&, and (d) Nb3Sn.

I

0.4 0.5

scheme. ""
This latter method has been applied to calculate

the various subband contributions to N(E) for
V3Si. These results are shown in Fig. 8. The top
curve represents the total N(E), while the lower
curves reflect the t), cr, 5~, 0&, and p components,
respectively. The A-atom s component is not
shown, since N, (E) is always less than (0. 5 states)/
(Ry spin cell) in this energy range. These curves
involve the sampling of 32768 points in the Bril-
louin zone. A comparison of this total N(E) curve
with that in Fig. 7(a) illustrates the limited depen-
dence of these curves on the number of sampling
points.

Of particular interest is the symmetry of the
energy-band states near EF. The present LCAO
model predicts that the largest contribution to
N(E) at Ez involves the 5, subband (43%). In de-
creasing order, the remaining contributions in-
clude the p (27%), 5z(14%), o (13%), p (2%), and
s (0.07%) components. These results emphasize
the important differences between the present
LCAO model and the IBA model of Weger and
Goldberg, where the 5, component of N(E) is zero
throughout the energy interval EF+0. 14 Ry.

IV. BAND MODELS FOR THE A15 COMPOUNDS

A. Linear-chain model

The simplest band model for the A15 compounds
is the linear-chain model of Labbe and Friedel. '
As described in Sec. IIC, this model neglects all
interactions within the A-atom d manifold except
those between nearest neighbors. In addition, it
neglects all hybridization between the A- and B-
atom s-p orbitals and the A-atom d-band states.
These approximations produce three sets of one-
dimensional d bands which are overlapped by a
broad s-p band. Labbe and Friedel further assume
that the Fermi level in the high-T, materials lies
within a few meV of a square-root singularity in
N(E).

The E(k) curves for the linear-chain model d
bands are shown in Fig. 9 for the two-center pa-
rameters E~=O, (dda) = —0.20 Ry, (ddv) =0. 10 By,
and (dd5) = —0.02 Ry. The labels identify the vari-
ous bands at symmetry points in the Brillouin zone.
The corresponding labels for bands along symmetry
lines can be determined from the compatibility
relations. It is clear that this model predicts
numerous accidental degeneracies at symmetry
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are about 0.27 Ry in V3Si and V,oe and 0.33 Ry
in Nb, Al and Nb, Sn.

It is important to emphasize that the magnitude
of these second-neighbor d-d interactions in the
A15 structure are typical of those found in similar
studies for transition metals. For example, the
second-neighbor Nb-Nb distance in Nb3Sn is slight-
ly smaller than that in bcc Nb. Pickett and Allen~9

have applied the Slater-Koster LCAO interpolation
scheme to fit the results of APW calculations for
bcc Nb. Expressed in two-center form, their
second-neighbor d-d interaction parameters are
(ddo')g = —0.069 Hy, (ddt)g - —0.00l Hy, and (dd6)g
=0.004 Ry. These are comparable with the sec-
ond-neighbor LCAO parameters for Nb, Sn in Ta-
ble VII, where (dda)g = —0.067 Hy, (ddt)g =0.034
Hy, and (dd6)g= —0.008 Hy. For nearest-neigh-
bor d-d interactions, Pickett and Allen obtain
(ddo), = —0.092 Hy, (ddt), =0.047 Hy, and (dd6),
= —0.003 Ry, which also compare favorably with

the nearest-neighbor parameters for Nb~Sn in Ta-
ble VII.

There is an additional factor that affects the
accuracy of the linear- chain model. Namely, the
relative contribution of any shell of neighbors to
the A-atom d-band width is proportional to the
product of the number of neighbors z,. times the
strengthoftheinteractionE g(r,.). Inthebcc
structure, the ratio of the number of second neigh-
bors to nearest neighbors is 0.75, whereas this
ratio is 4 in the A15 structure. This suggests that
second-neighbor d-d interactions could easily be
more important in the 215 compounds than in the
bcc metals.

B. Independent-band approximation

points and along symmetry lines. Those denoted

bye, 8, and Cinvolve(X, , X, , Xg, X, , X,),
(Rg —Rg, Rg, R„R$, R„R$), and(M, ™,„,
Mg, Mg, Mgp Mgiy Mgg), respectively.

One can readily assess the validity of this linear-
chain model by comparing the distribution of states
at symmetry points with the APW-LCAO results in

Figs. 2-5. It is found that all the accidental de-
generacies of the linear-chain model are removed
in these APW-LCAO results. An outstanding fea-
ture of the linear-chain model is the prediction that
the d bandwidth is zero at R. Thus one can readily
see from the APW-LCAO results in Figs. 2-5 that
the corrections to the linear-chain model are about
0.3-0.4 Ry. Similar estimates of the strength of
interchain d-d interactions can be made at other
points in the Brillouin zone. According to Table
III, the states with I', . and I',3, symmetry are pure
d states. Their energy difference is due entirely
to interchain d-d interactions. According to the
present AP results, these energy differences
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To correct these deficiencies in the linear-chain
model, Weger and Goldberg have extendedthis
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FIG. 10. Comparison between (a) the WG IBA and (b) present LCAO E(k) curves for V3Ga.

model to include limited coupling between the
chains. As described in Sec. IIC, this coupled-
chain or IBA model omits all hybridization inter-
actions between the 0, p, 5, , and 52 subbands,
and limits p-d interactions to the 5, subband. The
Weger-Goldberg IBA E(k) results for V,Ga are
shown in Fig. 10(a). They represent an optimized
fit of the 22-parameter IBA model to the APW re-
sults for V3Ga in Fig. 4 of I. For comparison, the
E(k) results of the present 21-parameter LCAO
model for V,Ga are shown in Fig. 10(b). In both
cases, the energy scales are identical with that
shown in Fig. 4 of I. It is noted that the present
model includes the Ga 4s bands, whereas the IBA
model does not.

The overall accuracy of the present LCAO mod-
el is such that the rms error is less than half that
of the IBA. It is found that while the IBA yields 16
eigenvalues that differ from the APW results by
more than 0.05 Ry, the present model yields only
2. The relative accuracy of these two tight-binding
models can also be evaluated by examining the order
of levels at symmetry points in the Brillouin zone.
For example, the order of LCAO levels at I' in
Fig. 10(b) is identical with the APW results in I,
whereas 10 out of 15 IBA levels are incorrectly
ordered as a function of energy. Some of the
more serious errors in the IBA model occur near
E~. At the zone center, the IBA model places a
state with I'» symmetry at E~, while the APW re-
sults in I and LCAO results in FIG. 10(b) involve
a state with I'&2 symmetry. The corresponding
I'» state is about 0. 1 Ry above E~ in both the APW
and LCAO results.

It is useful to compare the Weger-Goldberg IBA
parameters for V3Ga with those of the present

LCAO model. These results are contained in Ta-
ble VIII. Let us consider first the results in the
left-hand column. The IBA model neglects the Ga
4s bands [E„(sso),, (sso)$] and their overlap
(S,) and covalency [(sdo)] interactions with the V
Sd states. It also neglects p-d overlap (S, and S,).
In the IBA model, p-d covalency interactions are
restricted to those between p and 5~-type d states.
Values for the two-centerparameters (Pdcr) and (Pdv)
can be determined from these p-5& IBA interaction
parameters. [The Weger-Goldberg p-5, matrix
elements contain an extra factor of v 2, which we
absorb in the definitions of (+o) and (pdv) to allow
direct comparison with the present LCAO values. ]
If we apply these IBA values for (ada) and (pdv) to
estimate the p-d interaction integrals that are
omitted in the IBA model, we obtain values for the
p-o, p-p, and p-5~ interaction integrals that are
larger than those involving the p-5& states. This
result is confirmed by the present LCAO model in
which ()do) and (gd!T) are determined as an aver-
age over all p-d interactions.

Another interesting aspect of the IBA results in
Table VIII concerns the "crystal-field" integrals
Et(o'), Et(v), E,(5,), and Et(6$), respectively. These
levels are distributed over an 0.29-Ry energy
range in the IBA model. On the other hand, these
"crystal-field" splittings are zero in the present
LCAO model. It is believed that these differences
are due to the fact that the present LCAO model
includes s-d and p-d orbital overlap.

We consider now the parameters in the right-
hand column of Table VIII. The 20 LCAO entries
involve only six independent hvo-center parame-
ters. The omitted second-neighbor IBA parame-
ters represent interband d-d hybridization inter-
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Parameter IBA LCAO Parameters IBA LCAO

E

(sso) j

(ssfr)2

Ef,

(ppa) j

(pp7t) j

(ppo)2

(pp~»

(sdfr)

S

(pdo)

Sa

(Pd1f)

E„(~)

E~ (7f)

E, (&, )

E„(~,)

—0. 508

—0. 013

—0. 006

—0. 113 —0. 014

0. 056 0. 028

0. 000 —0, 011

0. 018 0. 022

0. 009 —0. 003

—0. 073

0. 106

—0. 076 —0.021

0. 152

0. 247

0. 067

—0. 014

0. 187

0. 155

0, 309

0. 115

0. 128

0. 128

0. 128

0. 128

E3g,3,2 (pj)

Eyg yg (pj )

E„„„,(q)

E„„„y(pj)

E„2,g(pj)

E","(W)

E„,„,(p2)

(p, )

E,g„,(p, )

E„2„,(p, )

E „(p&)

E,„„„(p,)
(p&)

(p, )

y, xy(p2

E),2,„,(p2)

Ep „,(p, )

E„2,,p(q)

E„„2(pg)

—0, 080 —0, 071

0. 070

0. 095

0. 087

0. 087

—0, 034 ' —0. 030

—0. 005 —0, 030

—0. 029 —0. 027

—0. 004

—0. 002

0. 024

0. 010

—0. 015 —0. 002

0. 001 —0 ~ 002

0. 012

0. 021

—0. 031 —0. 027

—0. 003

0, 026

—0 ~ 003 —0. 002

0. 008

0. 010 —0. 008

aAn abbreviated notation replaces 3z —y, x —y, 3x
—y, and y2 —z by 3z, x, 3x, and y, respectively.

actions. It is found that the second-neighbor IBA
intraband parameters agree well with those derived
from the present LCAO model. However, it is
clear from these results that interband d-d inter-
actions are not necessarily smaller than intraband
interactions. Among the seven second-neighbor
d-d interaction parameters with magnitudes greater
than 0.01 Ry, only two represent intraband inter-
actions, whereas five involve interband interac-
tions. Thus we conclude from the present analysis
that the IBA approximation neglects off-diagonal
interband matrix elements [proportional to 4E
& (p~)] that are at least 0. 1 Ry in magnitude.

Weger and Goldberg obtain a similar estimate
for these interband hybridization matrix elements.
However, they claim that these matrix elements
will have a small effect on the E(k) and N(E)
curves since "the Van Hove peaks in the density of
states appear to be due mostly to regions in the

vicinity of high symmetry points. " In fact, the two

largest peaks in the IBA N(E) curves in Fig. 45 of
Ref. 2 coincide with 5z and o bands (at energies of
about 0.05 and 0. 85 Ry) which are perfectly flat
in the entire I'XM plane. These flat bands and the

TABLE VIII. Comparison between the %'cger-ao]. d-
berg IBA and the present LCAOparameters for VSGa. The
The LCAO d-d interactions integrals E~ &(p&) are evaluated
in the two-center approximation, where j())I = (0, 0, ~&)a and

1 l 1
q = (4, y, 4)a.

resulting peaks in N(E) are the direct result of
the IBA model which allows states of the same
symmetry to "cross" without hybridization.

In order to explain the anomalous properties of
the high-T, A15 compounds, Weger and Goldberg
shift the "crystal-field" parameters E,(cr), E~(v),
and E~(5z) by +0.05 Hy so as to place the large 52

peak in N(E) at E~. They justify these adjustments
by estimating that the relative positions of the vari-
ous subbands in the APW results in I are reliable
only to about 0. 1 Ry. They identify three sources
of error, including nonspherical corrections inside
the APW spheres, nonconstant corrections outside,
and errors caused by lack of self-consistency in
the potential. We have shown in Sec. IIB that the
effects of the first two corrections on the present
APW results are small (-0.01 Hy). We present
arguments in Sec. V which suggest that a self-
consistent calculation will not alter appreciably the
distribution of APW energy-band states near E~ in
these A15 compounds.

In conclusion, there are serious discrepancies
between the predictions of the Weger-Goldberg IBA
model and the present LCAO model for the A15
compounds. The present LCAO model predicts
that the peak in N(E) near El„ is largely composed
of states from the 5, subband (Fig. 8). The IBA
model predicts a gap in the 5,-p component of N(E)
such that there are no states from this subband
within + 0. 14 Ry of E~.

C. Coupled-band approximation

Goldberg' has extended the IBA model to include
interband hybridization and p-d interactions between
the various d subbands in the A15 structure. In

principle, this coupled-band approximation (CBA)
.is equivalent to the present LCAO model of Sec.
IIC. The main difference is that the CBA basis
functions involve orthogonalized atomic orbitals,
whereas the present LCAO model treats s-d and

p-d orbital-overlap effects explicitly. In either
model, the nonlinear least-squares fitting proce-
dure can lead to spurious values for the LCAO pa-
rameters because of the highly nonlinear depen-
dence of the energy levels on these parameters.
As discussed in Sec. IID, these problems are
minimized in the present study by first fitting the
APW results by means of a simplified two-center
approximation and then using these as starting val-
ues for the final parameter variations.

Goldberg, on the other hand, uses the IBA pa-
rameters as starting values for the CBA fit. In

terms of 41 independent parameters, his CBA mod-

el fits the APW results for V3Ga with an rms error
of 0.025 Ry. However, Goldberg rejects these
parameters as unphysical, because they differ sig-
nificantly from the IBA starting values and fail to
satisfy the two-center approximation. He ultimate-
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ly chooses an alternative method for determining
these parameters that involves a blend of fitted
parameters plus "basic" integrals which are cal-
culated using atomic wave functions. In the pro-
cess„ the rms error is increased to 0.046 By.

Using these parameters, Goldberg tests the IBA
identification of APW levels at symmetry points
in the Brillouin zone by means of the CBA wave
functions. If the sum of squares of the 0,
or 53 components of a CBA eigenvector is greater
{less) tllRll 0. 5, lie descr1bes tile Identification of
that level as definite (indefinite). Using this
criterion, he finds that the IBA identification of
73 V3GR APW levels is correct for 66, incorrect
for 4, and indefinite for 3 levels. In terms of this
same criterion, the corresponding results for the
present LCAO model for VSGR are 49, 14, and 10.
However, if one shax"pens this criterion slightly
by requiring that the square of the principal eigen-
vector component be greater than 0.67 rather than
0.5, then the number of indefinite states increases
to 24.

These results demonstrate that interband hybrid-
ization is substantialin the A15 compounds, even at
symmetry points in the Brillouin zone. Its effect
on the IBA band structure is even more important
along symmetry lines and at general points in the
zone where the IBA allows accidental degeneracies
and band crossings to oeeur. Consequently, it is
llo't sul'pl'lslllg tllRt tile CBA X(E) cul've foz' VSGR
bears little resemblance to the IBA results. In
particular, the two largest peaks in the IBA N(E)
curve disappeRr entirely in the CBA results. One
of these is the IBA 53 peak that Weger and Gold-
berg shift in energy so as to place it at Ez in the
high-T, mater'ials. Goldberg concedes that this
peak is due to the 5~ band that is perfectly flat in
the I"XM plane in the IHA model.

Goldberg finds that the VSGR Fermi level falls
at a minimum in the density of states. He adjusts
the relative energies of the various d subbands to
produce a peak in N(E) near E~. However, his
final ba,nd structure near Ez bears little to no
resemblance to the original APW results for MSGR
in I.

V. MSCUSSION AND INTERPRETATION

The highly simplified semiempirical models that
have been applied to interpret the anomalous phys-
ical properties of the high- T, A15 compounds in-
volve flQe struetux'6 ln the d6Qslty of states wlthln
R few meV of E~. This degree of accuracy is cer-
tainly beyond the capabilities of current band-
theoretieal methods, particularly for materials
with the complexity of the 415 compounds. Despite
their llmltatlonsq fix'st-prlnclples band CRlculRtlons
cRQ plovide R useful flame of x'efex'ence for' evRluRt-

ing the validity Rnd limitations of various micro-
scopic models thRt concentr'Rte exclusively on such
details in N(E) near E~.

We consider first the limitations of the present
APW calculations for these 215 compounds and the
manner in which semiempirieal adjustments can be
introduced into the LCAO model to minimize these
deficiencies. The principal soux'ee of error in any
band calculation lies in the crystal potential.
Hopefully, these errors would be minimized if the
potential were calculated self-consistently, though
even hexe, errors would persist because of the ap-
proximate tx"eatment of exchange and correlation
effects, Both types of errors occur in the present
calculations, which Rr'e not performed self-con-
sistently. However, past experience has shown
that these errors can be (at least partially) cor-
rected by the empirical adjustment of a single
LCAO parameter in the APW-LCAO band model.

In previous applications of this APW-LCAO mod-
el to transition-metal oxides with the 8663, '
rock-salt, 4 and perovskite 5 structures, it has
been found that the least reliable feature of the
APW results is the energy separation between the
oxygen 2s-2p and metal d bands. In the ease of
the oxides, potentials derived by superimposing
atomic eha, x'ge densities tend to overestimate this
6Qergy sepRx'RtloQ by Rbout 0.2 By. Mol 6 x'eeent
studies on transition-metal dichalcogenide layer
compounds' yield a similar though somewhat
smaller error of 0.05 By in the chalcogen-metal
P-4 band separation. Becent self-consistent APW
calculations for' V38i suggest that similar errors
occur in the present APW results for the A15 com-
p ouQcIs ~

Fortunately, the LCAO interpolation method pro-
vides a convenient framework for introducing
semiempirical corxections to the APW results.
However, in applying such corrections to materials
with the complexity of the A15 structure, one must
proceed with caution. As Phillips32 emphasizes,
semiempirieRI adjustments to a model Hamiltonian
cRQ be clRsslf led Rs Rl bltl Rx'y lnRdvlsRble ol'
eonstx'uctive. Semiempirieal adjustments Rre not
likely to be constructive unless the pertinent pa-
rameters in the model Hamiltonian have a funda-
mental rather than a numerical significance. As
discussed in Sees. IIC and IID, the present LCAO
interpolation scheme possesses important limita-
tions in this respect because of the complexity of
the A15 band structures.

An important example of these limitations is the
"crystal-field" splittings of the d orbitals i.n MSGR
in Table VIII. Here, we find an extreme situation,
where the IBA model predicts crystal-field split-
tings of about 0.2 By between the centers of gravity
of the various d subbands, whereas the two-cen-
ter I CAO model yields a more accurate fit with
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zero splitting. If the two-center approximation is
relaxed in the latter model by allowing the E~'s to
va, ry for the different subbands, one obtains a
slight improvement in rms error (about 0.002 By)
and crystal-field splittings of about 0.06 By. It
is difficult to determine whether these splittings
a.re fundamentally significant or whether they are
merely numerical a,rtifacts caused by adding
three extra I CAO parameters.

Because of these uncertainties, we limit our
semiempirical adjustments to a, single parameter„
the energy separation between E„and the 8-atom
s-p orbital energies E, and E~. In the case of the
A15 compounds, the most direct information about
this energy separation is provided by the x-ray
emission spectra of Nemnonov and Kurmaev.
These data indicate an occupied p-d valence band-
width of about 6 eV for V36a, V3Si, V3Ce, and
CraSi. This is in general agreement with the N(E)
curves for V3S& and V3Qe zn Fl.g. 7. At lower
energies, these data exhibit peaks at 8 eV (V,Ga},
8 eV (V,Si), and 9 eV (V,Ge) below E~ which are
due to the B-atom s bands. The present (and
earlier) APW-I CAO results predict these peaks
at 8 eV (Fig, 8 of I), 9. 5 eV, and 10.3 eV below

E„, respectively. Thus, we conclude that these
APW calculations overestimate the energy separa-
tion between the A-atom d bands and the B-atom
s-p bands by about 1.5-2.0 eV.

We correct these deficiencies by reducing these
energy separations in the I.CAO model by Q. 125
By (V,Si) and 0. 1 By (V,Ge). The adjusted I CAO
N(E) curves for V,Si and V,Ge are shown in Fig.
11. If we compare these adjusted N(E) curves with
the original ones in Fig. 7, we find that although
many of the gross features (such as the minimum at
E= 0.02 By) survive, the detailed shape and height
of the largest peaks can be substantially modified.
In particular, the differences in the X(E) peaks
near E~ in Figs. 7 and 11 provide a realistic mea-
sure of the accuracy with which the present APW-
I CAO band model can predict fine structure in

IV(E).
Of course, it is possible to improve the resolu-

tion of the present N(E) calculations by reducing
the histogram width (b,E = 0. 005 By} and utilizing
the more elaborate techniques that are available
for carrying out 4-space integrations. '4 However,
this added sophistication would be justified only if
the intrinsic accuracy of the present LCAQ model
were also improved. As discussed in Sec. IIC,
this would involve extending both the APW calcula. -
tions and the LCAQ fit to include energy-band states
along symmetry lines in the Brillouin zone. To
achieve sufficient accuracy, the I.CAO model would
probably require many additional parameters and
also the inclusion of A.-atom s-p orbitals in the
I.CAO basis.

A variety of spectroscopic methods have been
applied to the A15 compounds in an effort to un-
cover fine structure in the valence-band density of
states, including x-ray, ultraviolet photoemission,
and optical studies. The resolution of the x-ray
emission data is such that it reveals only two or
three broad peaks in the energy range of the A-
Rtom d Rnd the 8-atom p bands. This ls Rlso the
case for the x-ray emission spectra for Nb3Sn by

- Hague and Bonnelle ' and the ultraviolet photo-
emission spectra for V,Si by Heiniger and Wallden. '
Benda et al. '~ have sought evidence for fine struc-
ture in Ã(E) near Ez in low-energy optical refiec-
tivity data for VSSi and VSQe. Their data for both
compounds exhibit a minimum at 0.7 eV, a broad
weak maximum near 1.1 eV, and a slowly decreas-
ing reflectivity at the highest energies (3 eV). They
tentatively attribute the reflectivity minimum at
0. 7 eV to interband transitions.

To test this interpretation, we have calculated
the joint density of states (JDOS) for direct transi-
tions for the APW-I. CAO band structures of Figs.
2 —5. These JDOS curves are shown in Fig. 12.
In agreement with the ref lectivity data, we find
that the JOOS curves for V~Si and V3Qe are virtual-
ly identical. Furthermore, the JDOS curves for

F&Q. 11. iV(Z) curves for the adjusted I CAO band structures of (R) p Sj. and (b) V Qe.
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FIG. 12. Joint-density-of-states (JDOS) curves for
direct transitions in the present A. 15 compounds.

both compounds exhibit a small peak near 0.7 eV.
This peak is shifted to about 0. 8 eV in Nb, Al and
Nb38n. Although these JDOS results provide some
support for the interpretation proposed by Benda
et al. '7 for their optical data, it will be necessary
to perform a Kramers-Kronig analysis of this
data before a more rigorous interpretation is pos-
sible.

A limited amount of Fermi-surface data is avail-
able from positron-annihilation3 ' and magneto-
thermal oscillation' studies on single-crystal
V3Si and Vsoe samples, respectively. The posi-
tron-annihilation studies mere motivated largely
by Weger's prediction that the V38i band structure
and Fermi surface are one-dimensional and that
the latter consists of large, flat, nearly planar
sections, oriented perpendicular to the (100) axes.
These features would be readily observable as
gross anisotropies in the orientation dependence
of the positron-annihila. tion data. The initiaL
studies by Mihalisin and Parks' exhibited no anisot-
ropy differences in the (100) and (111)data.
More recent measurements by Berko and Wegers
have revealed small anisotropies in the (100),
(110), and (111)data. While Mihalisin and Parks
conclude that their results largely discredit
Weger's linear-chain model, Berko and Weger
claim that their data are consistent with the pre-
dictions of the linear-chain model.

In eval, uating this situation, it is useful to com-

pare the anisotropy that is observed in the positron-
annihilation data for V3Si with that of a typical
transition metal such as bcc V or Nb. ~~ In the
case of V,Si, a plot of the difference between the
normalized (100) and (111)data. as a function of
momentum yields a maximum anisotropy of 3%%uo.

"
A similar plot of the analogous data for either bcc
V or Nb contains anisotropies that are as large as
11%." Consequently, we agree with the view of
Mihalisin and Parks that second- and third-neigh-
bor interactions lead to a, much more isotropic
band structure and Fermi surface for V,Si than that
predicted by Weger. '

The problem of inverting positron-annihilation
data, to obtain electron-momentum distributions
and Fermi-surface topologies in metals and alloys
is a complex one. Berko and Mader~ have re-
viewed the progress that has been made thus far
in this field. In general, this progress has been
limited primarily to materials involving the simple
and noble metals and their alloys, mhere the Fermi
surface is nearly spherical. The present APW-
LCAG band model predicts extremely complicated
Fermi surfaces for the 215 compounds. The cal-
culated Fermi surfaces for V,Si and V30e are shown
in Fig. 13. Here, me plot the intersection of the
various Fermi-surface sheets with the (100) and
(110)symmetry planes of the cubic Brillouin zone.
In both compounds, the Fermi-surface sheets
involve primarily electrons in the 20th band (e20)
and holes in the 18th and 19th bands (h„and h, g),
each of which is cross-hatched differently. Ne-
glecting the smaller hole pockets near M and R,
the Fermi energy E~ is determined by the condi-
tion that the volume enclosed by e~o equals that of
A(8 plUs Pgyg .

Of course, some details of these Fermi-surface
results should be regarded as tentative because
of the limited accuracy of the present LCAO inter-
polation method. Among the more reliable fea-
tures is the fact that the bands that determine e»
are rela. tively flat, especially in comparison to
those responsible for the hole pockets near M and
8 in the Brillouin zone. It is clear from Fig. 6
that this feature depends mainly on the APW re-
sults at symmetry points a.nd the compatibility re-
lations. As a result, we estimate that the cyclo-
tron-mass ratios for electron orbits on e» are
2-3 times larger than those for hole orbits on
Af g p A)8 ) etc. Furthermore this suggests that
e2O provides the main contribution to X(Ez) in
these A15 compounds.

Predictions regarding the size, shape, and
topology of the various Fermi-surface sheets in-
volve greater uncertainties. For example, the
closed electron sheets for V,Si at I" and X (e,o)
would be connected by necks along 6 in Fig. 13(a)
if the energy of the highest (&2) band along the
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FIG. 13. Central (100) and (110)cross sections of the
(a) V~8" and (b) V&Ge Fermi surfaces.

I'X line in Fig. 6(a) were lowered by 0.002 By.
The opposite would occur in V,Ge if the ~, band
were raised by 0.003 Hy. Despite these uncer-
talntles» the plesent LCAQ model px'ovldes R l e-
alistic estimate of the degree of complexity that is
expected for the Fermi surfaces of these 415
compouncts.

Graebner and Kunzler have observed three
separate frequencies in their magnetothermal
oscillation data for V Ge. From the angular de-
pendence of these frequencies, they attribute them
to extremal orbits on cylindrical-type surfaces
with axes along the (100) directions. The present
Fermi-surface model for V,Ge includes a complex
configuration of nested hole pockets at M(jttv ~ ~ k»)
and R(h&s ~ ~ ~ h&s), all of which have reasonable cyclo
tron-mass ratios ot about 1 or 2. However, as
Graebner and Kunzler point out, the symmetry of
the data rules out the latter possibility. Thus we
tentatively assign these fxequencies to the nested
hole surfaces at M.

It is interesting to contrast these Fermi-surface
x'esults fox' V38l Rnd VSGe with thRt predicted by
the linear-chain model. The intersection of the
d-band Fermi surface for this model with the sym-
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FIG. 14. Fermi surface of the d bands in the linear-
chain approximation.

metry planes of the Brillouin zone is shown in
Fig. 14(a). Here, E~ is assumed to fall slightly
above the flat 5 bands at —0.04 Hy in Fig. 9. The
shaded areas denote the various sheets of the 5-
band Fermi surface. We ignore for the moment
the complications that are caused by the m and n

sheets. A sketch of the 5-band Fermi surface is
shown in Fig. 14(b). It consists of a total of six
sheets; two identical sheets are denoted by o,,
two by I3, and two by y. This doubling of the 5-
band Fermi surface results directly from the ac-
cidental degeneracy of the 6, and 62 subbands. The
pair of y sheets are determined by the intersection
of three sets of planes which are perpendicular to
the (100) axes and separated by W. The width W
reduces to zero as S~ approaches the square-root
singularity in N(E) at E=+0.04 By in Fig. 9. The
pair of P(o,') sheets correspond to the intersection
of two (three) sets of mutually perpendicular planes
of y.

The topologies of the z-band and o-band Fermi
surfaces are identical to those of the 6 subband.
The dimension Win Fig. 14(b) is successively
larger for the p and cr subbands. Each of these
sheets (which are doubly and singly degenerate for
the v and cr subbands, respectively) truncate the
p and y sheets of the 5-band Fermi surface. How-
evel ln 'tl1ls one-climensional limit electx'ons
(or holes) are not scattered from one subband to
another, so these truncations have no effect on the
orbits of these carriers. A total of 15 Fermi-
s~rface sheets are involved. They range from a
pair of n-type electron pockets in the 15th band
at I" to a single y-type hole pocket at R in the first
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band.
If the corrections to this linear-chain band model

were small, then their main effect on the Fermi
surface of Fig. 14 would be restricted to regions
of the Brillouin zone where accidental degeneracies
occur. These would tend to round off the sharp
edges of the various Fermi-surface sheets whenever
crossings occur in Fig. 14(a). The result would be
a complicated array of 15 nearly planar Fermi-sur-
face sheets with slightly rounded corners and edges.
These .effects would smear the square-root
singularity in N(E). It is clear that the present
APW-LCAO Fermi-surface results for V3Si and

V3Ge in Fig. 13 contain few if any features of this
linear- chain model.

Values for N(E„) in the 215 compounds have
been estimated from specific-heat and super-
conductivity data using the McMillan formula. 7

However, Testardi~ has shown that, because of
the structural instability of the high-T, materials,
the standard interpretation of specific-heat data
is probably incorrect. In particular, a calculation
of the lattice specific heat for V3Si reveals a term
nearly linear in temperature. As a result, the ex-
trapolation of specific-heat data from above T, to
0 K yields a sum of both electronic and lattice con-
tributions, rather than the electronic term alone.
Another difficulty is the fact that this extrapolation
must span a large temperature range in the high-
T, materials.

Numerous specific-heat studies have been car-
ried out on these compounds. In both V3Si and
Nb, Sn, the recent estimates" for y are (20-30)'%%uo

smaller than the earliest values. 44 Sma1.ler varia-
tions [(5-10)%%up] are found in the corresponding re-
sults for V3Ge and Nb, Al. Junod' has determined
the band-structure N(E„) and the phonon-enhance-
ment factor X for V3Si, Nb, A1, and Nb3Sn, using
the McMillan formula. He obtains the values N(E~)
=1.6 (VBSi), 1.1 (Nb3AI), and 1.5 (Nb, Sn) in units
states/(eVspinA-atom), with X(V,Si) =1.3, X(Nb3AI)
=1.1, and X(Nb, Sn) =1.4. These values for Nb, AI
agree with those of Willens et al. Using earlier
data, McMillan7 estimated N(Ez) =2. 4 and I =0.8
for V,Si in these same units. Assuming X(V,Ge)
= 1, the specific-heat data for V,Ge yield" N(Ez)

The present APW-LCAO band model pre-
dicts values for N(Ez) =1.1 (V,Si), 1.0 (V,Ge),
0.7 (Nb, AI), and 0. 6 (Nb~Sn), respectively. The
agreement between these theoretical and experi-
mental values is considered satisfactory in view of
the limited accuracy of the present LCAO model.

It appears that the major discrepancy between
the present N(E) results and those of the more
simplified models concerns the rapid variations
in N(E) near E~ as E increased by a few meV.
This mould require bands near E~ whose curvature
and midth are reduced by about two orders of mag-

nitude from that shown in Fig. 6, particularly for
the "anomalous" compounds, V3Si and Nb, Sn. Un-
fortunately, it would be necessary to improve the
accuracy of the present APW-LCAO model by two
orders of magnitude before one could even attempt
to resolve this question in terms of a first-princi-
ples calculation.

Independent estimates of N(E~) in these com-
pounds have been obtained from nuclear-resonance
studies. Fradin and Williamson47 have applied
spin-lattice relaxation rate and quadrupole inter-
action data for V3Ga~ „Si„alloys to determine the
various subband contributions to N(E) at Ez. In
V3Si, they find that the z subband is the major
component (63%) of N(EJ) =2.6 states/(eVspinV-
atom). Unfortunately, their analysis of these data
relies heavily on the Weger-Goldberg N(E) curves
for V36a. In particular, they assume that the 5,
component of N(E) is zero for V3Si and that the
main contribution to N(E~) involves the v and 52
subbands. A similar difficulty occurs in the inter-
pretation of nuclear-acoustic-resonance data by
Buttet and Lauger, which involves wave functions
derived from a linear-chain approximation to the
Weger-Goldberg IBA model. Finally, from Knight-
shift and relaxation-time measurements on several
Nb3X compounds, Ehrenfreund et g$. estimate an
upper limit to the Nb 5s component of N(E~) in
these compounds to be about 0.07 states/(e V spin Nb-
atom), or about 5% of the total N(E&). This is con-
sistent with the present APW-LCAO model, where
it is assumed that the bottom of the A-atom s bands
lies several eV above E„. This is not the case in
the Weger-Goldberg IBA or the Labbe-Friedel
linear- chain models.

In summary, the present APW-LCAO band
model for the A15 compounds predicts a peak in
N(E) near Ez that consists mainly of states derived
from the 5, subband of the A-atom d manifold. It
will be necessary to improve the accuracy of this
model by about two orders of magnitude i.n order
provide realistic first-principles estimates of the
detailed shape and height of N(E) near Ez in these
materials. Despite these limitations, the present
results raise serious questions regarding the exis-
tence of one-dimensional or quasi-one-dimensional
features in the electronic structure of the A15 com-
pounds.
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