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Asymmetrical Ising model*
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A model is introduced, which shows a discontinuous or first-order phase transition in temperature
coordinate. As temperature increases, its long-range order undergoes a discontinuity at the condensation
point, but contrary to the conventional assumption it does not vanish after the phase change. The
long-range order remains nonzero at all finite temperatures and vanishes only at infinite temperature.

A great deal of studies have been made to under-
stand continuous or second-order phase transi-
tions. However, most phase changes occurring in
nature are discontinuous or first-order transi-
tions and much less is known about them. Believ-
ing that it is always desirable to have a simple
model which shows any resemblance to those oc-
curring in nature, we introduce in this short paper
an asymmetrical Ising model which exhibits dis-
continuous phase transitions. In two dimensions
exact properties of this model in the transition re-
gion can be deduced from that of the ordinary Ising
model. The new model is, in some respects,
similar to the Maier-Saupe quadrupole-interac-
tion model' for nematic liquid crystal. .. We com-
pare the rigorous results with the mean-field ap-
proximations on which most current theories of
liquid crystals are based. It is found that the
well-known mean-field result that the long-range
order vanishes identically above the transition
point is inaccurate.

Consider a usual Ising lattice and let S'; denote
the value of the dynamic variable associated with
the ith lattice site Each.S,' (i=1, 2, . . . , N) can
take on two eigenvalues: —1/)(, which is )(-fold
degenerate (X &1); and+1, which is nondegenerate.
The total energy of the system is given in the usual
Ising form

U' = —G' Z S(S,' —H 'Z S', ,

where G' and H' are, respectively, the coupling
constant and the external "magnetic" field, and
the symbol (ij) denotes a nearest-neighboring pair
of lattice sites. This asymmetrical Ising model
reduces to the usual nearest-neighbor interaction
Ising model if X equals one. In the following ~ will
be allowed to take any real value greater than one.

The statistical mechanical properties of the
asymmetrical Ising model can be conveniently cal-
culated by first transforming it into an equivalent
Ising model. To do so we use the notation ~ to de-
note an S( taking on the positive value (+ 1), c is an

S,' taking on the negative value (-1/)(), N, is the
number of t lattice sites, and ¹,is the number of

nearest-neighboring pairs of lattice sites with both
variables t, etc T.hen the U' [E(l. (1)] can be ex-
pressed as

U' = —N(2G'yX —H')( ) —N, [H'(1+ X )

—G'y)( (1+)( )]—N„G'(1+)( ) .
(2)

where y is the coordination number of the lattice.
The partition function is therefore

NBF'(H', T)-@B(G'rX-2 /2 'H1&e)

U= —GQ S~S; —HQ S;, (4)

where S; takes on the eigenvalues +1 and -1, both
nondegenerate, and has a partition function

e NBF (HeT & PB(Qr/-2 H) g QN q(229 8&-r
Nq

we conclude that

Tr exp O' S;'S,'+ H' S,'
& i~&

=eeee Te exp(JIG Q Sg S~ + SHE SI
&ij&

or

provided

xp c(N„N„))("~e «B~'"" '

Nqi

where P= (kT) 1, the summation g' extends over
all possible N t with N, positive sites, and the
configuration factor C(N»¹,) is the number of
different configurations for a given

¹
and ¹,.

The factor AN' is due to the degeneracy of the neg-
ative state. In comparison with an Ising model
which has an interaction energy
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G= —,'G'(I+X ')', (8. 1)

H=-,'G'y(I -~ ')3+-,'H'(I -X ')+-',~TI~ . (8.8}

In other words, the asymmetrical Ising model is
equivalent to an Ising model if the H and C of the
latter are given by (8.1) aadr (8.2).

%'e can now apply the I ee- Yang circle theorem
to the asymmetrical model. If one varies one of
H' and T while keeping the ethei constant, the
system cannot undergo more than one phase transi-
tion, which must occur, if at all, at the point where
H= 0. Together with Yang'8 rigorous result for
the spontaneous magnetization of the two-dimen-
sional Ising model, one eonlclu@es that first-order
phase transitions do occur in bvo-dimensional
asymmetrical models at temperatures below the
critical point4 T, = {2G/0)/1II(I + ~ ) [henceforth a
square lattice (y=4) is assumed]. At H'=0, the
condensation temperature is given by (H 0)

~ -I In(I+PS)
lnX

provided TD & T„ that implies X has to be greater
than a value X, = 26. 217 722 5. . . . (The model also
condenses at H'=0 for X & I/X, .) Figure 1 shows
the phase diagrams of the asymmetrical Ising mod-
el compared with the Ising model. Although the
new model is nonsymmetric by Fisher's defini-
tion, ' i.e. , H'- -H' does not imply {8&'/&H')r
= -M' +M', the coexistence curve diameter is
constant. 2'

From Eq. (7) one has
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FIG. 2. M'-T diagram for an asymmetrical Ising
model with A, =500. The dots are exact values of M'
at the condensation temperature Tz. The curves are ob-
tained from cluster expansions.

M'{H ' T) = [{I+~)/2~] M(H, T) + (X —I)/2A. , (10)
where M(H, T)= —[&F(H, T)/8H]r. Since M is a
continuous function of T but as a function of H is
discontinuous a't H= 0 lf T & T from Eq. (8.2) oils
has

M'(0, Tna) = 2(l+X )M(0+, Tn)+ 2(l -X ), (ll)
where M(0+, T) have been calculated by Yang. The
latent heat associated with the condensation can
also be calculated from the relation [Eq. (6)]

T,[S'{0,T,+) —S'(0, T,-)]
= —',kT (Ink)[M(0+, T ) -M(0-, T )], (12)

where 8'(H', T) = —[8E'(H', T)//ST]„. . For teal-
peratures not equal to T~, exact solutions are not
available. However, the Mayer cluster expansions
for M' or M is convergent for H & 0,

FIG. 1. Phase diagrams for (A) the asymmetrical.
Ising model and (8) for the Ising model. In (A) the phase
boundaries a, b, and c correspond to X&X~, &=~c, and &

&A~ respectively. If temperature varies along an H'
=const. line which intersects a phase boundary, a first-
order phase transition occuz's at the intersection.

M(H, T) = —1+2y+y'(Bx ' -10)
+y'(86x '-96x '+ 62)

+y (8x + ~ ~ )+ ~ ~ ~ (Is)
where y=x' e~ ", x= —4G/kT. Therefore [from
Eq. (8.2)]I oils sees tila't the sel'les expaIlsloll ls
applicable for T & T&. The temperatures lower
than T~ correspond to H& G. If H and T are in-
dependent as in the usual Ising model, then E(H, T)
= E(-H, T). One can expand the magnetization in
powers of y

' for H&G 2
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TABLE I. Discontinuities of the long-range order M'

at the condensation points TD for various values of X

when the external field is absent.

26. 2178
27, 0
30. 0
40. 0

100.0

M (0, T, -)
0. 581 76
0. 820
0. 889
0. 942
0. 985

M (0, T, +)

0. 380 10
0. 143
0. 078
0. 033
0. 005

M(H, T) = 1 —2y ~x4 -y (Bx' —10x )

-y '(36x' —96x '+62x' )

—6y '(x" + ~ ~ ~ )+ ~ ~ ~ .
For an asymmetrical model at H'=0, H and T are
not independent. However, for l T —Tn ~ /Tz, «1,
E(H(T), Tn) = Ji (-H(T), Tn) is a good approxima. —

tion. Therefore, Eq. (14) provides an approximate
expansion for M at T &T&. Unfortunately, Eqs.
(13) and (14) converge very slowly unless the value
of ~ is very large. Figure 2 shows the M'-T dia-
gram for X = 500. Table I shows the discontinuities
of M' at the condensation poirits corresponding to
various values of ~.

It is interesting to compare the energy spectrum
of S' in the asymmetrical Ising model with that of
the Maier-Saupe model for nematic liquid crys-
tals. Figure 3 shows that the energy spectrum of
8' may be viewed as a step-function version of the

quadrupole potential energy of a rodlike molecule
in nematic liquid crystals. The mean-field (MF)
approximations of these two models have the same
character in every respect. However, in the MF

theory, the long-range order (M' in the ca,se of

asymmetrical Ising models) equal to zero is always

a root of the sen-consistency condition, corre-
sponding to a stable state above TD and an unstable
state below T~. It has always been assumed that
the long-range order vanishes identically above TD

when the external field is absent. The rigorous
results however indicate that this is not the case,
at least in one model. As temperature increases,
the long-range order undergoes a discontinuity at
the condensation point, but unlike second-order

—0.5
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cos 8

FIG. 3. Comparison of the asymmetrical Ising model
with the Maier-Saupe model for nematic liquid crystals.
Th'e solid curve (3cos 0/2 —1) represents the average
poten. tial energy of a rodlike molecule when. it makes an
angle 0 with respect to the nematic direction. The asym-
metrical Ising model represented by the dashed line can.
be viewed as a step-function version of the quadrupole
potential in the sense that the rod can. only take either
parallel or perpendicular orientation with respect to the
nematic direction; the latter is ~-fold degenerate com-
pared with the former.

phase transitions it does not vanish after the phase
change. It remains nonzero at all finite tempera-
tures and vanishes only at infinite temperature.
Note however that above T~, M' is appreciable only
for a, very narrow range (out of &, to ~) of X. It
is possible that the vanishing long-range order
above T& is a good approximation for the Maier-
Saupe model.
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