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The generalized-master-equation (GME) theory of excitation transfer is applied to the standard model of
linearly interacting excitons and phonons, the spectral prescription for memory functions given by Kenkre and
Knox is verified for the model, peculiarities of memory functions pertinent to isolated versus open systems are
analyzed, and exciton transport relevant to representative memory functions is studied. Physical relations are
established between the GME theory and the stochastic-Liouville-equation theories, thus completing the
author’s earlier formal study of these relations. The influence of spectral features on exciton motion is
analyzed in detail and it is shown that the presence of zero-phonon peaks in optical spectra is an indication of
long-time coherence in exciton motion. Criteria for the validity of theories in the context of a given real

system are developed on the basis of the spectral analysis.

I. INTRODUCTION

In view of the diversity of formalisms used in
some recent theories of excitation transfer in mo-
lecular aggregates and of possible conflicts among
their results, a thorough examination of the rela-
tionships among these theories is necessary. The
beginnings of such an examination were presented
in an earlier publication' (hereafter referred to as
I). That study is continued in the present paper
with the help of specific model calculations and
physical considerations, and criteria for the ap-
plicability of the theories are developed on the basis
of features of optical spectra.

Of the many attempts at the description of exci-
tation transfer the following four were chosen in I
for comparative study: (i) the traditional (Forster-
Dexter) theory, ? (ii) the semistochastic develop-
ment of Haken-Reineker-Strobl® (HRS), (iii) the
formalism of Grover and Silbey* (GS), and (iv) the
generalized-master-equation (GME) theory of Ken-
kre and Knox® (KK). It was shown in I that a formal
equivalence exists between HRS (without the local
fluctuation terms) and GS under rather general con-
ditions, the specific equation containing the equiva-
lence between GS—-HRS and KK was displayed for a
two-molecule system, and a discussion of the va-
lidities of the various theories for various values
of time was given, a distinction being made between
the GS—~HRS formalism and the GS—-HRS equation
(the forms of the theory before and after the partial
Markoffian approximation, respectively).

The content of the theories considered may be
generally divided into (a) their basic formalisms
and (b) the specifics of the system analyzed with
the formalisms., The study in I was concerned en-
tirely with (a) and the formal remarks made therein
require further clarification and elaboration in the
context of (b). Having decided upon a particular
formal structure, a theory must choose for its
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analysis between a real system, with its direct
relevance but with its complexities that make exact
analysis practically impossible, and a model sys-
tem which, in spite of being only a highly simplified
and therefore a distant approximation to the real
system, has the attractive property of being largely
tractable and sometimes even exactly soluble, In
the study of real many-body systems, where an ex-
act solution definitely lies beyond one’s wildest
hopes, these two kinds of theories complement each
other and are equally important. Like the Forster-
Dexter theory, 2 the KK theory®® addresses itself to
real systems. The GS-HRS treatment and partic-
ularly the GS analysis* deal with a specific model
system. This model system has been studied by a
number of authors, ® and the comparative study of
theories of excitation transfer would therefore be
helped by an analysis of that system with the GME
formalism underlying the KK theory, Such a model
calculation was undertaken recently, " and it will be
seen in the following that it aids the comparative
understanding of exciton motion as envisaged by the
various theories.

The direct verification (for the above model) of
the prescription given in KK*® for obtaining memory
functions from optical spectra is given in Sec, III.
The memory computed for the model exhibits some
curious features, and their meaning is discussed in
Sec. IV. In Sec. V simplified versions of typical
spectra and the implied memory functions are dis-
cussed, and exciton motion is studied by analyzing
the probability evolution for representative memory
functions. These are obtained from the model cal-
culation as well as from the other theories through
the results of I. This analysis brings out the dif-
ferences and agreements of the predictions of the
various theories for the model system and allows
one to develop validity conditions for the theories
in the context of a given real system. This dis-
cussion is given in Secs. VI and VII.
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12 RELATIONS AMONG THEORIES OF EXCITATION...II...

The model calculation discussed in Sec. III is
facilitated by the definition of a modified projection
operator, given in Sec. IL

II. PROJECTION OPERATOR

The projection operator @ defined in Ref. 5(b) sat-
isties

<5'I@elu'>=<§f<s'|els')/f'chf)aW @.1)

for any operator © and thus involves a coarse grain-
ing over the microscopic states &’ of the system-
bath aggregate into “grains” or macroscopic states
£. It was remarked in Ref. 5(b) that this equal-
weight summation, accompanied by the infinite size
(thermodynamic) limit of the system-bath aggregate,
led to the onset of irreversibility on one hand and to
the thermalization factors, in the space of the pho-
nons, on the other. While that definition of ® was
constructed particularly with the irreversibility
question in mind, it is possible (and, in the partic-
ular context of the comparison of the theories, ad-
visable) to obtain the subsequent results of the KK
theory with another definition of ®, when one wishes
mevely to calculate the relevant memory expres-
sions.® This definition, ® given by

(M, m|®0|N,n

-1
=e-BEm <Ze-BEm> (Z <M3 m | o 'M’ WZ>> 5m,nﬁM,N ’
m m (2. 2)
involves a trace over the phonon variables, a diag-
onalization, and a multiplication by the normalized
equilibrium (thermal) phonon density matrix, and
it will be used in the subsequent analysis. The bath
is not alluded to at all in this definition and appears
only indirectly at a later stage when assumptions
of line broadening are made.® As in Ref. 5(b), here
M, N and m, n refer, respectively, to exciton
states and phonon states, E,, is the energy of the
vibrational state m, and B=1/kT. It is a straight-
forward exercise to show that Eqs. (23), (24), (28),
and (29) of Ref. 5(b) do indeed result when Eq. (2.2)
is used to evaluate the expression

t
<M,m!<-f ds@Le'“t'S)“"P’L(l-(P)L(Pp(s)>|M, m)
0

appearing in the GME, when the assumption and
approximations discussed in I are made. It then
follows that the probabilities of site occupation by
the exciton, given by
PM=Z(1VI,m’p|M,m>, (2.3)
m

obey’ the GME

e - [ s DAl )Py ) - wyalt - )P4,
(2.4)
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where the “memory-possessing transition proba-
bilities” W,y are given by

-1
WMN([):2<Ze'BEm> Ze'BEn|<M’m iVlN, n>|2
m myn

(2.5)

Q,y and w,,, being the exciton and vibrational energy
differences €, - €y and E,, - E,, respectively, and

V the interaction. One observes that the thermal
factors appear naturally in the expression for W,
An analysis of excitation transfer in unlike mole-
cules can be made with the help of Eq. (2.5), but

it is of no relevance here. However, it is interest-
ing to note, in passing, that detailed balance fol-
lows as an immediate consequence of Eq. (2.5).

X €08 (Q gy + Wyt

III. MODEL CALCULATIONS AND CONNECTION WITH
SPECTRA

The standard model of linearly interacting exci-
tons and phonons, investigated earlier by various
authors*® will now be studied with the GME tech-
nique. The model has the Hamiltonian

H=€) alay,+ D Iynalay + w,blb,
] N T
+ 9 W, X X (b, +0!)alay (3.1)
Mia

which, with the help of a well-known transforma-
tion, !® may be rewritten

H=Y <€—; |xmzwq)A1,AM

# D T e®nevAl Ay + 3w, (3.2)
M#EN q
on dropping a term involving exciton-exciton inter-
actions, with A, =a,e®l and a, =3, X (b, - b').
Our interest lies in the evolution of the probabilities
of occupation of localized exciton states which are
the eigenstates of H without the second term in Eq.
(3.2), coarse grained over the phonon states as
depicted in Eq. (2.3). They satisfy the GME (2. 4),
and a trivial generalization of the results of Kenkre
and Rahman’ shows'! that Eq. (2.5) gives, for the
above model

Wyn (1) =2| Ty | exp (— Z [7rs(t) - hRS(O)]) , (3.32)
hs () = (Tr e™m)™! Tr(e=®-iD fma eitfng ) |
(3.3Db)

In Eq. (3.3a) eachof R and S takes values M and
N. The mathematical exercise required to obtain
Egs. (3.3) exploits the fact that H,, contains only
harmonic terms. The explicit form of W, may
further be written [as in Eq. (6) of Ref. 7] as

WMN(t):ZIJMleeXP("Z(IXfIZ’L ]X:Ilz
q
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- X¥x¥ ~ X¥x"){coth G pw,)

q

- [N, et@dt 4 (N, +1) e'i“’qt]}> s (3.4a)

N,= (P -1)" ., (3.4p)

Consider now the absorption and emission spec-
tra of a single molecule at M. Transitions involv-
ing, respectively, the creation and the destruction
of an exciton, caused by an electromagnetic field
among the states of the Hamiltonian

Hy=ealyay+ ) wblb,+Y @, X0l +b_)ala, » (3.5)
q q

are therefore of interest. A number of authors!?
have dealt with the problem of the calculation of
optical spectra of molecules. For our present
purpose Lax’s analysis!®® and the expressions
calculated by Maradudin'®® and Soules and Duke®‘®
are immediately applicable in the present context.
The “modified spectra’ (the spectral coefficients
divided by the appropriate powers of the frequen-
cy’™®), are obtained from Eq. (13.9) of Ref. 12(c)
or Eqs. (3.9) of Ref. 6(b). Thus the “modified ab-
sorption coefficient” for the molecule at site M may
be written in our notation (except for constant fac-
tors) as

19 (w) = {9 |* expl7,,,(0)1}
xfmdtexp[— Byy@) +i(w=-€t], (3.6)

where I is the dipole matrix element between the
electronic ground and excited states, A similar
expression, relevant to emission by the molecule
at N, will be denoted by I%(w).

The prescription given in Eq. (28) of Ref. 5(b)
for obtaining the memory function from optical
spectra states that

2=+

Wy () = constf dz coszt f dwl%(w -3 2z)
2: w=0

20m 0O

XIS (w+tz) . (3.7)
It can be easily shown that Eq. (3.7) implies
W (t) = const Re{[9%, (1) ][5,(1)]* }, (3.8)

where ¢%(t) and 95 (#) (the “characteristic functions”
of Lax'*®) are the Fourier transforms of I%(w)
and I%(w), respectively. Equations (3.8) and (3.6)
immediately yield

Wy () = const exp (" Z [hrr(t) - hme(o)]> ’
R=My N (3. 9)
where R =M, N. Equation (3.9) is identical to Eq.
(3. 3a) when the terms in the exponential wherein
R #S are dropped from the latter. This confirms
the spectral prescription of Ref. 5(b) and gives the
smallness of 7,y (t) = h,y(0) for M #N as the condi-
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tion for its validity. This is precisely the condi-

tion obtained by Soules and Duke®™ for the validity
of the Forster-Dexter theory.

IV. MEANING OF THE MODEL MEMORY

In real systems the correlation functions 4 (t)
=(a(t)a) are expected to tend to zero for large #'s.
The thermodynamic limit will ensure this decay
for the model considered. Equation (3. 3a) then
predicts that the memory functions pertinent to ex-
citation transfer in this model start off with the
value 2|J,y 1% at t=0 and drop off to a nonzero value
21Jyy 1% exp[ Tk, s hrs(0)] at ¢ =, Comparison of
Eqs. (3.4a) and (28) of Ref, 4 shows that the mem-
ory functions go from 2|J,y |2 to 21J,,1% where, as
in Ref. 4,

1jMN|2= |JMN!29XP<—Z(1X£I|2+ |Xﬁz
q

- XN~ xVx") coth(%Bwq)> . (4.1)
At first sight this behavior of W, () appears rather
strange, particularly in view of Fig. 2 of Ref. 5(b),
where the memory calculated for transfer between
anthracene molecules in cyclohexane solution ex-
hibits a complete decay. However, closer inspec-
tion shows this to be the natural behavior of an iso-
lated system. For note from Eq. (2.5) that W, (¢)
has the form J, F(z;) cosz;t. The trivial observa-
tion that cosines of all nonzero arguments oscillate
around the value zero, but one of zero argument is
constant at unity for all time, leads to the conclu-
sion that this expression has two components, one
of which is steady at F(0). It then follows that for
times which are sufficiently long, but not of the
order of the recurrence times, the above function
goes from J,, F(z;) at short times to F(0) at long
times. Every memory function therefore seems

to have this general behavior, and Eq. (2.5) with

€ v =0 indeed predicts that W, (¢) varies from

-1
2<Ze'BEm) Ze'BEM| M, m|V|N,ny|?,

myn

which equals 2|J,y|? for the above model, to

-1
Z@e‘”m> D eBEm| (M, m | VN, |?,
m myn; Ep=E,

which equals 21J, 2.

Having understood the “strange” behavior of W »
as a natural property of our memory functions,
one must reconcile this with the general expecta-
tion of completely decaying memories for normal
systems and particularly with Fig. 2 of Ref. 5(b).
Consider again the expression 3, F(z;) cosz;f, and
note that in the thermodynamic limit the discrete
z;’s pass into a continuous z and the above sum into
the integral [dz o(z)F(z) coszl, where p(2) is a den-
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sity of states. This integral goes from [dz p(2)F(z)
to dz p(0)F(0), i.e., always to zero unless p(0)F(0)
is singular. Since Ezi F(z,) cosz;t may be written as
the above integral with p(z) =3,, ¢(z— z), one ob-
serves that the limit that turns the sum into the
integral can remove the singularity in p(0) by mak-
ing the strength of the 6 function at z=0 (smaller
and smaller and eventually) zero.

The above discussion may also be given in the
context of optical spectra. The f(f) of Eq. (8.13)
of Lax, 2 the g(f) of Eq. (13.14) of Maradudin, ‘3¢
or the ¢(7, #) in Eq. (3.9a) of Soules and Duke®
does not tend to — « as {— . Since these functions
appear in the exponential in the expression for the
“characteristic function, ” this must result in a
singularity in the optical spectra at the exciton en-
ergy. This singularity or 6 function in the fre-
quency domain is connected with the eventual non-
zero value of our memory in the time domain. And
precisely those mechanisms (interaction with the
bath) that broaden the 6 function in the spectrum
to a nonsingular value, force the memory to decay
to a zero value. It is thus seen that, while memory
functions with a constant component at =« and
optical spectra with a & function at zero (phonon)
energy are natural properties of isolated systems,
the existence of interactions with the bath will lead
to the decay of the memory component and the
broadening of the spectral one. Furthermore, the
existence of sharp (but not truly singular) zero-
phonon lines will lead to memories with multiple
time constants like the one depicted in Fig. 2 of I.
This will be made clearer in Sec. V.

V. REPRESENTATIVE SPECTRA, MEMORIES, AND
MOTION

Before undertaking a comparative analysis (Sec.
VI) of exciton transfer it is useful to study repre-
sentative spectra, the memory functions they imply
through the KK prescription, and the probability
evolution that follows from these memory functions.

Consider the expression
I (@) = Gyl (w) + Cly, (w = wy) (5.1)

as typifying a “modified absorption spectrum”
possessing both a zero-phonon line and a sideband.
Here I (w) =a/(w? + @?) is the Lorentzian with width
2a, the zero of w being taken at the zero-phonon
line. I mirror symmetry applies, the “modified
emission spectrum” is given by

Iﬁ,(w)=Col%(w) +Coly(w +w,) (5.2)
and Eqgs. (3.8), (5.1), and (5. 2) give

Wy y(£) = const(CE e-2%0! + 2C,C, ¢ *0*%s)t cosw, ¢
(5.3)

The spectra given by Eqs. (5.1) and (5. 2) have been

+C2 %%t cos2w,t) .
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FIG. 1. (a) “Modified” absorption (dashed line) and
emission (solid line) spectra as typified by Eqs. (5.1)
and (5. 2), plotted for exaggerated relative values of Cy,
Cs, oy, ag, wg showing the zero-phonon peaks and the
sidebands, The zero of w is taken at the zero-phonon
energy. The areas of the Lorentzians at 0 and wg are C;
and Cg, and their widths are 2a and 20, respectively.
(b) The memory function corresponding to the spectra
in (a), exhibiting multiple time constants. Oscillations
arising from the Stokes shift have been suppressed to
make clearer the multiple-time-constant: nature of W(t)
Units in (a) and (b) are arbitrary,

plotted in Fig. 1(a). In order to bring out the mul-
tiple-time-constant nature of W, , resulting from
zero-phonon peaks, exaggerated relative values of
Co, Cs, g, ag, and w, have been used for Fig. 1(a),
and the oscillations in W), , caused by the Stokes
shift (w, #0) have been suppressed in Fig. 1(b).
The slowly decaying component of W),y would be
absent in the absence of the zero-phonon peak.
Equation (5. 3) reduces to

Wy n(2) = constC? e 2%t cos2w ¢ (5.4)

in the limit oy~ (or Cy-0), which represents the
absence of a zero-phonon line, and in the opposite
limit of a 6-function zero-phonon line, i.e., when
ay—~0, exhibits the constant component C% at ¢ =w:
Wy x(£) = const(CE +2CyC, e %t cosw,t
+Cle %! cos2w,t) . (5.5)

Equation (5.5) is a crude representation of the
memory [Eq. (3.4a) or (3.9)] obtained for the model
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of Sec. III, whereas the situation, wherein the
model is put in interaction with a bath, is described
by Eq. (5.3) with @y #0 and by Fig. 2 of I. Note in
Eq. (5.5) that, except for constant factors, W, ()
has the value (Cy+C,)? at +=0 and decays to C? at
{=w, A comparison with Eqs. (3.4a) or (3.9) im-
mediately establishes that Cy+C,, the strength of
the entire spectrum, and C;, the strength of the
zero-phonon peak [see Eq. (5. 1)], play the respec-
tive roles of J and J. It should be clear from these
examples (as well as from a direct analysis) that
in the absence of a zero-phonon line the quantity

J must equal zero.

Several different forms of the memory function
W,x () [see Eqs. (3.4a), (3.9), and (4.4)-(4.6) above
in addition to Egs. (5) and (8)-(10) of I, Eq. (9) of
Ref. 5(a), and Fig. 2 of Ref. 5(b)] have appeared in
the description of excitation transfer. We shall
now study their consequences in connection with the
evolution of exciton probabilities. For the sake of
simplicity, consider, as in I, a system of two
identical molecules, Equation (2.4) gives, for this
system,

Pyle)=1/2¢ + [Py (0) - 3]/(e +2W) | (5.6)

where tildes denote Laplace transforms, ¢ is the
Laplace variable in keeping with the notation in I
and Ref. 5(b) (and should not be confused with the
energy which it represents in Sec. III), W==W,,
=W,,, and M=1,2. The first term represents the
final equilibrated value ; of the probability on either
molecule and the second the “decay” of the differ-
ence of the initial value from this final value. One
could substitute Eq. (3.4a) into Eq. (5.6) and, in
principle, obtain the probabilities as functions of
time., However, this being a rather complicated
exercise, we shall consider the effect of simplified
W’s in which we attempt to retain the basic qualita-
tive features of the actual W’s,

Consider the memory function

Ww(t)=Ayett +2J2 ¢ 1t | (5.7

This has some of the essential characteristics of
the memory functions discussed above and, when
substituted into Eq. (5.6), gives

ﬁu(€)=1/2€ +[PM(0) -3+ (y+aye +ya,y]
x (€3 + (y+ay)e? + (ya, +24y +Ad ®)e

+(2Aya, +AT] . (5.8)

The two terms on the right-hand side of Eq. (5.7)
represent contributions from the sidebands and the
zero-phonon line, respectively (oscillating factors
arising from the Stokes shift have been neglected).
The limits y~, J~0, and A=F give W(t) =F5(¢)
and represent the Forster-Dexter theory,? and Eq.
(5.8) then reduces to the familiar form
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P,()=%+[P,(0) - 3]e 3t . (5.9)

The Perrin oscillations'® are recovered for y =0,
Ay=2J% J=0, (or, equivalently, for a;~0, J=J,
A =0) and correspond to no exciton-phonon interac-
tion and no spectrum broadening:

Py(t)=3+[Py(0) - 3]cos2J! . (5.10)

Here W(/)=2J2. These two cases may be unified®‘®
in a simple manner by taking ‘W(t) =2J2exp[(- 272/
F){], which is Eq. (5.7) with A=F, y=2J%/F, and
J=0. This takes into account the noninfinite nature
of the spectral widths but allows for no zero-pho-
non lines. The resulting probability is given by

By(t) =+ [Py(0) - $]e™ /" {cos20 [L - (/2F)]%

+(J/2F)1 - (7/2F)* "2 sin2J [1 - (J/2F)?)"24} .
(5.11)
The basic feature of the memory function com-
puted’ for the model in Sec. III is that, on taking
the thermodynamic limit, it drops off from 2J2 to
a steady value 2J2%. If the partial Markoffian ap-
proximation is made on the decaying part (as in the
GS—HRS equation) one might represent the memory
in Eq. (3.4a) by the crude form W() =A6(t) +2J2,
which arises from (5.7) when y -« and &, -0 and
corresponds to the presence of an unbroadened
(singular) zero-phonon line, It leads to

Py(H)=3+[P,(0) - $]e 4*{cos2F[1 - (4/2T ]2

—(A/2J)[1 - (A/2 ]2 sin2J [1 - (A /2T )?]"2¢}.
(5.12)
As shown earlier!’*®:5® the GS-HRS equation

corresponds to a memory consisting of the sum of
an exponential and a 6 function. Such a form also
results from the case discussed immediately above,
when the constant component of strength 2J2 is al-
lowed to decay, i.e., when the broadening of the
zero-phonon line is taken into account. This is the
Y=o limit of (5.7) and gives

P,(t) =1+ [P, (0) = $]e-Arar/2)t
X {cost [1 _<A"—2‘}1/g>a]”?‘l
_<A —2?/2) [l _<A _2?1/2)2:]-1/2

x sin2J [l —CA%I/ZY]UZZ} .

Note that, except in the exponential, A and «; have
opposite effects in Eq. (5.13). This has the inter-
esting effect that for the case of the GS—HRS equa-
tion which has [see Eq. (5) of I] @, =2A, the equa-
tion reduces to

(5.13)

Py (1) =% +[P,(0) - 1]e?4t cos2Jt . (5.14)
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Equations (5.9)-(5.14) have been plotted in Figs.
2 and 4 and discussed in Secs. VI and VII.

VI. COMPARATIVE ANALYSIS OF EXCITON MOTION

In order to gain a comparative understanding of
the predictions of the various theories let us first
consider a highly simplified system, enrich it by
successive steps so that its parameters evolve to-
wards those of real systems found in nature, and
at each step attempt to apply the theories and com-
pare their results. Begin then with the model sys-
tem whose Hamiltonian is obtained from that given
in Eq. (3.1) by dropping the last two terms and
writing M, N =1,2 and Jy, =J for simplicity. The
GS—HRS theory predicts [see Eqs. (6) and (7) of I]
that the evolution of exciton density matrix elements
obeys

dpu

F7ala i (pg1 = P12) (6.1a)
do )
ﬁ ==iJ(pgz = P11) (6.1b)

while, for the initial condition p,,(0) = p,,(0) =0,
the KK theory gives

(6.2)

t
19;;‘;@ = ZJZ'[O ds [pea(s) = p1i(s)],

which is equivalent to Egs. (6.1). The analysis of
Ref. 12 [see Eq. (3.6) of this paper] shows that the
“modified” spectra I*(w) and I°(w), relevant to ab-

I I I
GME [Eq.(5.12)]
Py (1)
- ST T T~
05 y;
/
/
/
SLE [Eq.(5.14)]
| | |
° I 2 3 4
t

FIG, 2. Probability evolution of the exciton in a dimer,

for the initial condition Py(0)=0 as described by the
generalized-master-equation (GME) and the stochastic-
Liouville-equation (SLE) approaches for the model of
Sec, III, under the partial Markoffian approximation,
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sorption and emission by a single molecule with
the Hamiltonian H = ea'a, are 6 functions at energy
€ (zero-phonon lines). These correspond to “char-
acteristic functions” ¢°(¢) and 9°(¢), which are ex-
ponentials of imaginary argument and which lead,
through Eq. (3.8), to

W(t) =272, (6.3)

a result in complete agreement with Eq. (6.2). The
Forster-Dexter theory cannot analyze this system
since it is based on the golden rule, which is not
applicable to this situation. Equations (6.1) and
(6.2) predict that probability evolution follows Eq.
(5.5) and exhibits the Perrin oscillations. 13

Consider now the system described by adding the
third term of Eq. (3.1) to the Hamiltonian consid-
ered above. The exciton density matrix may be
defined through a thermal coarse graining, as
shown in Eq. (2.3). Since the phonons here do not
interact with the excitons, the GS—HRS and KK
predictions are again given by Eqs. (6.1) and (6.2),
respectively; the spectrum calculations are un-
changed, and so is the probability evolution.

If one now turns on the exciton-phonon interac-
tion, returning to the model of Sec. I [Egs. (3.1)
or (3.2)], the GS-HRS formalism predicts

- t
dp C‘l}(t) == 1J(pgy — p1) + fo ds Q(t = s)[pga(s) = pry(s)],
(6.4a)

- t
dL:lj(i) == (055 = 011) + L ds ®(t = s)[pz1(8) = pra(s)] .
(6. 4b)

The functions G(¢) and ®(f) are not calculated by
HRS, but assumed to be 6 functions, and, as dis-
cussed in I, this results in the GS—HRS equation.
The GS treatment, however, calculates them ex-
plicitly. The calculation involves a single approxi-
mation: the perturbation of the “kernel” or “prop-
agator” appearing in the integro-differential equa-
tion [Eq. (3.21) of Ref. 6(c)], and the result is

alt) = @)

=272 exp(R'Zs hRs(O)) [exp <- 1; hRs(t)> - 1]
=272 [exp <— }% hRs(t)> - 1:|

in the notation of Eq. (3.3) above.* The results

of Sec. III show that the KK theory predicts

t
_..._dP;(” = fo ds Wt = s)pga(s) = ps(s)]

where

(6.5)

(6.6)

'S

W(t) = 27 exp(;Z [ems (0) = T (t)])
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=] exp(-— > hRs(t)> , 6.7)
R,
provided the correlations iy, y with M #N, neglected
by the spectral prescription, are put back into the
memory. The derivation of Eq. (6.7) also involves
a single (perturbation) approximation, which is
formally similar to, but different in content from,
its GS counterpart. Equations (6.5) and (6.7) show
that

Ww(f) = QF) +2J2 . (6.8)

The spectral expressions for this system are ob-
tained from Eq. (3.6). From an Abelian theorem
connecting the behavior of e as { -+« to that of
I*(w) or I°(w) as w— €, one sees that, since the cor-
relations drop to zero!? at large times (on taking
the thermodynamic limit), the spectra have singu-
larities at w=€. Observing that |3lt|% in Eq. (3.6)
is proportional to J, one concludes therefore that
the spectra possess zero-phonon lines of strength
Je"1® in addition to sidebands.'® When /,,(0)
=1y,(0) =0, the strength of the zero-phonon line is
J (see also Sec. V).

This parameter J, introduced by GS, is thus of
significance in several places. We have shown
above that it is proportional to the relative strength
of the zero-phonon singularity in the optical spec-
trum of the isolated molecule. It is also the
key coherent parameter in Eqs. (6.4) as it
controls the basic oscillations of the density
matrix elements as predicted by GS [see also Eq.
(5.14)]. Furthermore, Eq. (6.7) shows that 2J2
denotes the constant component of the KK memory
W(f) and (in the thermodynamic limit) equals W(«).!6
These conclusions are quite general and are not
restricted to the particular model considered. The
discussion in Sec. IV has shown that the memory
w(¢) always has a constant component which equals

(Ze) (2, )

Um

or

-1
o(Serse) (Seal v
m m

if degeneracy is absent, or 2|V,,l? if the tempera-
ture is zero, where |0) denotes the lowest vibra-
tional state., Furthermore this quantity |Vy,! (or
its more complex forms shown above) must figure
in a GS-like treatment, as can be shown in detail,
and must also appear in the spectra.

In view of the importance of the parameter J we
shall now study its evolution as the system is en-
riched from a highly simple form to a real molecu-
lar aggregate. For the noninteracting system con-
sidered at the beginning of this section, the spec-
trum is an unbroadened zero-phonon line with
strength J, the function F(z) of Fig. 1 of Ref. 5(b)
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is a § function (at z =0) of strength proportional to
J?, the memory W(t) is a constant [see Eq. (6.3)]
of value 2J% and the exciton motion consists of
oscillations with frequency proportional to J, When
the exciton-phonon interaction is switched on, as
in the system of Eqs. (3.1) or (3.2), the strength
of the zero-phonon line is reduced (borrowed to
form the sideband), F(z) too forms a sideband with
a consequent weakening of the & function at zero,
the memory W(t) drops at large times to 2J2 (al-
though at £ =0 it still equals 2J2 corresponding to

" the value of J for the case of no interactions), and

the exciton motion has oscillations which are con-
trolled initially by J and then by f, and eventually
attains a diffusive nature for times small compared
to recurrence times [see Egs. (5.11)-(5.14)].17
This system is, however, still an isolated model
system. If a real system is represented by this
system in interaction with a bath, the latter can
bring about further broadening, reducing the value
of J, i. e., the strength of the spectral § function,
the frequency of oscillations, the value of the con-
stant component of W(¢), in short, the coherence of
the system. This J thus crucially depends on the
presence or absence of the bath and its nature, and
great care must therefore be taken when estimating
its value.

Before applying a model theory to describe a
situation in real nature, its parameters must be
evaluated in the context of the given real system.
Since model systems can only caricature real sys-
tems, the safest manner of evaluating these pa-
rameters is to connect them (with the help of the
theory) to properties of the system in the context
of a different phenomenon, and then to measure
these properties experimentally, The Forster-
Dexter and the KK theories operate in this spirit.
In systems wherein the condition &y () — ki, (0) =0
for M #N is valid, the crucial parameter of the
GS-HRS theory, viz., J, can be estimated in this
manner from the results obtained above by examin-
ing the optical spectra of single molecules in the
given environment. For systems such as F-aggre-
gate color centers, !® zero-phonon peaks are indeed
observed in the spectra. Such systems have been
typified by Fig. 1 above and Fig., 2 of I. On the
other hand, an examination of the spectra of several
aromatic molecules'® in solution at ordinary tem-
peratures shows no zero-phonon lines, which means
that J~0 for these systems at those temperatures.
The absence of significantly differentiated peaks in
the spectra lead to a memory with essentially a
single time constant. The W()’s like those dis-
played in Fig. 2 of Ref. 5(b) result. The GS-HRS
formalism [see Eq. (6.4a)] gives

t
dp;;(t) =.[0 ds @(t =) pe2(s) = p1s(s)] 6.9)
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which, in view of the result W(t) = @(f) from Eq.
(6.17), is identical to the KK equation (6.6). For
such systems, the GS—HRS diffusion constant

D=2a2%72/3a +a%a (6.10)

loses its two-term nature, since the “coherent”
part equals zero, 2° and the GS-HRS equation be-
comes identical to the Pauli master equation, the
basis of the Forster-Dexter theory.

One of the conclusions to be drawn from this
analysis is that there is greater agreement between
the various theories considered than their diverse
structures might lead one to believe. Systems that
one encounters in the course of an analysis of exci-
tation transfer must fall in one of the following
three categories: (i) real systems whose optical
spectra exhibit no zero-phonon peaks at all; (ii)
isolated hypothetical systems with true 6 functions
at the zero-phonon energy; and (iii) real systems
with distinguishable zero-phonon peaks in their
spectra. Assume that the validity conditions for
the spectral prescriptions for transport parameters
hold in these systems. We have shown above that
for systems (i) an exact (not merely formal) equiva-
lence exists between the GS—HRS and KK theories
and that the additional coherence implied by the
parameter J is absent in these systems since J=0.
For systems (ii) there is a disagreement between
the theories. This is apparent in Egs. (5.12) and
(5.14) (see Fig. 2), which give the probability
evolution as predicted for the model of Sec. III (un-
der the partial Markoffian approximation valid for
times that are not too small) by our analysis’ and
the GS—HRS theory, respectively. Unlike the
former, the latter does not exhibit “overdamping”
for any value of the ratio A4/2J of the incoherent
and coherent parameters. Agreement occurs only
in the extreme limits A/2J> 1 and A/2J<1. In
view of the result established in I that the GS-HRS
formalism corresponds to a memory with the La-
place transform

W(e) =272/[ € + 28(€)] + G(e) ,

1,3,4

(6.11)

one reencounters the disagreement in the results
®=@& and =0 of the GS analysis and our Eq. (6.8),
respectively. The analysis of the present paper
assigns, to the 2J2 memory component, a decay
constant controlled by the width of the zero-phonon
line (zero in the present case). The GS-HRS the-
ory, on the other hand, assigns to it a value equal
totwice the integral of the othev part of the memory.
The source of this conflict may be traced to the
difference in the perturbation approximations made
in the two theories. Although formally similar,
these approximations differ in actual content (ex-
cept whenJ=0). In the analysis of Ref. 7 the per-
turbation expansion is in powers of the second term
of Eq. (3.26), while in the GS treatment it is in
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powers of the “fluctuation” of that term from its
“thermalized” value. One might argue that the ex-
pansion parameter is smaller in the latter and that
therefore the GS approximation is preferable. This
may well be true. However, in the absence of any
proof or indication of the convergence of the ex-
pansion in either case, such an argument is not too
meaningful. An exact solution, which would provide
the only way of deciding between the two approxima-
tions, is unavailable at the present moment.

Systems of type (iii) may be considered similar
both to those types (i) and (ii). They are like (ii) in
that they do possess structure at the zero-phonon
energy and like (i) in that, being real open systems,
they do not exhibit #rue 6 functions in their spectra.
In the latter view, J =0 again, and once again com-
plete agreement is obtained between the theories
and the extra coherence contributed by J is absent
However, the G(t) of Eq. (6.4a), or equivalently the
W() of KK, develops multiple time constants and
in this manner handles the additional coherence
[see Eq. (5.3) and Fig. 1]. The results of the KK
theory are particularly important for these sys-
tems since, for spectral lines which are narrow
enough, its predictions differ substantially from
the traditional theory.? Viewed as “broadened”
versions of isolated systems, systems (iii) might
also be examined by the stochastic-Liouville-equa-
tion approach of Refs. 3 and 4 since, for times
small with respect to the reciprocal of the zero-
phonon-peak width, they might indeed be approxi-
mated by systems (ii), 2

It is worth emphasizing that true disagreement
between the theories considered exists only for the
isolated model system. Even in this hypothetical
system the disagreement disappears if the ratio of
the coherent and incoherent parameters is either
too large or too small. A study of the spectra of
several real systems has shown that even in cases
wherein zero-phonon peaks are present, their
strengths relative to those of the sidebands are often
such as to produce negligible amounts of J coher-
ence. For instance, for the color centers studied
in Ref, 18 the ratio 2J2/2J2 of the initial value of
the slow component of the memory to that of the en-
tire memory ranges from 10™ to 10~ for all cases
except one, in which it equals 1.4x10,

In situations wherein 4,y (¢) — /2,y (0) #0 for M #N
[see Ref. 6(b) for a discussion] the above consider-
ations do not appear to require significant changes,
although correction factors will have to be applied
to the quantities obtained from the spectral pre-
scription. Thus note that the ‘W) in Eq. (3.3a) can
be written

21
o

Wt) =W, ()W, (), 6.12)

where W, (t), the correction factor due to the ne-
glected correlations, to be applied to the spectrally
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obtained [Eq. (3.9)] W, (), is given by

W (1) = eXP{“[hMN(t) +hy (@) = Ty ©) = By (0)] } .
(6.13)
Note that since W,(0) =1, and W,(<) is not expected
to be infinite, W() varies from w,(0) to zero for
real systems. These considerations therefore do
not need to be changed qualitatively when these cor-
relations are not neglected.

VII. CONCLUDING REMARKS

Figure 3(a) represents the model of Eq, (3.1)
with a constant (involving no phonons) intermolecu-
lar interaction J and an “intramolecular” exciton-
phonon interaction. (The latter is not strictly in-
tramolecular, but an interaction between phonons
and localized excitons.) The states are those of the
bare exciton. The states of the “dressed” exciton®
obtained after the transformation are shown by wavy
lines in Fig, 3(b). They diagonalize (3.2a) without
the second term of (3.2b). There is no “intramo-
lecular” interaction among them, but the intermo-
lecular interaction g=Je% e®24} A, does connect
states with unequal phonon numbers. Figure 3 (b)
shows the separation of J into a constant part J,
which, like J, involves no phonons, and the “fluc-
tuating part” J - J. Before the transformation the
intermolecular interaction J connected any one state
on molecule 1 to only the corresponding state on
molecule 2, but after the transformation (and due
to the exciton-phonon interaction) the intermolecu-
lar interaction is “spread over” all states of mole-
cule 2. The interaction strength is conserved in
this “spreading over” and the constant no-phonon

_._J'.....
"

EXCITON-PHONON INTERACTION

(a) (e)

©_~8 FUNCTION OF
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part J is therefore smaller than J. It is thus that
J is reduced as the number of states increases
(thermodynamic limit, interaction with bath) and

in the continuum limit cantend to zero. The GS the-
ory treats J exactly and J — J approximately through
G(t). The same kind of approximation is used by
the KK theory to treat the entire J. There is thus

a difference for J#0, but none for J=0, All the-
ories considered above analyze the evolution of the
coarse-grained density matrix. Evolution among
intramolecular states does not therefore enter into
the description, and the J considered is truly a
(thermal) average over all phonon states. The rela-
tion with spectra is also based on this fact. The
F(z) of Ref. 5(b) is sketched in Fig, 3(c) (the
Stokes shift is neglected), and the memory W(t),
which is its Fourier transform, is shown in Fig.
3@).

In addition to the unification of coherence and in-
coherence, the concept of the coexistence of these
two characters of exciton motion emerges from the
discussion in this paper. The use of the general-
ized master equation brings about a unification, as
has been shown explicitly in Ref. 5(c). This ex-
plains the transition from an R-® to an R™® transfer
rate, and combines wavelike behavior at short
times [any finite W(f) can be approximated by the
constant ‘W(0) near ¢ =0] with diffusive behavior at
long times [after W(¢) has decayed, its integral
equals that of a 6 function of value [[ dt’ W(')]
placed at £=0]. The coexistence concept is ap-
parent in stochastic-Liouville equations and is rele-
vant to a memory with multiple time constants.®
The model calculations’ discussed in Sec. III show

FIG. 3. Model of Sec.
III. (a) The intermolecu-
lar interaction J and the
phonon-localized-exciton
interaction (symbolized
by the arrow) among
“pbare” states; (b) no pho-
non-localized-exciton in-
teraction exists among

AREA 232

AREA 2 (T%F%)

MOLECULE | MOLECULE 2 “dressed” states. The
z intermolecular interac-
tion consists of a part J
and a part J—J, Only
@ the interaction with one
of the states of molecule
(b) 5 272 1 is shown. (c) The F(z)
/-J‘ defined in Ref, 5(b) is
m /m plotted for this model,
VAV AAAAAAY Wi suppressing the effects of
AN T AN the Stokes shift. (d) The
'\A’\M’\"=_?“’\NWV\’ ~2 memory W(), which is
I Ts==— the transform of F(z).
———— The dashed lines in (c)
MOLECULE | MOLECULE 2 t and (d) show the effects of

broadening.
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FIG. 4. Probability evolution of the exciton in a dimer,

for the initial condition P4(0)=0, plotted for different
cases, showing motion which is, respectively, purely
diffusive, purely coherent, exhibits unification of these
two characters, and their coexistence,

[see Eq. (6.5)] that initially there is wavelike be-
havior® controlled by W(0) =@ (0) +2J2 =2J2, but
after @(t) has decayed it contributes only diffusive
motion. There is, however, a coexistence of this
diffusive (hopping) motion with the additional wave-
like (coherent) motion controlled by 2J%, Equa-
tions (5.11) and (5.12) with J=J describe, respec-
tively, the unification and the coexistence of purely
coherent [Eq. (5.10)] and purely diffusive [Eq.
(5.9)] motion. The results of these four equations
have been shown in Fig. 4. Note that for J=J,
2J%/F=A, Egqs. (5.11) and (5.12) differ only in the
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sign of the last term and agree in the limit that the
coherent parameter is large. The unification con-
cept always occurs in real systems since real spec-
tra display neither infinite widths nor infinite
heights. However, coexistence occurs only when
significantly differentiated peaks exist in the spec-
tra.

While the radiative lifetime of the excitons has
been considered to be infinite in the foregoing
analysis, it is an assumption made in all the the-
ories considered above. It is justifiable when the
transport characteristic times are much smaller
than the radiative decay times. The finite lifetime
may be taken into account by appending a real decay
to the treatment, as done by Forster.? It should
also be mentioned that the assumption of homo-
geneous broadening, which also underlies the
traditional theory, 2 has been made in this treat-
ment,

Note added in proof. It was stated in Sec. VI that
exact solutions, capable of deciding between the
perturbation approximations inherent in the SLE and
the GME theories, were unavailable. We have now
obtained them for some highly simplified models.
Comparison of the exact, the GME, and the SLE re-
sults shows that, in spite of the expansion parame-
ter being larger in the GME calculation, the latter
provides a decidely better approximation than the
SLE. It must be emphasized, however, that these
results are known to be true only for the models
considered and a general statement is not yet pos-
sible.
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