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Electron correlations at metallic densities*
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The effect of correlations on effective interactions in the electron gas is studied. It is argued that because of
the strong correlations at short distances, two-body terms make up the dominant contribution to the effective

electron-electron interaction for small separations. An interpolated effective electron-electron interaction is

proposed which is approximately correct for all separations. This interaction incorporates both the two-body

short-distance correlation effects, and the well-known many-body collective behavior at large separations. A
number of metallic properties including cohesive energies and plasmon dispersion curves are calculated using

this effective interaction, and all are found to be in remarkable agreement with the results of Singwi, Tosi,
Land, and Sjolander who calculated the effects of the short-distance correlations using a quite different
method.

I. INTRODUCTION

The electron-gas model has proved to be very
useful for studying properties of metals which de-
pend strongly on electron-electron interactions
and only weakly on the discrete nature of the ion-
core lattice. The system that one studies is an

interacting electron gas on a uniform positive back-
ground. The effect of the background is to neutral-
ize the over-all system. The model is especially
well suited for certain phenomena involving the
conduction-band electrons of the alkali metals.
The Fermi surfaces for these degenerate valence
electrons are nea, rly spherical' and fit well within
the first Brillouin zone.

For many metallic properties we need to know

the electron-gas dielectric function e(q, w),
~ which

is very closely related to the Fourier transform of
the time-dependent pair-correlation function g(r, f),
Such experimentally accessible quantities as the
cohesive energy of a metal or its plasmon disper-
sion curve, can be directly related to these func-
tions. The electron pair-correlation function is
also needed in calculating the buildup of electron
density around a positron in a metal. '

It is fairly straightforwa, rd to evaluate the dielec-
tric function within the random phase approximation
(RPA). ' ' In the RPA, the coupling between differ-
ent Fourier components of the Coulomb interaction
is completely neglected. Because of this it is im-
possible to build wave packets corresponding to a
field of localized charges, and consequently the
RPA neglects all localized correlations. The RPA
was originally applied to long-wavelength phenom-
ena' where such correlations can safely be ne-
glected, since only over-all polarization effects
should be important. It has also been shown to be
valid for all wavelengths in the high-density limit.
At metallic densities, however, phenomena which

depend on short-wavelength excitations, such as the

electron buildup near a positron or the correla-
tions between two close electrons, are found to be
very sensitive to the local-fieM corrections. Our

purpose is to develop an over -all calculational
scheme which adequately treats these localized ef-
fects, and at the same time retains the HPA re-
sults at long wavelengths. We can then investigate
how the localized effects affect various metallic
properties.

The RPA retains only those terms in the pertur-
bation series for which different momentum com-
ponents of the interaction are not mixed. The con-
tribution from each particle-hole polarization bub-
ble is given by the I indhard function IIO(q, e),

IIO(q, (u) = Q,2,g- Go(q + k, (u+ k ) Go(k, k ),
syin 4 &)

where Go is the free-electron Green's function

O 2
Go(k, &)= 0 i a

k ——, k +iqsgn(lkl —kF)
'

The units we use are such that S /m = 1. Because
there is no mixing of momentum. components and

because the Coulomb interaction pq is local, each
polarization bubble IIO(q, ~) decouples from its in-
teraction. This makes summing the infinite set
of RPA terms straightforward since each term be-
longs toa geometric series inpowers of Ilo(q, u&) vq.

Hubbard pointed out that for large momentum
transfers the exchange contribution to a given dia-
gram. would tend to cancel one-hali the direct con-
tribution. Since it is impractical to evaluate all
the exchange terms for RPA, Hubbard suggested
instead using only the direct terms and approximat-
ing exchange effects by replacing IIO(q, &e) with

1+-", [q /(q + n~)] 110(q, (e)
' (3)

For small q this function remains IIO(q, &u), but for
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large j it becomes —,
'

Iio(g, &u). Nozieres and Pinesg

developed an interpolation procedure based on this
same physical idea. For small momentum trans-
fers they used RPA, while for large momentum
transfers they used lowest-order perturbation the-
ory and included only antiparallel spins. Since for
large IqI the RPA series converges rapidly, this
is similar to Hubbard s approximation. For inter-
mediate momentum transfer they interpolated be-
tween their large and smaj. j. momentum results.

While both these approaches go beyond the RPA
in considering the local correlations caused by ex-
change, they still completely neglect the important
correlative effects arising from the repulsive in-
tex action. Singwi, Tosi, Land, and Sjolander
(STLS) successfully included local correlations
caused by the interactions. By considering only
two-body contributions to the Liouville equation of
motion they were able to relate the pair-correla-
tion function to a certain effective interaction, and
vice versa. They iterated their calculation until
the correlations and the interaction agreed self-
consistently. The final effective interaction incor-
porated local two-body correlations, and since it
was represented on the unperturbed-plane-wave
basis it could be neatly dovetailed into the RPA
scheme by simply replacing each Coulomb inter-
action in the RPA sum by the effective interaction.
Since the effective interaction was also local and
static, the RPA-type terms still factorized into
powers of the interaction and powers of the polar-
ization bubbles, so the geometric sum could stillbe
performed. A drawback of their method is that be-
cause it uses a self-consistent approach, it is dif-
ficult to say precisely which terms of the perturba-
tion expansion in the Coulomb interaction are being
retained. Since only two-body contributions to the
equation of motion were included, it is plausible
that only two-body terms from the perturbation ex-
pansion are being considered, but it is difficult to
be more precise.

A quite different approach to this problem of cal-
culating the short-range correlations caused by the
electron repulsion was adopted by Ya,suhara and
by Hede and Carbotte. ' Yasuhara calculated the
zero-distance pair-correlation function for anti-
parallel spins using an effective interaction which
consisted of the infinite ladder sum of unscreened
Coulomb interactions between the tmo electrons.
Hede and Carbotte calculated the same function for
small distances, but they used the ladder sum of
static RPA interactions for their effective interac-
tion. These ladder-sum approaches are similar
to our calculation, and we discuss them further in
Sec. III.

II. ELECTRON-ELECTRON EFFECTIVE INTERACTION

We want to construct a two-body effective inter-

action for the electrons which takes into account
the strong correlative effects at small separations
caused by both repulsion and exchange, and which
at the same time extrapolates smoothly to the re-
tarded RPA interaction for large separations.

A. At short range

Let us first concentrate on eonstrueting the ef-
fective interaction for small separations. Two-
body coQtx'lbutlons to this interaction w111 tend to
dominate for small separations, both because the
interaction is everywhere repulsive and also be-
cause of the Fermi statistics. If we already have
two particles close together, it costs considerable
energy for a third particle to approach sufficiently
close to them to interact strongly with them. The
energy cost is much greater than that incurred in
bringing the first two particles together, since the
third particle has to approach a double charge. By
the uncertainty principle, we would then expect the
lifetime of any such third virtual excitation to be
short compared to the lifetime of the first two. l

Hence retardation effects involving a third particle,
such as retarded screened-interaction terms or
terms of the Bethe-Faddeev type, ~4 should not be
vexy important at short distances. The two parti-
cles will tend to polarize the medium around them,
but since they are both negatively charged, any po-
larization they cause at distances much greater
than theix' separation will affect both particles
equally. We can approximate this effect by adding
a weak static external potential. We shall find
that in fact our results are not sensitive to such a
potential.

Since the electron gas is a spin- —,
' fermion sys-

tem, exchange contributions further diminish the
importance of three-body terms. In any three-
body term at least two of the electrons must have
parallel spin, so that when all three electrons are
close together direct and exchange terms will tend
to cancel. As an example of how the exchange
terms reduce the effects of screening, consider the
first- and second-order terms for antiparallel spin
electrons shown in Fig. 1. We denote the term
corresponding to Fig. 1(a) as D„etc. Our calcu-
lations indicate that the most important contribu-
tions to the zero -separatlol1 pair -correlation fuQC-
tion come from the momentum-transfer region
q- (2-3}k~. For q & kz, the ladder terms are all of
the same order in k~/q,

D,/D. =O. f65', [I+O(k,'/q')],

where x, is a dimensionless parameter defined in
Sec. III. Although the screening terms are all
smaller than any of the ladder terms,

a,/D. = o. lion, (k,'/q') [I+o(k,'/q')],
if we include only the direct screening term Fig.
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FIG. 1. For I q I )k+, first- and second-order ladder
contributions (a) and (b) are the same order in kz/q.
Second-order direct screening term (c) is order kz/q
smaller than (a) or (b), but (c) plus the exchange screen-
ing term (d) is order kz/q smaller than (a) or (b). (e)
plus (f), and (g) plus (h) exhibit similar leading-order
cancellations between direct and exchange self-energy
diagrams, and direct and exchange vertex-correction
diagrams, respectively.

1(c), we will still overestimate the effect of screen-
ing. Adding the exchange term, we find in this case

I

(D, +D„)/D, =0.880r, (g/q ) [1+O(k~/q ) ], (8)

so that there is a cancellation of direct and ex-
change screening terms to order kz/q . This is
quite different from Hubbard's exchange cancella-
tion. Here there is complete cancellation in lead-
ing order, since the screening electron must
have its spin parallel to one of the scattered
electrons.

To summarize, since two close electrons will
strongly repel other electrons, and since the two
electrons mill tend to polarize the surrounding
medium symmetrically, screening of their interac-
tion at short distance should not be very important;
however, retaining only the direct screening terms
will still overestimate the effect of screening.
Since we intend to account for long-wavelength
screening by inserting our effective interaction for
short distances into an RPA-type series, we can-
not include screening terms in the short-range part
of the interaction without double counting. For
these reasons, we restrict the short-range part of
our effective interaction to be the ladder sum of
unscreened Coulomb interactions.

We can also use these arguments to show that the
direct self-energy diagrams such as Fig. 1(e)
overestimate self-energy effects if we do not also
include the self-energy exchange diagram Fig. 1(f).
Similarly, the direct vertex correction diagram
Fig. 1(g) is partly cancelled by its exchange dia-
gram Fig. 1(h).

We now construct the short-range part of our
two-body effective interaction from the ladder sum
of Coulomb interactions. For a particular pair of
electrons, the sum of all the ladder terms is the
solution of the Lippmann-Schwinger integral equa-
tion for the effective electron-electron interaction

88 1

4' 2

(&1
i
5

~
g) = lim„.p I&i

—Q I +P
(8)

is the unscreened Coulomb interaction, &)p) is the
single-particle energy for a propagator of momen-
tum p, I koK) is an unexcited two-particle state
with the restrictions 0(I ~K+kol( k&, and

~) K/2+ko) + )K/2"ko I

is the energy of this initial state.

where I&lIK) represents a two-particle plane wave
with relative momentum q and center-of-mass mo-
mentum K,

Since we are neglecting all greater than tmo-
body correlations, the wave functions of all the
electrons other than the correlated pair are unper-
turbed. Because of this, antisymmetrizing the
correlated-electron wave functions with the wave
functions of the other electrons is equivalent to
projecting out from the integral those intermediate
states for which I & K+pl & k+. This point is dis-
cussed more fully in a subsequent payer. This
gives us the Bethe-Goldstone integral equation
for the effective interaction t„between any two
electrons from the antisymmetrized many-elec-
tron ground state:

(10)
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e&,-i =-,'
I p I'. (i2)

The energy denominator in the integral equation
then reduces to (ko -p ), and the only remaining K
dependence in the equation is in the Pauli operator
Q.

We approximated Q by its angle average Q,
~~

which is defined by the expression

so that

Q(p, K, k~) =

&f Cf +4K &kg

xf q-2K&kz

otherwise . (14)

We note that Q and Q exclude the same volume in
phase space, and they are identical except in the
region

(kr+-,'K) &q &k~ ——,'K .
For K=O, Q and Q are identical. Since our calcu-
lated t„was found to be only a slowly varying func-
tion of K for 0& l —,'Kl & k~, our approximation is
reasonable.

Using Q, t„becomes a function of only the mag-
nitude of K, and we can expand t„ in partial waves,

where

Q(p, K, k, )=e(llK+pl -k, ) e(llK-p -k„),
~

~

~

1 if k&0
e(k) =

0 otherwise .
Because the electron pair polarizes the medium,

the positive background and the electron medium
will not exactly cancel in the vicinity of the pair.
To check how this might affect our results, we ap-
proximated this polarization field by a constant at-
tractive potential v„&. Since the polarization is ap-
proximately symmetric, the field should act equal-
ly on both electrons, and we can include it in the
single-particle energies E~,"~ - e~,-~+ v„&. Our re-
sults turned out to be insensitive to v„& for —k~
~ v„, & 0, and so we neglected this effect. We have
argued that because of exchange cancellations, in-
cluding only direct self-energy insertions overes-
timates their importance. However, in those
self-energy terms Z(p, e;) for which Ip I &k„ex-
change is negligible. We may approximate the
full self-energy contribution in this region by the
RPA term Za'v'„(p, e,"), which has been evaluated by
Hedin. Adding this to e", did not appreciably alter
our results, so we concluded that it is a good ap-
proximation to take the single-particle energy e ~",

~

to be just the kinetic energy

&ql t;,(E) lk, & =4.Z (21+ 1)
L=0

x&ql t, (E)l ko& P, (q ~ ko) .
We can also expand v,

(ql. l
k, ) =4.+(2t. i)

l =0
A

x &q I v,
I

ko & P, (q . ko),

where

f)~0 ~ 0 ~ 0

In the above equations I', and Q, are the Legendre
functions of the first and second kind.

The integral equation decouples into equations
for each partial wave,

«I "~(E="')lko&=«I ~ilko&+-

Q(Pit ~1 E) (
I
tK(E)

I
k

0

Each of these equations is well behaved, and we
can solve them numerically on a suitable mesh of
points.

B. Interpolation procedure

For Iql «k+, we found that because of the Pauli
operator (ql t«(ko) Iko) tends to (ql elko&. When

I ql » k+, the partial-wave series converged rapid-
ly. In this limit, we found that &ql t„(ko) I ko& was
only a slowly varying function of K and k0 for
0+ l —,'Kl, lkol k~, so that it is approximately a
local function. We averaged over K and k0 to ob-
tain the local function t,',"(q),

toe 1 d k0 dKt„"(q) N„(2 )'v(2v)o [1 —Q(ko, K, k~)]

x &q+ ko
I
tee(E = ko) I

ko & ~

where

d'ko
Nav=

(2 )o (2 )o Ii Q(kos Ki kr) J ' (20)

For small I ql, t,',"(q) becomes just e(q), and for
large l q I it provides a good local approximation for
&q+ ko I t,",(ko) I ko).

The following effective interaction interpolates
smoothly between (q+kol t„(ko)I ko& for large I qI
and the RPA effective interaction for small l ql

(Fig. 2),
K

&q+k, ; +El t,' Iko E)- q+ ' " ' (21)cq)co
where

e(q, ~) = 1 —t,',-(q)flo(q, (o) . (22)

For large I ql, flo(q, ~) vanishes~o as I ql, so that
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FIG. 2. Typical contribution to the effective electron—
electron interaction t,«. t« is the effective interaction
for short distances, t~" is a local approximat'on to I;„.
Each polarization bubble represents a I,indhard function
llo (q, LV},

permit the inclusion of these additional terms.
However, calculations by Du Bois and Kivelson~
and Beeferman and Ehrenreich indicate that these
corrections are too small by an order of magnitude
to account for the discrepancy between the HPA
and experimental results for plasmon damping and
optical properties of metals. This suggests that
for real metals the dominant correction terms to
the RPA in the small-j q j limit arise from effects
of the metallic lattice rather than from perturba-
tion corrections within the framew'ork of the elec-
tron-gas model.

C. Response function

For small jqj,
(q+k,

l
t~, (u', )I k())- v(q)

f.'."(q)- ~(q),

(23) The density-density response function ){(q„(I) ob
tained using the effective interaction defined in Eq.
(21) is

x(4 e')=&0(i, e')+ f&'&J(2 )') (d'a, /(2w)']

so

(q+k(),' co+I()l t,{~Iko, 0()&

- {)(q)/[I —{)(q)IIO(q, (o)],

){Go(k{)Go(kg + q) Go(kg) Go(kq —q)

&&(q+k; q'+El f.'„(E)lk;E), (25)

which is just the RPA interaction.
In the small-I pl region, the function &(q, (d) de-

fined in Eq. (22) does not include the leading-order
corrections to the Llndhard function II()(q (0) cor-
responding to self-energy insertions and dynamic-
vertex correction terms inside the particle-hole
polarization bubble. The self -energy insertions
would take into account the polarization of the me-
dium causedby the electron and the hole, while the
vertex corrections would treat the mutual scatter-
int of the electron-hole pair. Our formalism would

I

&K, Ik ql le'""'&=«, Ik+ql IK, k&.

I, = ,'SC+I; I,-= ,'Z u; E-=u', -+u,'. (26)

In the small-I ql limit ){(q, q ) reduces to the RPA
expression

lim )((q, (I ) =II,(q, q )+Io - 0 llo(q q')~(q)
l{1I 0 +q. 0 49

D. Correlation function

We define the instantaneous two-body correlated
wave function to be (Fig. 3)

dg
G, (~,)G,(a, +,)G,(~,)G,(I, -q) (k+ ql t„(E)I k)

2m q, q'
(2S)

with)), „ka, and E defined in Eq. (26). This wave function reduces to familiar forms in the large- and
small- [q~ limits. For large i@i, Ig& is the correlated wave function for a ladder sum of Coulomo inter-
actions.

(29)»m &K, k+ql y(" "') =(k+ql & 'f,',(E= —,
" a')lk&,

I tl I"~

while for small I q l, upon averaging I p& over k and K, we get back the correlated wave function for ItpA,

(){,)) 3 I (fq p 0 (k+ql{)lk&»m &K~ k+ql)I) ) f) (q)+ ~, 2 110(q& (I ) i () (30
p '{2v) 2Ã g( o p v EB,PA i' (I

Here p is the average density and &»„ the BPA dielectric function.
Let us calculate the spatial wave function g(y) for small &Fr «1. From this we can determine the short-

range pair-correlation function g(r):
~g dk0~(Ic,k)

(P f O)
ilt x 1

27
d {l ({(Iyq) z' (k~+ql flag(E)1 k)
(»)' ' ~(q, q')

I I I 1
1 2 0 ~ 1 ~ 2 0 0 ~ 1~ 0 ~ 1 ~ ~ 2 0 0k~-&~-'& -. jki+qj -&i-& + & —.ka-& —&-. jk -qj
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Defining q'=k+q, and carrying out the integrations over the energy variables,
~0 y8

y
'

( f=o)='
(2II)'

((l'it„(E=~K~+fI )Ik) O(i-,'K+(l'I -k„)0(l —,'K-(l'I —fI ) (,"I(
)q(l(l' —k. l, q'=-,'[q"+0'+R ((l'-&)]) q" —0' (32)

where I((,"I~ "'(r) is the contribution to p from the plasmon pole, z((l, qo) =0 at qo =&a," for I(l I &q, . ln the Ap-
pendix we estimate that If',"I~ "'(r) is negligible compared with the first two terms, and we do not consider it
further. The remaining expression does not change for small k~y if we replace & by 1, and the expression
for P(r) reduces to the contribution from a single ladder sum,

(33)qf2 $8

Once again approximating the Pauli operator Q by its angle average Q, and expanding both t„and the ex-
ponentials in partial graves, me get, after performing the angular integration q',

A A

(I
'"' " ' (r, f = 0) = Q (2l + l) i ' PI (k ~ r) g I'"' "(r),

y 'r'"I(r) j(=kr) —(2/II) Jt dq' q' j,(q'r)[(q'

fthm(E)

f
k)l(q'~ —lP)]q(q', Z, kr) . (35)

For small &zan, the partial-wave series converges
rapidly. The instantaneous pair-correlation func-
tion within our approximations is

r(r)=g Z Q I
&'"'"'(r, f=o) f', (36)

K

o indicating the relative spin of the pair, and g' the
average over the appropriate quantity,

0=- f-', Kf, fkf=-y„~=os, t~ .
This expression for g(r) is within the spirit of our
use of the Brueckner formalism with retarded inter-
actions. Certain processes which cannot be in-
cluded in the square of a correlated wave function
are neglected, In either short- or long-range limit,
the neglected terms are unimportant. Performing
the angular integration over k and K, and carrying
out the spin sum, me get finally

The different weighting for even and odd partial
@&aves is due to exchange. If we omit the sum over
splns and specify 0 = 04, we get the correlations
from the repulsion alone without exchange,

a (r) =2 2 2 (2f+ l)
f
t'r "(r) f'.

IKI

Let us now look at the region kzx» 1, to check
that with our effective interaction f„„g(r)does in-
deed give the BPA result in this limit. For kzx
»1, the exponential in the integrand &rill oscillate
destructively for large j q (, so we need only con-
sider the integrand in the region of small L q j where

&(l+k
f
f„(Z) fk&=e((l)+O(i),

f.' ((l) =~((l)+0(l),

& (2f l)
f

y(E, k&(r) f2

Thus for large r, our expression for g(r) reduces
to

g() g l "( l d ~II I(g, ;,)'-„, dl, dk, d q
P +If(I(A& (2I() p II(gI&yg (2&) 2'' 2(I (2(I)

2

where p is the average density. Expanding the squared term, this becomes

d4p, d4y~ d4q (I(q)g(r) = i+ —, ', f, cos(q. r)
p I 0 I(a (2(I) Ii Italy(2v) J (2v) eamon(lt q )
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I d'k,
x[Gn(ki)Gn(k, qq)an(ka)ao(ka —q)]qQ —

a
(

—

)ai
(

—

)Sa

q e"""i""~"'" -(@
G (k )G (k +q)G (k )G (k -q)

2w 2n (2m)' &a@a(q~ q )
(41)

Thus our expression for the pair-correlation func-
tion at large separations reduces to the square of
the HPA wave function. The advantage of this ex-
pression over the more commonly used HPA pair-
correlation function, ~~

1 o 3gapg - 1 —
g ~ dg' dt's Q'

p 4m-

&aia ~q~~q

is that the former is explicitly non-negative. At
metallic densities, the HPA, terms are only dom-
inant for large separations where the pair-corre-
lation function is nearly unity. ' In this case we

may neglect the squared term in Eq. (41), and ex-
pressions (41) and (42) become identical.

We conclude that the effective electron-electron
interaction t,«which we have constructed does in-
deed interpolate between the HPA interaction at
large distances and the ladder sum of Coulomb
interactions at small distances.

III. RESULTS OF CALCULATION

v(q -it)= (44)

Such an approximation is of doubtful validity and
leads to the retention of only the 8-wave contribu-
tion to g(r). We find that our higher partial waves
give significant contributions to g(x) for small but
nonzero t. Our results do support Yasuhara s fur-
ther assumption that his neglect of the electron
starting momenta is a good approximation provided
~ is much less than the average electronic separa-
tion.

good agreement suggests that the STLS interaction
at short distances is closely related to the ladder
sum of unscreened Coulomb interactions. This is
reasonable, since STLS did in fact consider only
two-body correlations. In Figs. 5 we show g„(r)
and the long-range part of g„"(t'), and confirm that
the two functions agree at large distances.

Yasuharaii also calculated g„(r) for small x
from a ladder sum of bare Coulomb interactions.
However, he approximated the Coulomb interaction
by

A. Correlation function

Our calculated pair -correlation functions g,„(r)
and g„(r) are shown in Figs. 4 and 5 for different
electron densities, covering the range of densities
for valence electrons in the alkali metals. We

measure density in terms of the dimensionless pa-
rameter ~, which is the average electron spacing
in units of Bohr radii. We may express z, in terms
of the Fermi momentum 0&, and the Bohr radius

ao —-0. 52 A,

v'. = 9l«a', k,' . (43)

Comparing g„(r) with the corresponding quantity
computed by STLS, also shown in Fig. 4, we see
the agreement between the two for all metallic den-
sities and all separations is remarkable, recalling
that the two calculations are quite different. The
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FIG. 3. Matrix elements making up the two-body cor-
related wave-function (K, I k+q t

~

g'K ~"'), ki ——~~K+k

and k2= 2K-k.

2.0
I I

0 I.O 3.0
kFr

FIG, 4. Pair-correlation. function g(~) averaged over
spin for different densities. The solid line is g«(~) using
our effective interaction tef f It is abvays non-negative.
The broken line is g»(r) calculated by STLS.
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FIG. 6. Contributions to the pair-correlation function
for the ladder sum of any static interaction. . The wavy
line represents the complete ladder sum. The horizontal
straight line represents the square of the density opera-
tor. The sum of these four terms make up an absolute
square, g*g.

FIG. 5. Pair-correlation function g(r) for antiparal-
lel spin. This represents the correlations in the absence
of exchange. The solid line is gf$(~) using our effective
interaction teff The broken line is g»(x) in the RPA. rs

d(k, r) (k, ~)

B. Correlation energy

ticle from g„(r) using

E,. (~,) = 0 92/r, +.(4~/g)(S~/4)'"

Yasuhara~ has proposed the dielectric function

(q, (d) = 1 + v(q)II (q, (d)/[1 —4 (q)IIO(q, (d) ] (45)

for use at all values of l q! . The effective poten-
tial C (q) is adjusted away from the Coulomb poten-
tial v(q) until the resultant change in the ground-
state energy equals the binding energy calculated
from his ladder sum.

Bede and Carbotte used the ladder sum of static
RPA interactions to compute g„(r) for small r.
Our arguments in Sec. II suggest that retardation
effects from additional electrons should not be im-
portant, so it is reasonable to approximate screen-
ing by its static limit. The value g„(x) computed by
Hede and Carbotte differs from both ours and
Yasuhara's and this could suggest that screening
terms are important. We showed in Sec. II that
exchange cancellations were important for screen-
ing terms, but in the case of the static approxima-
tion the importance of exchange terms is not clear.
We find it extremely puzzling, however, that their
g„(r) becomes negative for small x at low densities
r, & 5, since it follows from the symmetry of the
diagrams summed, that the complete ladder sum
of any static interaction leads to a non-negative
pair-correlation function (Fig. 6).

We can compute the correlation energy per par-

TABLE I. Correlation energy per particle (eV).

Ts Present calc

—1.70
—1,25
—l. 01
—0. 85
—0.74

—1.69
—1,25
—l. 02
—0. 87
—0. 76

x[g,'„'(k/r) -g„r(k~v)]Ry, (46)

where g,'„'(k/x) is the value of g,„(k/r) for density
x, = X, and g„F(k/x) is the Hartree —Fock pair-cor-
relation function which is independent of A.:

RHF(k/&) = l —l [.[3/(k/ r)' ]
x [sink„r —k/x cosk/r ]) (47)

Knowing g,

'"„'(kryo)

for all densities X ~ x„we can
then evaluate E „(r,) directly.

Our computed values for E„„(x,) are shown in
Table I, together with the values from STLS. The
two are in close agreement.

C. Cohesive energy

These values of the correlation energy can be
used to predict the cohesive energies of the alkali
metals, following the procedure discussed by No-
zieres and Pines, and using their values for m«„
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4~ 2 t-l
x 1 — I,',"(q) — — II (q, ~ (q)) (48)

The small- Iq I limit of the Lindhard function

IIO(q, &u) is given by'

lim IIO(q, v) =3 z 2 1+.
5 q z +0(lq~ )

y,' lql' 3@'u~ Iql' - 4

3 5

(40)
We also need the small- Iq I limit of t",;(q). Since

(q+ko ~

t» (k~0) ~ ko) Is a slowly varying function of

ko and K for 0» —,'K, Ikl ~k&, we approximate

&,',"(q) = &q / t,', (0) /0)

TABLE II. Cohesive energy of alkali metals (kcal
mole ).

Metal

Na

Expt

—38.4
—25. 9
—21.5

Present calc

—35, 8
—23.4
—19.4

—36. 0
—23. 9
—19.9

and E„,. We must assume that the correlation en-
ergy per particle, E„, is not sensitive to the
form of the positive background. (Recall that the
electron-gas model uses a uniform positive back-
ground instead of a discrete array of positive ions. )
This is a reasonable assumption, since we find that
most of the contributions to E „occur when the
electrons are close to each other compared with
their average spacing. In alkali metals the average
electron spacing equals the ion-core spacing, so
while the electrons are strongly interacting with
each other they should remain in a nearly constant
potential from the lattice. In Sec. II, our results
were found to be insensitive to just such a constant
potential v„&. However, this approximation will
always underestimate E „to some extent, since
the additional polarization of the electrons by the
ions will increase the binding energy. Hence we
will also underestimate the cohesive energy.

The cohesive energies we calculated are shown
in Table II, together with the experimentally mea-
sured cohesive energies of three alkali metals, '
and also the cohesive energies calculated by STLS.
We use the customary units kcal mole '(= 0. 0433
eV particle ). Our calculated values are about
10%% less than the measured values. Part of this
difference is caused by our neglect of electron
polarization by the ions.

D. Plasma-dispersion curve

Our short-distance correlations also change the
plasma, -dispersion curve from its RPA form.
The plasmon frequency ~~(q) is the solution of the
equation'

4we
c(q, (u, (q)) =0=1—,Il()(q, (u~(q))

Then,

4re2

Iq pl2 p2 eet 1oc(q) +
e

ly l&~~

For l q l & k~, an iterative expansion of this equation
shows that each of the integrals goes as O((q/k~) )
to leading order, i. e. , independently of lql. Ac-
cordingly, we may expand the integral equation as

4me2 4ne2 1
& q(.o " I'q I )p-)& ~ I p I I p I

We rewrite this

2 l~l2
l l3

where

For lq ) =0, c(0, v&) = 0 still gives the RPA solution

k~~ 4pg2

3p' m

but for I ql 4 0 we get as a solution,

(up(q) =&a,'(1+ I+@(kTr/kF)'j

x q'/k'„p. },
where k» is the Thomas-Fermi wave number.

The quantity y contains all our information about
short-distance correlations. In the RPA,

t,',- (
~
q

~
) = n (q),

so that y =0, while in the Hubbard approximation
Our calculated values of y vary between

—0. 51 and —0. 58 over the density range 2& r, & 5,
and while our resultant dispersion curves differ
considerably from the HPA curves, they agree
closely with the curves from both the Hubbard ap-
proximation and from STLS. In Fig. 7 we show
our dispersion curves for r, =2, 3, and 4, and the
corresponding RPA curves. The difference be-
tween the curves represents the effect of short-
distance correlations. The experimental points
were deduced from data for aluminum, lithium,
and sodium. ' They lie between the two curves
but closer to the HPA curve. This could indicate
a breakdown in our calculations for the interme-

y= dk~x kryo k~r-1, p v =tee q

(53)
Then,

4~~2 g2
I q l2

lim a(q, &u) =1—
0 lql
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1 1 d go 2 dE{)
K 12ng~& d+ $ +s &'s (59)

and
Krree 2 2

where K""is the compressibility of the noninter-
acting gas and n= (4/9n)'~'

The first two terms correspond to the Hartree-
Fock expression, which predicts a negative com-
pressibility when x, & 6. In our calculation the
third term is small and negative, and the compres-
sibility becomes negative at an even higher density,
for r, &5. In Table III we show v""/g for our the-
ory, for STLS, and for Hartree-Fock. While it is
not possible to check calculated compressibilities
against experiment, the compressibility sum rule
does provide a consistency test for them. Within
our theory this sum rule requires that our com-
puted ratio g'"'/v be equal to

I+ y(k„/k )' (6I)

I.I 5

I .10

4Vq

OPp

l,05

0 0.2 0.4 0.6 q/kF
0 02 0.4 0,6

0 0.2 0.4 0.6 0,8

FIG. 7. Plasma-dispersion curves for different val-
ues of ~$. Each curve ends when ~&(q) crosses the sin-
gle-particle excitation spectrum. The lower curves are
from our calculations, the higher curves from the RPA.
The experimental points are from data for Al, Li, and
Na (Ref. 25).

diate region, but it is also possible that the ion
lattice significantly affects the measured values,
indicating that the electron gas itseU is not an ade-
quate model for this property.

E. Compressibility

We can calculate the compressibility of the elec-
tron gas from the correlation energy per particle
[Eq. (46)] using the thermodynamic expression

d E
(56)d~

which relates the compressibility K to the total
ground state energy Eo. 0 is the volume per parti-
cle, Q=~ m. o. It follows that

TABLE III. Ratio of compressibilities K "'j~.

7$ Present calc.

0. 83
0. 64
0.45
0.25
0. 05

STLS

0. 83
0. 64
0.45
0. 25
0. 05

Hartree-Fock

0. 83
0, 67
0. 50
0. 34
0.17

In this paper we have developed a calculational
scheme which interpolates between the dominant
terms for the two-body effective interaction at
large and small separations. It is of considerable
pedagogical interest to correctly treat the short-
distance correlations in a pure electron gas satis-
factorily, but the results do not lead to many pre-
dictions which can be tested experimentally. Fur-
ther, such quantities as the compressibility or the
plasmon dispersion relation are sensitive to the
value of the pair-correlation function in the inter-
mediate separation region where we must rely on
a nonunique interpolation between our long- and
short-distance results. However, it is shown in a
subsequent paper that the annihilation rate of posi-
trons in an electron gas is sensitive to the short-
distance electron-electron correlations, ' and this
provides us with a test of the validity of our effec-
tive electron-electron interaction.

The agreement between our results and those of
STLS over a wide range of electron densities indi-
cates a close relation between the STLS self-con-
sistent approach and our diagrammatic method.
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where k»=4me k~/wl is the Thomas-Fermi wave
number. We find in our theory that this sum rule
is violated over the entire density range. This is
not very surprising since compressibility is a
quantity which is sensitive to the region between
the large and small separation limits, and it is
this region in which we use an interpolation pro-
cedure. STLS also violates this sum rule.
Vashishta and Singwi have extended STLS to in-
clude density derivatives of the pair-correlation
function. With these additional terms their theory
satisfies the compressibility sum rule well. In-
cluding such derivatives incorporates higher than
two-particle correlations in the short-distance ef-
fective interaction. We intend in subsequent paper
to include certain three-body terms in our effective
interaction. It can be shown that inclusion of such
terms must improve the agreement with the sum
rule.

IV. CONCLUDING REMARKS
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APPENMX: PLASMON CONTRIBUTION TO SHORT-RANGE
ELECTRON CORRELATIONS

We want to estimate the plasmon contribution to the electron-correlated wave function g'" "'(r, f = 0) for
key «1. The complete expression for P'"'"'(r, f = 0) is

fdic,
,

dk,
~

d q;&., -&.; lk+zit, ,'8,'l k)G
~& I I&

i

For l ql &q„e-'(q, qo) has a pole at q' = oI,.", and the plasmon contribution to g comes from the residue of this

pole. Defining the residue to be R(lql) and averaging over K, k, and o', the plasmon contribution for I =Ois

d'k
,', I o (k, ) Go (k, —q)(k+ q l

t,",
l
k ) l,o „„.

At metallic densities the momentum q„at which the
plasmon pole intersects with the single-particle
excitation spectrum, is such that q, /kz & 1. We

may then approximate (k+ q lt «, Ik) in the integrand
by n(lql), so that

lh) (lql).

k~ ~ p 4me2 2

lim (oA )
—= oIp=

Q
JPl Sz lq

lim lim e '(q, q')=
a -~o Nl-o 1 &4& q )

(dy

2 oIy(q oIp)

lt therefore follows

lim R(q) = o oIq,
l ql »0

(A10)

By definition

llm e (qqq )= II
o R(q

p q q

(A4)

4ne'
lim IIo(q, olf ) =
lql 0

(A11)

Since we want only an order-of-magnitude estimate
for g~g(o =0), we replace R(q) and Iio(q, &o&) by their
limits for jqt -0,

-1» 0

1 —II, (q, q')f,',"(q)

(
II l)

for lql/kg& 1

Also, "

(A5) dq 1 4me

2P' I-,l„(2II)' 2

Taking q, =0.47 Mr, k~" this reduces to

y, „(o = 0) = 8.2 && 10 '/o,"

(A12)

(A13)

I' ks~ i@i'
lim III, (q, q') =~ ~~ (,), ,
lql 0 VE

so that

(AV)
For metallic densities, o;~2, y„(o.=O) is much

smaller than the other correlation corrections to
the unperturbed wave function e'"'. Hence we are
justified in neglecting y„ for small z.
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