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Complete sets of elastic constants of P-brass of two compositions are given. The fourth-order elastic
constants are deduced from the temperature dependence of the second-order elastic constants. The
elastic constants are explainable in terms of a Born-Mayer-type core exchange interaction between
nearest and next-nearest neighbors. The next-nearest-neighbor contributions are greater than the
nearest-neighbor contributions for C111 and C1111 and provide stability for the small shear constant

(C 11 C 12)~2'

I. INTRODUCTION II. EXPERIMENTAL

The Cauchy relations for the six third-order
elastic constants (hereafter called TOEC) of "ubic
crystals are C», C,«and C», C,4, C„,. For
Cu, Ag, and Au, Hiki and Granato' found that (a)
the TOEC tended to fit the Cauchy relations better
than did the second-order elastic constants (SOEC),
and (b) that C»2 was of the order of ~ C»~ while

C+, was of the order of zero. Since relation (b)
follows for nearest-neighbor (nn) central-force
interactions for the fcc lattice they interpreted
their results to mean that the short-range exchange
interaction between closed ion cores predominates
for higher-order elastic constants.

For such materials (overlapping closed shells)
the dominant factor determining the pattern of re-
lations between the TOEC then becomes simply the
geometric structure of the crystal. If this is so,
then one would expect completely different patterns
for different structures. For example, nearest-
neighbor central-force interactions should give
equal contributions to all six of the TOEC for the
bcc and CsCl structure, and zero contributions to
all but C»~ for the Sc and NaCl structure. '

To test this hypothesis measurements were made
on P-brass with the CsCl structure. Two different
compositions within the narrow P range were used
to look also for the relative influence of changes
in conduction-electron densities.

The surprising result found is that all but C~~~
do indeed follow approximately the expected nn
relation, but that next-nearest neighbors (nnn)
(which for P-brass follow the NaCl arrangement)
contribute even more than do the nn contributions
to C», . The noncentral valence electronic effects
are found to play a minor role in the TOEC pattern.

Two sets of P-brass crystals in the form of 15
~ 16&&17-mm cubes were obtained. One set with
an alloy concentration of 48. 3 at. % zinc was pur-
chased from Monocrystals, Inc. of Cleveland, Ohio.
A second set with composition 44. 4 at. % zinc was
purchased from Aremco Products, Inc. of Briar-
cliff Manor, N. Y. The compositions of these crys-
tals were determined after the ultrasonic measure-
ments were finished by the Analytical Facilities
Laboratory of the Materials Research Laboratory
at Urbana, Illinois.

The SOEC were measured by the usual pulse-echo
technique. Details of the experimental techniques
as well as an extended discusssion and calculation
of the directional dependence of the mode Gruneisen
y's are given in the theses of Swartz and Bensch.
The results are given in Table I together with the
values obtained by McManus and Lazarus. The
values reported by McManus and Lazarus cor-
respond to 48-at. %-zinc and 50-at. %-zinc alloy
concentrations, respectively. The results are in
reasonable agreement.

The variation of the SOEC with temperature and
stress was measured by using the two-specimen
interferometric method developed by Hiki and
Granato. The coefficient of expansion used to
make the transit time and density corrections was
obtained from the data of Owen and Pickup. e The
results for the temperature coefficients are shown
in Table II. Values were obtained from the com-
binations of many measurements so that these tem-
perature coefficients are overdetermined. The
tabulated values are given by aleast-squares analy-
sis.

A representative plot of change in natural veloc-
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TABLE I. Second-order adiabatic elastic constants of P-brass (units of 10' dyn/cm ).

12

Cii

l.258 + (0. 005)
1.241 + (0. 002)
1.24
l.291

C' = 2(Cii —Ci2)

0. 0855 + (0. 009)
0. 0995 + (0. 003)
0. 079
0. 097

C44

0. 810+ (0. 004)
0. 809 + (0. 001)
0. 795
0.824

Composition

44. 3 at. % Zn
48. 3 at. % Zn

McManus (Ref. 6) 48 at. % Zn
Lazarus (Ref. 7) -50 at. % Zn

III. DISCUSSION

A. Short-range central potential

At first a simplified discussion will be given as-
suming that the third-order constants are dominated

by a short-range closed-shell exchange interaction

TABLE II. Temperature derivatives of SOEC (adiabatic)
(units of 10 dyn/cm 'C).

dCii
dT

d, C'

dT
dC44

dT
dB~

dT Composition

ity versus stress for uniaxial compression is shown
in Fig. 1. The numbers on the curves correspond
to the equations developed by Thurston and Brug-
ger, which relate the measured stress change of
natural velocity to the TOEC.

Since the measurements overdetermined the
TOEC, a least-squares program was adopted for
the evaluation of these constants. In the evaluation
of the results for the 48. 3-at. %-zinc alloy the data
for nine uniaxial compression measurements were
given weighting equal to the data for five hydro-
static stress measurements. This was done be-
cause the scatter in the data for both uniaxial and

hydrostatic results was about the same. In the
evaluation of the results for the 44. 3-at. %-zinc
alloy, a weighting factor of 10 for the hydrostatic
versus uniaxial data was adopted for the least-
squares program since the scatter of these mea-
surements was greater for the uniaxial measure-
ments. The results of both sets of measurements
are shown in Table III. The least-squares "error"
that is quoted indicates the precision of the results,
but does not take into account the possible system-
atic errors.

The hydrostatic-pressure derivatives of the SOEC
determined from the five hydrostatic-stress mea-
surements are tabulated in Table IV, where they
may also be compared with earlier values given
by Lazarus7 for a composition of about 50 at. % Zn.
There is approximate agreement. The source of
the discrepancy between the values for the three
compositions is not known, but it does not appear
to be systematic with composition.

of the Born-Mayer type. This will be found to give
a fair account of the observed TOEC with a poten-
tial which is rather close to that derived for Cu
under similar approximations. A more complicated
potential is tnen introduced to take account of con-
duction-electron effects, including Coulomb,
Fermi, exchange, and correlation but neglecting
band-structure effects. The electronic effects tend
to cancel each other out. This helps to explain the
relatively good account given by the exchange forces
alone, while also providing a basis for a lattice-
parameter calculation.

The major result found in these measurements
as given in Table III is that C», is about —12 and
all the other TOEC are about -4 in units of 10'
dyn/cm for both compositions. There are minor
variations in this pattern, both for a given speci-
men and between the two specimens. This can be
partly attributed to effects of conduction-electronic
contributions, but is probably mostly within the ex-
perimental error.

As was intimated in the Introduction above, the
repulsive exchange contribution to the TOEC from
nearest neighbors should be the same for all six
constants. The surprising result of the measure-
ments was that C», was much larger than the other
five constants. This suggests consideration of the
next-nearest-neighbor (repulsive excha. nge) con-
tribution to the TOEC. In P-brass the six next-
nearest neighbors are only 15% farther apart than
the eight nearest neighbors. This leads one to
suppose that an nnn exchange contribution might be
of considerable importance.

If the total energy per unit volume of a crystal
is expressed as a sum of an additive short-range
two-body central-force term due to the exchange
interaction between closed shells, U', and the en-
ergy due to all other interactions, U', then

U = U'+ U' = Q W(r) + U'(q;,.),
2Vo

where Vo is the atomic volume, li'(r) is the energy
per ion pair as a function of the ion-pair separation
r, the sum is taken over ion pairs, and g is the
usual Lagrangian strain. The elastic constants are
given by

—2. 34+ (0.24)
—2. 07 + (0.13)

0. 35 + (0.12)
0. 0S ~ (0.07)

—4. 12 + (0 ~ 12)
—3.60 + (0.22)

—2. 80
—2. 23

44, 3 at. % Zn
48. 3 at. % Zn,

en U
C 'f gk Emff ~ ~ ~

mn ~ ~ ~
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C1$ i

CI55

CI23

C4M

44. 3 at. % Zn. alloy

—12.21+ (o. 34)
—5.11+ (0.21)
—5.09 + (0.17)
—4.4o+ (o.64)
—4.60+ (O. 25)
-2.69 ~ (O. 77)

48. 3 at. /g Zn alloy

—12.52+ (O. 16)
-4.75+ (O. 13)
—3.96 + (0.10)
—4. 67 + (O. 15)
—3.85+ (O. 15)
—3.99 + (0.16)

0
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FIG. 2. Hatio of the next-nearest-neighbor to the
nearest-neighbor contribution to Cff, Cfff, and Cf f f f for
P-brass as a function of the Born-Mayer hardness pa-
rameter B.

Cf»= —C„,+ 2 +4&+9 3 B 8
~o

where

4
(9+-,B+~VB ) with Vo=3~3-'o.p AB 4 4 ~ 2 ~ 3

y

(9)

where A is the energy per ion pair, 8 is a, hardness
parameter, and ro=(r" v3) a, is the equilibrium nn

distance, and that (ii) the same potential holds for
the Cu-Cu, Cu-Zn, and Zn-Zn interactions. There
are then only two parameters introduced, A and 8,
which can be fitted to the two values found for the
third-order elastic constants. From this, the
fourth-order elastic constants a.re then determined,
which are compared later with those deduced from
the temperature dependence of the SOEC. The com-
parison is found to be close, justifying assumption
(ii) that all these interactions are comparable.
The exchange contributions to the TOEC then be-
come

larger than the nn contribution. Also, the relative
influence of the nnn contribution increases with the
order of the elastic constants.

The hardness parameter 8 obtained from the
ratio of C», to the average of the other five TOEC
is 11. If 8 is made larger and the value of Cf 11
is held fixed„ the value of C», becomes larger.
The value of 8 which gives C», equal to the largest
of the small TOEC (for the 48. 3-at. %%uo-Z nalloy) is
8 = 12.6. The value 8 = 11 is smaller than the value
of B=12.6 which was reported by Hiki, Thomas,
and Granato for Cu. This difference is small but
the impact on the value of C», is appreciable since
8 appears in the exponential function for the nnn
contribution. When the value of B=11 is inserted
into Eq. (9), the value of A obtained from the ex-
perimentally observed C», is A =0. 138 eV/(ion
pair).

In a cubic crystal there are eleven nonzero
fourth-order elastic constants. '1 For only nn and
nnn central-force interactions, there are then only
two "independent" fourth-order elastic constants:

1111, 1112 —C1122 1155 1266 = C4444 = 1f23 — 11

= C1255 = C1456 —C1455 = ~ 1 ffl

When the formalism for calculation of the TOEC
from the exchange-interaction contribution is ex-
tended to fourth-order elastic constants, one ob-
tains

C„„=(AB/V,) [( o+—'o B+~B'+~4B')

+(10Ws+20B+~ /3B'+~QB') e '""j
Ci»i ——(AB/Vo) (av+avB+27B +aiB ).
For the values of & and & determined from the
TOEC in Eqs. (12), the fourth-order constants be-
come Ciiii —-150&& 10 dyn/cm~ and C»ii —21K 10
dyn/cm. These are next compared with values
deduced from the temperature dependence of the
SOE C.

Using Brugger's formulation, Hiki, Thomas, and
Granato' have developed an expression for the
temperature derivatives of the isothermal SOEC
at constant volume in terms of the tensor Gruneisen
parameter and the second-, third-, and fourth-order
elastic constants. The calculation gives

Only C», has contributions from the nnn. In
order to see what effect this nnn interaction has on

Cff„ the ratio given by

Ciii 9~3+ 18B+4~3B o i5ge (lo)
Ciii 2+2B+(2/3)B

is plotted in Fig. 2. The corresponding ratios for
the second- and fourth-order elastic constants are
also shown in Fig. 2. One can see that, for rea-
sonable values of B (10=B=15), the nnn contribu-
tion to C,« is quite appreciable and, in fact, is

where

eB6$
eT

= ~p . eg.V j

eB
2 OB 6& &m&n rCe By(mn

~6/

Here pp is the density of the crystal, k is Boltz-
mann's constant, y,- is the mode Gruneisen param-
eter, N& is the propagation direction, U, is the
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polarization, W& is the mode velocity, and the sum-
mation is over aQ normal modes.

When the appropriate summations in Ejl. (13)
are carried out for SC jrj/8 T, &Crit/ST, and SC44/
eT', the equations can be solved fox the constants

The values obtained are C»»=156
&&10'a dyn/orna and Cn»it=34&&10 dyn/cm . Since
thexe are three independent SGEC temperature
coefficients the two fourth-order constants should
have been overdetermined. It turns out that the
difference between sC«/sT and the terms not in-
volving the fourth-order constants -on the right-hand
side of Etl. (13) is small, so that variations in
these two factors lead to rather large variations
in the derived fourth-order constants. However,
the results obtained for the values of C»» and C»»
from sC„/sT and sCjs/sT when substituted into
the sC«/8T relationship give consistent results
within experimental error.

The values of the fourth-order elastic constants
deduced from the experimental temperature depen-
dence of the SGEC are in excellent agreement with
those calculated using the Born-Mayer parameters
deduced by fitting the TQEC. This would not be so
if, for example, the Zn-Zn and Cu-Cu interactions
were greatly different from the Cu-Zn interactions,
and the agreement justifies the simplifying assump-
tion used here in obtaining the Born-Mayer param-
eters. It should be noted that the influence of the
nnn interactions is even mox'e pronounced in fourth
order than in third oxder. The strong influence of
nnn interactions is accounted for by the fact that
the nnn atoms are only 15% father away than the nn
atoms and a longitudinal displacement of atoms in
a (100) direction forces the nnn atoms into direct

contact. It thus appears that the major features
of the third- and fourth-order constants can be

simply understood in terms of only two Born-Mayer
paramete x's.

The Born-Mayer parameters derived above con-
trast strongly with those used by Gilat and Dolling'
in fitting their neutron-scattering measurements.
Their hardness parameter 8 for the nearest-
neighbor interaction is 29. 3, or almost three times
larger than that found here. There is no way to
obtain the observed pattern of third- and fourth-
order elastic constants found here with this value
of B. Also, they report a large difference between
the second-nearest-neighbor Cu-Cu and Zn-Zn
forces.

Using the same potential, the second-order
elastic constants can be calculated as well. These
are given, together with the third- and fourth-order
elastic constants, in the second column of Table
V, The experimental values are given in the last
column. The computed closed-shell overlap con-
tributions C give a remarkably good fjt (wlthljl
about 30%) to the second-order constants as well.

B. Long-range contributions

The agreement found for the elastic constants
using only a two-parameter short-range central
force encourages us to consider longer-range
forces to (a) test the assumption made that short-
range forces dominate the higher-order elastic
constants, (b) provide for lattice stability and cal-
culate a lattice parameter, and (c) see if conduc-
tion-electron effects account for the remaining
small differences between the two alloy composi-
tions. This can be done simply with a free-electron

TABLE V. Contributions to the second-, third-, and fourth-order elastic constants of P-brass in units
of 10' dyn/cm . The ion-core overlap contribution (C'} is fitted with the Born-Mayer parameters of 8
=11 and A =0.138 eV. Next-nearest-neighbor ion-core overlap effects contribute to C&&, C&&&, and C&&&&,

but not to the remaining constants. The electrostatic (C"), Fermi (C"}, and exchange (C") contributions
are computed using Z&(Cu) =1 and Z&(Zn) =2. The values in parentheses are for effective charges of 66%.
For C"g, the average of the results in Table III are listed For C~.s, the smail correlation contributions
given in the text have been included.

C)2
C44

Cfi1
C112

Cis5
C)23

C4s6

1,572
1.020
1.020

—12.52
—4.42
—4.42
—4, 42
—4.42
—4. 42

Ces

—1.vos(- o. v44)
—0.486 (- 0.212)
—o.486(- o.212)

5. 1e{2.25)
1.69(O. V4)

1.e9(o. v4)
—O. 95(- O. 41)
—O. 95(- O. 41)
-0.95(-0.41)

1.vvo(o. 885)
O. 443 {O.222)
o. e64(o. 332)

—S.26(-4. 13)
—1.18(—O. 59}
—1.vv(- o. 89)
—o. 3o(- o. 15)
—O. 44(—O. 22)
—o. ee(—o. 33)

—o. vve(- o.446)
—o. 1o9(-o. oe2}
—0.328(- 0.189)

3.32(1.91)
0.26(0. 15)
o. vv(o. 44)
0. 04(0, 02)
0.11(0.06)
O. 33(O. 19)

Ctot

O. SO2 (1.211)
o. se5(o. 965)
O. 844(0. 925)

—12.3(-12.49)
—3.65(- 4.12)
—3.V3(-4.13)
—5.63{-4. 9e)
—5.VO(-4. 99)
—5.vo(-4. 9v)

Cexyt

l.24
1.04
0.81

—12.4
—4, 9
—4, 5
—4.5
—4.2

e3~ 3

0
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model.
We then approximate U' in Eg. (1) by

Ue Ues Ute

where U" is the electrostatic and U ' is the free-
electron energy.

The electrostatic energy for a cubic metal with
a P-brass structure may be written as a linear
contribution of a term for the CsC1 structure and
one for a bcc structure:

I

U '= — — + —0. 115+0.0311n —' no,2m 4m 2ao
' '

ao

(16)
where k~ is the Fermi wave vector, ao the radius
of the first Bohr orbit of hydrogen, r, the "radius"
of the ion, and no the density of electrons, i.e. ,
n~=(z„+Ze)/a'. Each of these terms can be treated
as being volume dependent in the formulation of the
Brugger elastic constants and expressed in the
form

U=I' v", (1.7)

where v = V/Vo and Vo is the equilibrium volume.
Using Eg. (16), one obtains P = 0. 1596x 10' (Z„
+Zs) ~~ dyn/cma, nr= ——,', P"= —0, 2275x10'~(Z„
+Zs) dyn/cm, n"= 3, P™=—0—.226x10 (Z„
+Zs) dyn/cm, and n '= —0. 117.

With these values, the elastic constants calcul-
ted by using the results given in Table I of Suzuki
et ai. "for Z„=1, Z~ =2 are given in Table V. The
correlation contributions for C», C», C«are
—0.056, -0.003, and -0.026, respectively, in
units of 10+ dyn/cm2, and have been omitted as
separate entries in the table, but have been in-
cluded in the total (C"~).

The free-electron contributions tend to cancel
the electrostatic contributions. This explains the
remarkable agreement obtained earlier using only
the short-range forces. A similar cancellation was
found to occur for copper and silver by Thomas, '

U-=-. U"'(z„+z,)'+-,' U'"'(z„- z,)', (15)

where U"" and Uc'c' are the electrostatic energies
per unit volume for the body-centered (metallic)
and cesium-chloride structure, Z~ is the effective
charge of the copper ions, and Z~ is the effective
charge of the zinc ions. Using the tabulated values
given by Fuller and Naimon with the observed
lattice constant of a=2. 94 A, the elastic constants
given in Table V are obtained for Z~=1 and Z~ =2.
These are not small compared to the closed-shell
short-range tern's for second order, but tend to
become relatively smaller for higher order.

The free-electron contributions are treated as in
the work of Suzuki et al. " Thus we have terms
in the energy per unit volume as shown below:

who included band-structure effects, but calculated
Fuchs rather than Brugger elastic constants de-
fined by Eq. (2). "'"

The changes resulting from the inclusion of the
long-range forces with Z„(Cu) =1 and Zs(Zn) =2
do not improve the over-all agreement between the
calculated (C"') and the experimental (C'*") elastic
constants. More important, equilibrium (dU/dv
= 0) is not obtained at the observed lattice constant.
If it is supposed that the conduction-electronic
charge is not uniformly distributed, so that a part
of the charge effectively shields the ion cores, then
one may introduce a parameter f giving the frac-
tion of the charge which is uniformly distributed.
The value which gives equilibrium at the observed
lattice spacing using Egs. (15) and (17) is f= 0.66.
With this value of f, the conduction-electron effects
are reduced and are shown in parentheses in Table
V. For this choice of f, the calculated elastic con-
stants of all orders are in good agreement with the
experimental ones. It is to be noted that only three
parameters (A, B, and f) have been used to fit 12
constants (the lattice parameter, three second-order
constants, six third-order constants, and two
fourth-order constants). For f= 0. 66, the contribu-
tions to the energy O', U", U, U", and U~' are
0. 079, —1.168, 0. 498, —0. 566, and —0.448, re-
spectively, in units of 10"erg/cm' for a total
binding energy of —1.605 x 10' erg/cm', or —12.7

eV/ion.
The volume-dependent terms in the free-electron

approximation are insufficient to provide the ob-
served Cauchy-relation failure (C,2

—C«) in second
order. Further noncentral terms are needed,
which may be supposed to lie in the neglected band-
structure effects. The nnn closed-shell overlap
term plays a strong role in stabilizing the small
shear constant C'=~(C« —C,2) as anticipated by
McManus. The variations found between the five
smaller third-order elastic constants do not cor-
relate with the calculated conduction-electron ef-
fects. However, systematic errors in these results
may be of the same order as the variations, and
more accurate results would be needed to assess
the influence of band-structure effects on the third-
order elastic constants.

IV. SUMMARY

The pattern found for the third-order elastic con-
stants of P-brass can be explained by assuming
short-range central nearest- and next-nearest-
neighbor forces. Using the same assumptions,
the temperature dependence of the second-order
elastic constants can be analyzed to obtain the
fourth-order elastic constants. The resulting fit
to the six third-order and 11 fourth-order constants
then implies that the Cu-Cu, Cu-Zn, and Zn-Zn
interactions are approximately the same, so that
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only a two-parameter Born-Mayer potential is
needed. The resulting hardness parameter 8 of
j.l i.s in fair agreement with the value of 3.2. 6 found

by Hiki and Granato for the Cu-Cu interaction by
analyzing the third- and fourth-order elastic con-
stants of Cu, but is in disagreement withthe results
found by Qilat and Dolling in analyzing their neu-
tron-scattering 1esults 1n p-bl Rss.

The next-nearest-neighbor effects are found to
be larger than the nearest-neighbor effects for
Ciii Rnd Ciiii This 18 becRuse longltudlnRl dl8
placements along the cubic axes displace next-
nearest-neighbor atoms, which are separated only
15% more than are nearest neighbors, directly
along a line between the next-nearest-neighbor
atoms.

Long-range conduction-electron effects calcu-
lated for S(Cu) = 1 and Z(Zn) = 2 do not account for

the observed lattice parameter and do not improve
the fit to the elastic constants. If it is supposed
that a part of the charge effectively shieMs the ion
cores, then the effective charge (about two-thirds)
required to give the observed lattice parameter
also improves the agreement between the calculated
and observed SGEC, while having relatively little
effect on the TGEC,

The principal result obtained in the analysis is
that next-nearest-neighbor interactions dominate
the nonbnear elastic behavior, and also provide
stabiiity of the 1attice for the C' = 2 (C&& —C&z)-type
shears.
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