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The Hohenberg-Kohn theorem is extended to the case that the external potential is nonlocal. It is shown that,
in this more general case, a nondegenerate ground-state wave function is a universal functional of the one-
particle density kernel u(x,x’), but probably not of the particle density n(?) = ZS}L(;S,?S). The variational
equations for the local and nonlocal cases are compared. The former must be replaced by a variational
equation for an equivalent system of noninteracting particles, following a prescription of Kohn and Sham, in
order to obtain a Schrddinger-like form, and contains only local potentials. The latter may be obtained
directly in Schrodinger-like form, but the exchange-correlation potential is nonlocal. If the nonlocal pseudo-
Hamiltonian exists [i.e., if the functional derivative 8 E/du(x,x') exists for a nondegenerate ground-state
density kernel], then the eigenfunctions of the pseudo-Hamiltonian are natural spin orbitals, and all partially
occupied orbitals (0 < {¢;|ul¢;) < 1) belong to the same degenerate eigenvalue of the pseudo-Hamiltonian.
Finally, it is shown, as a corollary of Coleman’s theorem for N-representable density kernels, that any finite
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non-negative differentiable function is an N-representable particle density.

I. INTRODUCTION

Hohenberg and Kohn (HK) proved a remarkable
theorem which states that the ground-state wave
function of a many-particle system, if nondegen-
erate, is a unique functional of the particle den-
sity.® This theorem implies the existence of 2
universal energy functional of the external poten-
tial and particle density which is minimum for the
true particle density, so that the true ground-state
energy and particle density may be determined by
application of a variational principle involving the
particle density alone. The original proof was for
a local external potential: v(x,x')=06(x —x")v(x).

In order to apply the HK theorem, one must be
able to construct the universal functional. It is
accurately known for the limiting case of a uniform
high-density electron gas. 2 An approximate func-
tional form for a slowly varying inhomogeneous
electron gas has been derived, 1*** but serious
questions have been raised regarding the validity
of the inhomogeneous terms in view of the fact that
the density-gradient expansion near a nucleus,
where the density gradient is very high, can be
shown to be a divergent series which must be sum-
med to infinite order.® Local-density theories
based on the HK theorem have been applied to
atoms® and to molecules” in spite of these trouble-
some questions. The results have been surprising-
ly good for many applications in view of the fact
that the electron densities in atoms and molecules
are neither high (except near the nucleus) nor
nearly homogeneous, although significant discrep-
ancies have been noted.® However, one would,
where possible, prefer to apply the theory to near-
ly homogeneous systems so that the functional ex-
pression obtained by using a density-gradient ex-
pansion could more reasonably be expected to have
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some still-to-be-discovered justification as an
asymptotic expansion.

In all real molecules and solids the external po-
tential consists of one or more nuclei which pro-
duce a very inhomogeneous electron-density dis-
tribution. In many problems one is interested only
in the valence electrons, which have a more nearly
uniform density, expecially if one uses a pseudo-
potential to smooth out the density in the core re-
gion. However, if the problem is formulated in
terms of the valence electrons alone, treating the
nuclei and core electrons as fixed external poten-
tial sources, one obtains a nonlocal external po-
tential, It is, therefore, of some interest to in-
vestigate the generalization of the HK theorem to
nonlocal potentials.

In order to follow the logic of the HK theorem
and its extension, one must distinguish between
various domains in the functional spaces of one-
particle reduced density kernels (v, x’) and par-
ticle-density distributions n(¥). Let

Dy e vy, w4 = 2wy Wl -y W oo )

(1.1)
be the von Neumann N-particle statistical density
kernel, where ¥; are a complete set of orthonor-
mal N-particle wave functions and w; are non-neg-
ative real numbers, normalized so that

2w=1. (1.2)
The largest reduced-kernel domain of interest
herein is the ensemble N-representable domain
consisting of all one-particle kernels which can
be obtained from some N-particle kernel by the
contraction

u(x,x'):Nf*°-fD(x,x2°°-xN;x’,x2-°°xN)
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X dxgeecdxy , (1.3)

where x=(¥,s) and [dx =3, [dT. Density kernels

p(x, x’):Nfo 'of\:p‘(x’ Xp°° oxN)\I[*(x”xzu ° oxN)

Xdxze evdxy (1.4)
which can be obtained from pure N-particle states
comprise a subdomain of this ensemble kernel
domain, Unless otherwise noted, when we speak
of the density kernel we will mean the one-particle
reduced ensemble density kernel u.

The largest particle-density domain of interest
consists of all N-representable particle-density
distributions, i.e., densities which can be ob-
tained by the construction

n(®)=>" u(fs,Ts)

- -
=Z ceo [ D(rs, x50 X y; IS, 250 * * X y)
5 .

Xdxaeeedxy . (1.5)
One can show that the domain of densities which
are N-representable by pure states is the same
as the domain of densities which are N-repre-
sentable by ensembles, and, further, that any
non-negative differentiable function such that
In(¥)dT =N is an N-representable particle density.
(SeeSec. IV.) The mapping between N-represent-
able density kernels and N-representable particle
densities is many-one. The functions u(x, x’) or
n(F) must be N-representable in order to apply
the variational principle,

The smallest domains of interest are the ker-

- nels and densities which can be constructed from
nondegenerate ground states ¥§(xy, ..., x,) of
N-body systems with local external potentials.

The essential statement of the HK theorem in its
original form is that there is a one-one mapping
between this restricted class of N~body wave func-
tions and particle densities: ¥ge—n§. (The theorem
also extends this mapping to the external potential.
The extended mapping is one-one, aside from an
unimportant constant, but the one-one character of
the potential-wave-function mapping breaks down
as soon as spin-dependent potentials are allowed. 9
The mapping between external potentials and N-body
wave functions is unimportant for applications of
the theorem.) The existence of a one-one mapping
between density kernels and particle densities in
these restricted domains is an obvious corollary
of the HK theorem.

The intermediate domains of interest consist of
those kernels and densities which can be constructed
from nondegenerate ground states Wo(xy,...,%y)
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of N-body systems with local o7 nonlocal external
potentials. The extension of the HK theorem, re-
ported in Sec, II, consists in showing that there is
a one-one mapping between this less restricted
class of N-body wave functions and density kernels:
Yoo pg. This result, which uses the method of
proof devised by Hohenberg and Kohn for local po-
tentials, does not disprove the existence of a one-
one mapping between density kernels and particle
densities in the extended ground-state domains,
and I do not have an explicit example of a many-one
mapping between the kernels and densities of these
domains. But plausibility arguments may be given
which make it appear unlikely that the kernel-den-
sity mapping remains one-one for the extended
domains. We can, therefore, assert that, for a
nonlocal external potential, there is a universal
ground-state functional of the density kernel, but
the existence of a universal ground-state functional
of the particle density alone is unlikely,

A few of the consequences of the extended HK
theorem are explored in Sec. III. Some of the re-
sults are as expected: e.g., the variational equa-
tions for the nonlocal case can be expressed as
eigenvalue equations for the natural spin orbitals,
and the exchange-correlation potential in the pseu-
do-Hamiltonian is nonlocal. An unexpected result
is that all partially occupied eigenfunctions (i. e.,
all natural spin orbitals for which O0<{¢;iul¢;)
<1) belong to the same degenerate eigenvalue of
the pseudo-Hamiltonian. This paradoxical result
appears to be an inescapable consequence of the
extended HK theorem unless the universal func-
tional of the density kernel is so ill behaved that
the functional derivative with respect to the density
kernel does not exist, If so, then the usual pre-
scriptions for constructing approximate functional
forms for electronic structure calculations probably
cannot be used.

In applying the variational principle, one must
restrict the variations of the density kernel and
particle density so that both remain N-repre-
sentable. The necessary constraints for the den-
sity kernel may be obtained from a theorem due to
Coleman. '’ Von’Barth and Hedin have suggested,
as a working hypothesis, “that reasonably smooth
particle densities do not give an energy less than
the ground-state energy when used in the ground-
state functional”.® One can show that this hypothe-
sis is true, and that any non-negative differenti-
able function such that [#(r)dT=N is an N-repre-
sentable particle density. This result is estab-
lished in Sec. IV as a corollary of Coleman’s
theorem.

The discussion and derivations are presented
herein only for the case of fermions; however,
many of the results are equally applicable to bosons.
The significant difference is that, for bosons, the
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upper bound on the eigenvalues of the density kernel
p(x, x") becomes N rather than 1.

II. GENERALIZATION OF THE HK THEOREM TO
NONLOCAL EXTERNAL POTENTIALS

Consider a many-particle system characterized
by the Hamiltonian

H=T+V+U
=Zi:t(i)+Z‘:v(i)+-§u(i,j) (2.1)
with a total energy given by11
E{D,v}=(DH)y=(ut)+{pv)+({ou)), (2.2)

where D is the N-particle ensemble density kernel
defined by Egs. (1.1) and (1.2), u is the one-par-
ticle reduced ensemble density kernel defined by
Eq. (1.3), and
N
sz, x{x)= ()0 2.3)

is the two-particle reduced ensemble density ker-
nel. The curly brackets are used to denote a sin-
gle-valued functional dependence on the enclosed
quantity. The kinetic energy ¢ and the two-body
interaction » will always be the same, so that a
functional dependence on them need not be indicated.

We must restrict the external potential v(x, x’)
to that class of potentials for which E is real and
has a lower bound, but we do not require that it be
local. We will, further, restrict v to that class of
potentials for which the ground state ¥, is nonde-
generate, so that Dg= ¥y ¥§. (The subscript 0 will
be used for all quantities related to or derived
from the ground state.) With these restrictions,
Egs. (1.3) and (1. 5) establish functional relations
which may be written symbolically as

(2.4)

where the arrow indicates that the function at the
head is uniquely determined by the function at the
tail. The implication is that the relation may be
many-one or one-one, but not one-many, so that
we can, for example, write Do{v} or uo{Do}, but
not necessarily v{Do} or Dof uo}. It is perhaps
worth reminding ourselves that the restriction to
nondegenerate ground states is rather severe. It
excludes all paramagnetic, ferromagnetic, and
antiferromagnetic materials and most atoms.
The ensemble energy functional E =( DH), has
been used in Eq. (2.2) rather than the pure-state
energy functional E = (¥{H |¥) because the con-
straints that we shall need for applying the varia-
tional principle to reduced energy functionals are
known only for ensembles. One obtains the same
stationary values for unreduced ensemble or pure-
state energy functionals, but there are subtle dif-

V=Do= log=7g ,
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ferences in the application of the variational prin-
ciple, which will be relevant to the discussion in
Sec. III, so that it is worthwhile to digress briefly
in order to review the derivation of the stationary
conditions for an ensemble.

If we impose the constraints {¥; | ¥, )= (i|j)=0y,
and ¥, w;=1 by the method of Lagrangian multi-
pliers, and set w; = cos?6; in order to satisfy the
constraint 0<w; <1, then the stationary conditions
are that the quantity

8-8-3 ny (i (1-Zw)

must be stationary with respect to arbitrary inde-
pendent variations of ¥;, ¥f, and 6;, where A,
and M are Lagrangian multipliers,? This leads to
the variational equations

(2.5)

08 .
BTP?:W‘H‘I"_; ¥, 04=0, (2.6)
)
i:wi\pzy—z A ¥l=0, 2.7
oV, 7

and
28 _ in26, (B~ N)=0, (2.8)

90,

where E; = (i |H|%).
straint, we obtain

Using the orthonormality con-

Nyi=w; (G |H i) (2.9)

from Eq. (2.6). If this equality is used to elim-
inate A ;; from Eq. (2.6), then we obtain an iden-
tity. (Recall that the ¥; form a complete set, so
that 3,; ¥; ¥/=1I, where ] is the unit operator, )
Equation (2. 7) is also an identity, provided that the
equality

Nig=w;(i|H]j) (2.10)

is satisfied. Hence, Eqgs. (2.6) and (2. 7) reduce
to the single condition

(wy-w,)(i|H[j)=0. (2.11)

We now infer from Eq. (2. 8) that, for each and
every state, one of the following three conditions
must be satisfied: (i) w;=1 (6;=0); (ii) E;=\; or
(iii) w;=0 (6,=m/2). If (i) is true for any state,
then the constraint Jw,=1 implies that w,= 0 for
all other states and, since (i|H|j)=0 for j +#i from
Eq. (2.11), we must have

H\I’i—”—Ei‘I’i. (2.12)

If (ii) is satisfied, then all states for which w; #0
must belong to the same degenerate level, so that
Eq. (2.12) is still satisfied. Condition (iii) must
be satisfied for all other states.

It is of interest to note that we obtain the same
solution by eliminating all constraints except w;=0
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and requesting the stationary values of the nor-

malized energy expression
E=(DH)y/ (D) .

The conditions for the unrestricted stationary val-
ues are (setting w;=g%)

(2.13)

SE __wy —EU.)= '
59T = (D), HY,-E¥,;)=0, (2.14)
OF wW; ¥
L - = 1
oY, <D>N(\p,H E¥]))=0, (2.15)
8E 24, s

= E;~E(i|i))=0, 2.16
sa. " (py B EG) (2.16)

from which we infer that Eq. (2.12) must be satis-
fied and the coefficients w; must vanish for all but
one energy level,

Returning to the matter of the existence of func-
tional relations between density kernels and the
particle density, the HK theorem for a local exter-
nal potential states that, under the conditions noted
above, “...v(T)is (to within a constant) a unique
functional of #(r)...” [where v(T) and n(F) corre-
spond to v’(¥) and #4(f) in our notation].' This is
equivalent to stating that the many-one relations of
Eq. (2.4) are, in fact, one-one relations (provided
that we consider two potentials which differ only
by a constant as the same potential), i.e.,

V! e Do b1t (2.17)

where a prime is used to indicate a local potential
and all quantities derived therefrom. Note that as
long as we restrict ourselves to external potentials
with nondegenerate ground states (and ignore un-
important phase factors), this mapping is equiv-
alent to v/ e Uf < pf+— ng.

Von Barth and Hedin have shown that when the
external potential is allowed to be spin dependent
there are many external potentials, differing by
more than a constant, which can give the same
ground-state wave function.® An even wider class
of such potentials can be constructed when the po-
tential is nonlocal; hence, we cannot go beyond the
many-one relation v - Dy when spin-dependent or
nonlocal external potentials are allowed. This is,
however, of no consequence. The essential results
of the HK theorem hinge only on the existence of
the one-one relation Dj-ng, which permits us to
write the functional relation D§{xn}} and define a
universal functional E'{n}, v’ }=E{Di{nt}, v’ }.

{This is the functional E,[n] in the notation of Hohen-
berg and Kohn, )

Let us now consider how the generalization to a
nonlocal external potential affects the functional
relation between Dy and ny,. We may examine this
point by going through a slightly modified version
of the proof given by Hohenberg and Kohn.
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Let v* and v2 be two external potentials which
give two distinct nondegenerate ground states ¥
and W3 H' Ui=E} ¥} and H2¥3= E2¥2. The corre-
sponding reduced density kernels are u=N (Dp) -1
and ui=N(D%)y.1, where D§= ¥5¥it and Di= ¥ w3T,
We then have

Ey= (DyH' )y <E'= (DEH"), , (2.18)
Eg=(DiH?), <E?= (DsH?), , (2.19)
and
AE=(E*-E%)+ (E'-E}) >0, (2. 20)
so that
AE= (E*-Eg)+ (B - E?)
= (DyH? - H'))y + (DYH' - H?)),
=—{bubv)>0, (2.21)

where 8ug= ui— ui and dv=10%—v'. Written out
explicitly, the inequality is

(Guoév):fféuo(x, x")ov(x', x)dx'dx <0 . (2.22)

We cannot have duy=0 without violating the inequal-
ity; hence, if ¥j and ¥§ are distinct, p§ and uf
must also be distinct, and we can always write

Do‘—‘ Ko - (2. 23)

Equation (2. 23) establishes the existence of a
universal functional

E{po, v }=E{Do{ o, v }= (mov )+ F{uo},

where F{,} is a universal function of u, alone.
The domain of F{u }, as defined by Eq. (2. 24),
consists of those density kernels py which may be
constructed from nondegenerate ground-state wave
functions ¥, of N-particle systems in local or non-
local external potentials. We may extend this
domain as follows. Let [ | be the set of all N-
representable density kernels, and let [Du ] be a
set of N-particle density kernels which includes
the nondegenerate ground-state kernels Dy= ¥y ¥§
as a subset together with any additional N-particle
kernels which may be needed to permit a one-one
mapping between all members of the set [ ] and
all members of the set [D,]. The set [D,]is not
uniquely determined because one may construct
larger sets of N-particle kernels for which the
mapping between the N-particle and reduced one-
particle kernels is many-one, and it will be pos-
sible to find more than one subset of this larger
set which fits the above definition of [D, ], but for

(2. 24)

our purpose any one of these sets will do. This
extended definition permits us to write
E{p,0}=E{D {n}v}=(uo)+F{pn}, (2.25)

where p is now any N-representable density kernel.
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The external potential v is still restricted to po-

tentials for which the ground state is nondegenerate.

We may easily verify the inequality

E{po,v}<E{po+0u,v}

as a direct consequence of the quantum-mechanical
variational principle. The density kernel u, in
Eq. (2. 26) is the unique density kernel which corre-
sponds to the ground state ¥, associated with the
external potential v, while o+ du is any other
N-representable density kernel.

If the external potential is local, so that Eq.
(2. 22) reduces to

(2. 26)

(8ob0’ )= (onpov )= [oni(F) 0" (F)dF <0, (2.27)

then »y and #2 must be distinct if D5 and D2 are
distinct, and we may write

Dhyeenly . (2. 28)

The set [D§] of nondegenerate ground-state N-par-
ticle kernels for local potentials (which is a subset
of the set [ Dg] of nondegenerate ground-state N-
particle kernels for local or nonlocal potentials)
can be extended, by the same argument used above,
to a set [ D, ] of wave functions which may be placed
in one-one correspondence with the set [n ] of all
N-representable particle densities. We may then
define the universal functional

E'{n,v'}=E{D,{n},v'}=(wn)+F'{n}

on the domain of all N-representable particle den-
sities, and establish the inequality

E{nb,v'}<E'{nf+0n,0v"}

(2. 29)

(2. 30)

for the ground-state particle density n corre-
sponding to v/ and any N-representable particle
density n=nf+ dn. The domain of the external
potential v’/ is now restricted to local potentials
which give nondegenerate ground states. E’{n,v}
and F'{n} are the universal functions E,[# | and
F[n ] introduced by Hohenberg and Kohn.

We may gain a better understanding of the rela-
tion between the functionals F{u } and F’{n} by
replacing the density kernel u(x,x’) with a density
matrix p,,= u(x,, x,) defined on a uniformly dense
mesh of points: x,= (¥;,s)= (i, 5,4,0,i30,s), where
i, are integers, — o <i,<w, and § is an arbitrarily
small, positive real number. The index ¢ stands
for a triplet of integers, i=(i;,%,,43), and p=(,s).
Integrals become sums: [f(F)dT— AYf;, where
A=56% and derivatives become differences:
8f/ 82 = (fiyigig1 —fizinis)/8. We may recover the
exact expressions by going to the limit 6 -0, pro-
vided that the limit exists (which it must for any
properly defined quantity of physical significance).
The particle density corresponds to the diagonal
elements averaged over spin, n;= s, is= n(;i),
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in this discrete representation.

The discrete representation of the functional
F{u} may be written as F[ u,, ], where the brackets
indicate a functional dependence on all members
of the density-matrix array. The HK theorem for
local potentials implies that, for nondegenerate
ground states (and the extended domain of particle
densities obtained from the N-particle density
kernels D, defined above), there exists a unique
function

Moo= Bpal 7 ] (2.31)

such that all density-matrix elements are deter-
mined by the diagonal elements alone. The func-
tional F'{n } is defined as the limiting form of the
function

F'lng |=F[ppln; 1]
for 5~ 0.

Hohenberg and Kohn established the one-one
mapping D§-—-n{ for nondegenerate ground states
of local potentials. We have seen that an extension
of their proof also establishes a one-one mapping
Dy« o for nondegenerate ground states of non-
local potentials. The proof does not lead to the
existence of a one-one mapping Dy« 72y for non-
local potentials, but this does not, of course, allow
us to infer that such a mapping does not exist. I
do not have an example of a many-one mapping
which would establish this point, but the following
plausibility argument provides some support for
the conjecture that the mapping Dy-n, is, in fact,
many-one for nonlocal potentials.

Let us introduce a discrete representation of the
kind used above and, further, restrict the repre-
sentations of all operators and wave functions to a
finite number of elements, viz., values of the
various kernels and functions on a mesh of points
in a finite region of space. Let g be the number of
mesh points. Then a nonlocal potential and a den-
sity kernel will both be represented by matrices
with ¢(g + 1)/2 independent elements. A local po-
tential and a particle density (ignoring spin) will
be diagonal matrices in this representation, each
characterized by g elements. It is not surprising
that the g elements of the local potential should be
uniquely determined by the g elements of the par-
ticle density, or that the (}) elements of the non-
local potential should be uniquely determined by
the () elements of the density kernel, so that a
one-one mapping should exist in each case., But it
would be surprising if the (§) elements for all pos-
sible nonlocal potentials were uniquely determined
by the g elements of the particle density. One
should be able to find several different nonlocal po-
tentials which could give the same particle density,
simply because the former require more param-
eters for a unique characterization. This suggests

(2. 32)
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that the mapping Dy—#( is many-one for the non-
local case. It may be possible to develop this
heuristic argument into a rigorous proof, but we
shall not attempt to do so here, so that the state-
ment must be left as a conjecture.

III. VARIATIONAL EQUATIONS

The HK theorem and its generalization establish
the existence of the universal functionals E’{z, v’}
and E{p,v} (which we shall henceforth write as
E'{n}and E{u}, respectively). One can derive
from them, by means of the variational principles
expressed by Egs. (2. 30) and (2. 26), equations
which determine the ground-state particle density
and density kernels, respectively. There are
some interesting aspects of these equations which
merit further discussion.

A. Particle-density equations

Any normalizable and differentiable non-negative
function is an N-representable particle density
(this is shown in Sec. IV); hence, the only con-
straints needed for applying the variational prin-
ciple to E’{n} are n(f)= 0 and [n(f)dt=N. The
non-negativity condition may be introduced by
writing n(r)= 19(r)|1% The normalization constraint
may be introduced in the usual manner, replacing
the energy functional by the functional &'{n}

=E'{n}+ NN - [|9|%dT), where A is a Lagrangian

parameter. The variational equations may then
be written as
58’ SE'
-2 3.1
Syr(E) " ope ) MV 3.1
with a corresponding adjoint equation, If the func-

tional derivatives exist (a point to which we shall
return later when we consider the density-kernel
equations), then we may write

szf(;) - aZE’ ;Zf(".) @& =n{n}, HyE), (3.2)
where
h{n}, T)=0E{n}/on() . (3.3)
Equation (3. 1) can then be rewritten as
[}, )= "y ()= (3.4)

The operator A({n I3 T) is a pure local potential,

not a differential operator; hence, at any point at
which n(¥) #0 the particle-density equation reduces
to

n({n} F)=x, (3.5)

where X must be chosen to give a normalized solu-
tion; [n(T)dT=N. If more than one such value
exists, one must choose that value which leads to
the smallest value for E{n}.
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Equation (3. 5) is a continuous set of nonlinear
functional equations for the function »(T). It is not
in a convenient form for finding solutions or for
interpreting the properties of many-particle sys-
tems. One would like to transform it into an equa-
tion that reveals some connection with the Hartree-
Fock equations, which are the cornerstone for
almost all interpretations of the electronic proper-
ties of atoms, molecules, and condensed matter.

In order to convert Eq. (3.5) into a Schrodinger-
like equation for a single particle, we need to ex-
press #(T) in terms of orbitals, e.g., by writing
it in the form

nG):i [w:0r) |2,

where ¥; are normalized one-electron functions,
the significance of which remains to be determined.

If we proceed in the obvious manner, replacing
& in Eq. (3.1)by 8" =E'+3¥ N1 - [ Iy;12dT),
where A, ..., Ay are Lagrangian multipliers, the
variational equations become

[h({?’l }, ;) - )‘i]wi(;): 0 )

which are equivalent to Egs. (3.4) or (3. 5).

In order to obtain a Schrddinger-like form di-
rectly from the variational principle, we need to
introduce a differential operator — £ v?2 into Eq.

(3.6)

(8.7)

(3.7). An obvious prescription for doing so is to
define
N
—%;f¢rv%¢idf (3.8)
and write
E{n}=T+W, (3.9)

where i; are normalized one-electron functions
from which »(T) is constructed by Eq. (3.6). If
we proceeded as if T and W were functionals of »n
alone and the only constraints required were those
imposed by normalization, then we would obtain
the orbital variational equations

(- 392w = N)P;=0, (3.10)

where w ()= 56 W/6n(r). Unfortunately, this pre-
scription is not valid, and Eq. (3.10) is false, be-
cause T (and, hence, W) is not a functional of »
alone and 6 T/('m( r) does not exist.

If T were a functional of » alone, then 6 7 would
vanish identically for any variation in the functions
v¥, ..., 0k such that 6n(T)=Y V9, (f)&zp*(?) If,
for example, we chose &)= -3 ¥ zp,/z/),,,)ézp,, then,
for almost any choice of the infinitesimal incre-
ments 63F, ..., 0%, [the only restriction is that
6y F(r) must vanish at the nodes of ()], we
should have

or=3 [ (555 vt s
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N-1

Y [ vzab,v)(f‘)dr 0.

i=1 N (3.11)
This equality will not, in general, be true. We
can obtain almost any value of 8T that we please
for any value of the increment Gn(;).

The situation may be interpreted geometrically
by noting that T is a functional in the function space
spanned by the variables ¥;(t),...,¢y(). Equation
(3.6) defines a “line” in this function space. The
only relevant quantity for determining the ground-
state density by minimizing E’{xn } is the gradient
of T along the line. The derivatives 6T/6y,(T)
give the gradient in an arbitrary direction in the
function space and, hence, introduce spurious
functions and false extrema into the variational
equations,

One might assume that this difficulty could be
circumvented by introducing appropriate constraints
to suppress the spurious variations in 7. But this
would be equivalent to using the equality

5T T dn(E) -,
syFE@) J on@) SYF @)

and encounters the problems that the derivative
operator is eliminated from the variational equa-
tions and the functional derivative 67/6x(r) does
not even exist.

In order to demonstrate the assertion that
5T/6n(r) does not exist when T is defined by Egs.
(3.6) and (3. 9), we note that the functional depen-
dence of T on #(T) is not explicit, so that the de-
rivative must be obtained by implicit means. This
may be done by introducing the function u (%, ')
=3V, @)p¥ (r’ ). The explicit functional dependence
of T on p(r,T’) is given by T = - —fv'zu(r r )I,,-,
and the functional derivative is 6T/6u(r, T
=— 16" -T'), where 8" is a distribution (the
Dirac 6’ function) which is defined so that
J8"(E -1y, (F")dT’ = V2y;(F). If 6T/5u were a
well-behaved function we could obtain 67 /6% from
the equality 6T/6x(r)= 8T/5u (¥, T).'* Unfortunate-
ly, the limit

oT -
51’1(;) zl)i(r) b) (3- 12)

oT 1ys "7 P
U gty - AR - )
does not exist in any meaningful sense.

Kohn and Sham have circumvented the difficulties
described above by means of the following pre-
scription.® Consider a system of noninteracting
electrons in an external potential %(T) which is
chosen so that the ground-state density is the same
as that of a system of interacting electrons in an
external potential v(r). The total ground-state en-
ergy of the noninteracting system, E{n}=T,{n}

+ Ju(F)n(F)d¥, will be a functional of the density
alone by the HK theorem, and the variational equa-
tion for the ground state will be

FOR NONLOCAL EXTERNAL...
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Gg;g)}w(?) “A=0,
where A is the Lagrangian parameter for the non-
interacting system. The particle density for the
noninteracting system cannot be calculated directly
from this equation because we do not know the
functional form of the single-particle kinetic ener-
gy T,{n}. However, we can calculate the particle
density in the independent-particle case by solving
the single-particle equation for the orbitals,

[- 2 V2ru@) - €]94(F)=0, (3.14)

and then using Eq. (3. 6) to construct the particle-
density function.

Returning to the interacting-particle case, we
may define an energy functional

(3.13)

Unt=E{n}-Tdn} (3.15)
and rewrite Eq. (3.5) as
Tan ank
?n‘%‘ on@ -0 (3.16)

Comparing Eqgs. (3.13) and (3. 16), we see that they
will be identical if we choose

u(T)=6U{n}/on()

and A=), and then solve Eq. (3.13) self-consis-
tently. But we could then use Eq. (3.17) and solve
Eq. (3. 14) self-consistently to obtain the same re-
sult. Equation (3. 14) [together with Egs. (3.15)
and (3.17)], the Kohn-Sham equation, is, there-
fore, an exact Schrddinger-like equation which
will give the ground-state particle density for a
nondegenerate system of interacting electrons.

The central problem in applications of the theory
is that of constructing a useful approximation to
the potential ({n }, T) [which is normally expressed
in terms of an unknown exchange-correlation po-
tential u,({z}, ¥) by writing «(¥)=v )+ [n(')

X |F=F g7 + p (F)]. We note that, even if the
exchange-correlation potential were exactly known,
solutions of Eq. (3. 14) obtained by variational
methods would not give an upper bound to the ener-
gy of interacting particles because Eq. (3.14) is
the variational equation for a different system of
noninteracting particles in a fixed potential. This
is, of course, a moot point because, in practice,
the major uncertainty comes from approximations
in the construction of the exchange-correlation
potential , !¢

(3.17)

B. Density-kernel equations

The constraints needed to limit the density-ker-
nel variations to the N-representable domain may
be obtained from a theorem due to Coleman, which
states that a Hermitian one-electron operator
1 (x, x’) will be ensemble N-representable if and



2118 T. L. GILBERT 12

only if [u(x,x)dx=N and all eigenvalues,

Jute, 2 0, )dxr =y pute)

satisfy the inequality O< p;<1.'® We may intro-
duce these constraints by setting u (x, x’)

= 371 04(x) cos?6; ¢¥(x’) and varying ¢;(x), $¥(x),
and 6; subject to the constraints (i{j)=[¢¥¢,dx
=8;; and 3 7y cos®6,=N. We may assume that the
natural spin orbitals ¢,, ¢,,..., form a complete
set. The angles may be limited to 0< §;< 7 with-
out introducing any further restrictions on the
eigenvalues u;=cos?0;. The constraints may be
introduced by replacing the functional E with

é’{u}=E{u}—§lu(ﬂl')“\(N-iu;), (3. 19)

i=1

(3.18)

where );; and X are Lagrangian parameters. We
may write the variational equations in a convenient
form by making use of the formal identity

OE )
Si(x)  J dpl’,x")

“ s [0} 5, 200N

Op(x’, x"")
567 (x)

dx'dx"’

(3.20)
where

h({u} %, x")=0E{n}/dul’,x) . (3.21)

The functional derivative defined by Eq. (3.21)
exists and can explicitly be evaluated for the one-
electron terms in the total energy. The Kkinetic-
energy term exists only in the sense of a distribu-
tion, but this introduces no real difficulty. The
only contribution which is not known is that which
comes from the exchange-correlation energy E,,,
which is known only as a functional of the second-
order density kernel o(x; x;, x{x3). (We define
E,.=E~-FE ., -T, where E,, consists of the energy
of interaction with the external field and the
Coulomb energy, and T{u } is the exact kinetic
energy. )

We cannot be certain that 6E.{u }/0u(x, x’) ex-
ists in any meaningful sense. Such questions of
mathematical rigor are usually ignored in physical
theories, but the unexpected results we shall ob-
tain shortly compel us to look closely for possible
flaws in the logic by which they were obtained.
The assumption that 8E,,/du exists appears to be
the only weak link in the chain of logic, so that we
must remember that it is an unproven assumption.
However, if the universal functional E,{u} is so
ill behaved that 3E,,/6u does not exist, even as a
limit or a distribution, then it is unlikely that one
will be able to find a useful approximate expres-
sion for the universal functional, I am inclined
to believe that 6E,./6u does exist in some usable
sense, even though it may have some unusual
properties that we do not yet understand. Let us,

therefore, proceed on the heuristic assumption
that ({u }, x, '), defined by Eq. (3.18), can be
constructed.

The variational equations may now be written as

58

== k=) by =0, (3.22)

oH 7

08

B, M ®ih=20 Ny 8]=0, (3.23)
i i

Lg‘=sin29i(€,—-h)=0, (3.24)

29,

where €;=(i|h|i).

We note that Eqs. (3.22)-(3. 24) are exactly
what one would obtain by substituting % for H and
w; for w; in Egs. (2.6)-(2.8). Aside from the fact
that H is a known operator while % is not, the only
difference in the application of the variational
principle is in the substitution of the constraint
Y K;=N for the constraint J, w;=1. We can, by the
same arguments used earlier, replace Egs. (3.22)
and (3. 23) by the condition

(Bi-n)(i|n|j)=0,

so that the natural spin orbitals must be, or may
be chosen to be, solutions of the eigenvalue equa-
tion

hoy=€;¢; . (3.28)

We also infer, from Eq. (3. 24), that each term in
the natural expansion of the density kernel for the
ground state must satisfy one of the following
three conditions: (i) u;=1; (ii) ;=N or (iii) u;
=0, This implies that all partially occupied natu-
ral spin orbitals (0 <pu;<1) must belong to the same
degenerate eigenvalue of Eq. (3.26), This was an
expected result for the N-particle ensemble density
kernel when the constraint was J w;=1, It is an
unexpected and paradoxical result for the one-par-
ticle reduced ensemble density kernel, for which
2 ki=N.

The result may be interpreted in a consistent
manner, The derivative 8E/8u;= (¢;1h|d;)=¢
is a measure of the incremental change in the total
energy when the occupation of the ith level is
changed by an infinitesimal amount. If the ith and
jth levels are partly filled, then if €; is less than
€; one can decrease the total energy by an infinites-
imal amount by increasing the occupation of the
ith level at the expense of the jth level. Hence, in
order to obtain a stationary value of the energy,
the levels which are not completely filled or com-
pletely empty must all belong to the same eigen-
value of Eq. (3.26). This partly occupied level
will correspond to the Fermi level.

The paradoxical aspect is encountered when we
examine the implications for small systems. It is

(3. 25)
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known, from rather accurate calculations, that
small systems such as He and H, have no fully oc-
cupied levels and that the number of partially oc-
cupied levels is large, probably infinite. 5 Since
the eigenfunctions of # and p are identical, by
construction, we are forced to the conclusion that
there is a many-one mapping between the eigen-
values of u and the eigenvalues of #., All eigen-
values of u which lie in the interval 0 < ;<1 must
be mapped into a single eigenvalue of z. This re-
sult indicates that if the operator 2 can be con-
structed, it must be quite different from the one-
electron orbital operators that occur in self-con-
sistent-field theories, '®

The density-kernel equations remain valid for
both local and nonlocal external potentials, so that
the consequences of the degeneracy problem are
important for both cases. The problem disappears
in the Hartree- Fock approximation for a closed-
shell sys{em because all orbitals are then either
fully occupied (u;=1) or empty (u;=0). The dif-
ficulty first occurs in the symmetry-restricted
Hartree- Fock approximation with more than one
open shell,

IV. COROLLARY OF COLEMAN’S THEOREM

We shall now demonstrate that any non-negative
differentiable function »(T) is an N-representable
particle density if [#(f)dT=N. This will be done
by giving an explicit algorithm for constructing an
N-representable density kernel u(x,x’) from an
integrable particle density n(¥)=3,u(Fs, Fs). We
will, at the same time, show that many such den-
sity kernels can be constructed, thereby establish-
ing the assertion that the mapping between N-rep-
resentable density kernels and N-representable
particle densities is many-one. (This last result
is obvious in the discrete representation introduced
in Sec. II.) The demonstration will be given only
for a system with vanishing spin density, so that
px, %)= 8,0 w(¥, ¥’) and # ()= 2u(T, T), where
w(¥, T*) is the spinless density kernel, but the proof
can easily be extended, wmutatis mutandis, to the
general case of systems with arbitrary spin den-
sities.

We may use a geometrical construction to de-
compose #(F) into a sum,

n(F)= 22 Wi fiF Zg«r

where 0< ;<1 f¥r)=f,x)=0, [ f;(T)dT=1, and
g:(F)=2u; f(f). The construction will be described
only for a density function »n(») defined in the one-
dimensional interval - 1=7=<1, but an analogous
construction could easily be devised for a density
function n( ) defined over an infinite three-dimen-
sional space.

(4.1)

2119

n(r)

NS

| -— +1

FIG. 1. Sample construction of the particle-density
expansion n(r) =2, ;) =22 i, ;). @, g10); ®, g1
+8&0);®, g1+, +g3(), ..., etc.

The construction may be followed by referring
to Fig. 1. Starting at a boundary point (»=-1 in
the one-dimensional example we are using), we
may draw an arbitrary curve which lies entirely
above the abscissa and below #z(»), and encloses
an area below the curve which is less than or equal
to 2. This curve defines a function which we iden-
tify with g,(»). Then, starting at the far left of
the region above g,(») and the abscissa, and below
n(r), we repeat the process, making sure that the
area between g,(») (or the abscissa) and the second
curve does not exceed 2, This second curve de-
fines a function g;(7)+g,(») from which a function
£5(7) may be obtained by subtraction. We repeat
this process until all of the area below »(») has
been used up, and we have drawn M curves which
define M functions, g,(r)+++*g, (). At least N/2
curves must be drawn, but the number can be
arbitrarily large. The only restriction, aside
from the restriction on the areas, is that the bound-
ary curves [including »(») itself] must be smooth
enough so that (dg/dv)?/g and d%g/dv? are integrable
functions. [This is to ensure that i3 [(dg'/%/dvr)2dr
= - 13 [g"%d%g*"%/dr*)dr remains finite, so that the
kinetic energy will remain finite.] A representa-
tive construction, demonstrating the variety of
functions that may be used, is shown schematically
in Fig. 1. Some constructions are shown with
vertical lines. These are actually forbidden because
they lead to infinite contributions to the kinetic en-
eryg, but one may come arbitrarily close.

Setting ;= 3 [g;(r)dr and introducing the nor-
malized functions f;(*)=g;(#)/2u;, we obtain Eq.
(4.1). . We now introduce a set of functions ¢,()
—e""k"’f‘/z(r), where w,(T) are a set of phase func-
tions chosen so that

for@ o, Brar=o,, . (4.2)
We may convince ourselves that phase functions
with this property can always be constructed with-
out going through the tedious details of a rigorous
mathematical proof. If the curves used to define
£1(T) were vertical lines, then the functions ¢;(¥)
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would be orthogonal with the choice w;(T)=0. If the
rectangular like functions obtained by using verti-
cal lines were smoothed out into Gaussian-like
peaks, it is intuitively clear that one should still
be able to choose phase functions which oscillated
in the region of overlapping tails in such a manner
that the overlap integrals would vanish, Beyond
that, we merely note that M arbitrary functions
surely provide enough freedom to make M (M - 1)/2
overlap integvals vanish. We conjecture that there
may be several sets of phase functions for each
set of expansion functions f;(T) (this is obviously
true when the vertical construction is used), but
none of the essential conclusions depend on this
conjecture.

We may now define density kernels

@ F)= D ¢ () ps o3 E) (4.3)

which are different for each different construction
of the functions g;(¥) but which all give the same
particle density #(f). The constructions have been
made in such a manner that the density kernels
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satisfy the necessary and sufficient conditions for
ensemble N-representability; hence, the original

particle density, which was restricted only by the

conditions #(*)= 0 and [%(T)dT=N (and that d% /dr?
be integrable), must also be N-representable,

We can always choose the partitioning in Fig. 1
so that there are exactly N/2 regions, each with
an area equal to 2, Hence, an obvious corollary
is that any N-representable particle density n(;)
can be obtained from a single Slater determinant.
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