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Relationship of the relativistic Compton cross section to the momentum distribution of bound

electron states
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An approximate relativistic treatment of the differential cross section for Compton scattering against bound

electron states is discussed. A simple relationship between the cross section and the Compton profile is found.

On contrast to previous work this relationship is valid for all scattering angles.

I, INTRODUCTION

Since its resurgence in the late 1S60's, x- and

y-ray Compton scattering has promised to be a
delicate probe of the electronic structure of atoms,
molecules, and solids. ' The reason for this is
that in the so-called impulse approximation' the
differential cross section is (in the nonrelativistic
region) simply proportional to the Compton profile

~(P, ) = '

I
df. df y P(P) .

Here, p(p) i.s the momentum distribution of the
electron system before scattering, and p, is the
component of electron momentum along the scat-
tering vector. The Compton profile in Eq. (1) is of
central importance and represents the form in which
experimentalists so far have chosen to present their
results. Since J(P, ) is directly related to p(p), the
Compton profile constitutes a sensitive test of the
accuracy of various model wave functions.

In the impulse approximation it is assumed that
the energy transfer is so large that binding effects
for the electrons may be neglected and that the final
state of the excited electron may be approximated
by a plane-wave state. This means that the scat-
tering process can be viewed as a photon being
scattered inelastically against a stationary wave
packet of superimposed plane-wave states. A scat-
tering event then means that an electron in some
initia. l plane-wave state Ip) is scattered into the fi-
nal state Ip ). The probability of such an event is
p(p) times the square of the transition matrix ele-
ment. Such a description applies to x-ray Compton
scattering below roughly 15 keV. In this energy
range, relativistic effects can be neglected. The
use of x rays has some disadvantages, however.
The method is limited to only light elements to en-
sure the validity of the impulse approximation.
Besides that, the intensity is low.

Experiments using y rays have the advantage
that the energy transfer is large enough to allow
for investigations of a wider class of materials.
Typical y-ray sources in use are 24'Am (59. 54

keV) and Te (159.0 keV), but sources with con-
siderably higher energies are currently under con-
sideration. A serious complication of the p-ray
technique is, however, that the energy transfers
are so large that relativistic effects must be con-
sidered. Although the general principles for the
calculation of the relativistic differential cross
section for inelastic photon scattering against
bound system are well known, an actual evaluation
is difficult owing to the complicated matrix ele-
ments and the large set of intermediate states to be
summed over. This has been clearly demonstrated
by Casimir, who evaluated the cross section using
plane-wave states for the intermediate states. Even
at a scattering angle close to zero, as used by Cas-
imir, such calculations are heroic. Eisenberger
and Reed and Manninen et a/. have therefore pro-
posed an heuristic approach which in brief goes as
follows. The cross section for colliding beams of
electrons and photons is available in a closed ana-
lytical form. ' If we neglect binding effects, as
above, we may again consider the case of scatter-
ing against a stationary wave packet composed of
plane-wave states (or a collection of electron
beams), characterized by the probability function
p(p). With a, properly revised flux factor, the de-
sired relativistic differential cross section may
then be written as an integral over each free-par-
ticle scattering event times the weight factor p(p).
The resulting form is, however, relatively compli-
cated. Eisenberger and Reed and Manninen et al.
have therefore discussed various simplifying as-
sumptions. In particular, they have chosen the
scattering angle 8 to be 180'. This choice simpli-
fies the algebra considerably and has the effect that
certain factors may be taken outside the integration
over p so that the conventional concept of a Comp-
ton profile survives also in a relativistic context.
For 8 &180', however, it is still an open question
whether the Compton profile is a well-defined con-
cept or not. This problem seems relatively im-
portant since many experiments are performed at
lower angles, typically =150', in order to avoid
backscattering from the chamber. By tradition,
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however, the experimental results are analyzed in
the form of a Compton profile with the approxima-
tion I9 = 180'. Since experimentalists continue to
report Compton profiles with increasing accuracy
(~ I%), it seems to be an urgent problem to study
the angular dependence of the relativistic differen-
tial cross section as well as the definition of the
Compton profile itself. The purpose of the present
work is to study these problems.

In Sec. II we review the heuristic approach of
Eisenberger and Reed and Manninen et gl. ' and
discuss a convenient choice of coordinate system.
In Sec. II an expression for the differential cross
section is elaborated, and it is shown that the
Compton profile can be defined at all angles 8.
Section III also describes an iteration process for
J(p, ). In Sec. IV a comparison with previous rela. —

tivistic treatments is given. Section V contains a
summary. Mathematical details are given in Ap-
pendixes A and B.

II. RELATIVISTIC CROSS SECTION FOR
ISOTROPIC SYSTEMS

A. General

In this section we will assume natural units, i.e. ,
c=1 and 8 =1. We will start from an expression
for the total relativistic cross section for scatter-
ing of a photori, which is in an initial state charac-.
terized by the four-vector x =.(k, i&@). Here k stands
for the wave vector and ~ is the frequency of the
photon. The target is a free electron character-
ized by v = (p, fE), where p is the momentum and

F- the total relativistic energy of the electron. Af-
ter scattering, the electron is in the state x =(p,
iE ) and the photon in z = (k, i+ ). Jauch and Rohr-
lich' give the following expression for the total rel-
ativistic cross section for the photon:

against electrons in bound states, characterized. by
the momentum distribution p(p). The target is at
rest, i. e. , (p) =0. In the spirit of the impulse ap-
proximation, we may then from Eq. (2) write the
differential cross section as

d'p d'p' p(p) , X(K—,K')

I
X ()(7T +/C —v —K )

To obtain Eq. (7) we have used d k =+ 'd~ dQ,
where dA is the solid-angle element in the direc-
tion of k . We have also taken the derivative of e
with respect to e and 0 . The flux factor K/Z~ in
Eq. (2) refers to colliding beams, and has there-
fore to be replaced here by one (c= I). Integration

~/
over p gives

xg(Z++ E —(g )

B. Choice of coordinate systems

It is convenient to introduce two coordinate sys-
tems (see Fig. I). In the first system (x, y, z), the
z axis has been chosen in the direction of k. The
angle between p and k i.s a and the azimuthal angle
for p in the xy plane is P. System (x, y, z ) is ob-
tained by rotating the system (x, y, z) around the y
axis. in such a way that z coincides with k- k .:
The vectors k and k are in.the xz plane, and the
angle between them is 6). The vector p has compo-
nents in the system (x, y, z ) determined by the
spherical angles P and y. In the system (x, y, z ),
the volume element for p can be written

0'=%Pl 'vo d k' dP 2KB'&'

XX(Ki K )5 (1T + K —1T —K ) i

where

X

E=E&—p k)
K = E&u —p ~ k =K+ xz =K- a&u (I —cose),

(3)

(4)
rr ~

r

r

and
I l

5(1I'+ K —1T —IC )

This formula thus refers to an experiment with col-
liding beams. The polarization of the photon is not:

observed in the initial or in the final state.
In the present case we are interested in the dif-

ferential cross section for the scattering of photons
FIG. 1. Definition of the coordinate systems (g, y, g)

and (g', y', s').
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&-=IpI,

d p=dydPdpsinPp

We now evaluate the integral

6 (E+ &u - E —&u ) sinP dP,

(9)

(10)

.-'= (k-k')/Ik-k'I,

k = ~ cosa 8+ (d sine x .

(20)

(21a)

(2lb)

in which ~ and ~ are to be held constant, and 8 is
independent of cosP for constant p. We can there-
fore write

P

') 6(E+u& —E —u& ) sinPdP

6(E+(o- E -a) )d(cosP)

Insertion of E(ls. (2la) and (21b) into E(l. (20) gives

2 = [(ar- (() cos8)z —(() sin8x]/Ik-k
I

. (22)

Equations (21) and (22) combine to yield

x =y xz =[(&o —&o cos8)x+&u sin8z]/Ik-k I
. (23)

If Eqs. (21), (22), and (23) are inserted into E(I.
(19) and the z components in E(ls. (18) and (19) are
compared, one finds

=
I
6E'/6 (cos(8) I

Since

E' = (Ip'I'+ m')' '= (Ip+k- k'I'+m')' '
= (E'+ Ik- k'I'+ 2 II I

Ik- k'I cosa)'",
the result is

6(E+a& —E -ar )sinPdP

(13)

&a sin8 pcosP(&u —v cos8)
p cos cx = p' sinP cosp

(

~ g
I

+

Define the quantities

D -=(ur —&o' cos8Xp cos p)/I k —k'
I

and

H= (&u' sine—p sinP)/I k- k'
I
.

With these notations, E(l. (24) reads

p cosn =D(p)+H(p) cosy .

(24)

(25)

(2V)

From E(ls. (8) and (14), we then have

d o mro& X
d(()'dA' 2lf- R'l(u ~ E(P)

'

This is a useful result, and we will return to it in
the following sections. Of course, sinP and cosj3
are functions of p [cf E(l. (1.6)].

By means of E(I. (1V), we can write E(ls. (3) and

(4) as
The value of p in this expression foQows from con-
servation of momentum and energy,

E(&() —e') - (()&() (1- cos8)
Ik- k'

) cosP (16)

The expression for the differential cross section in
Eq. (15) is valid for any type of momentum distri-
bution p(p). Here we shall restrict ourselves, how-

ever, to isotropic distributions. This restriction
wi. ll allow the i.ntegration over y to be done analyti-
cally.

The X factor in E(I. (15) is a function of p coen
because

K=ar(E- pcosn) and K =K- ~~ (1- cos8).
(1V)

Since p(p) is independent of y, we are now able to
perform the integration over y if only the transfor-
mation of f) cosn. from (x, y, z) to (x, y, z') is known.

We write p in the two systems as

K= +(E —D —H cosy),

K = &g[E —D —Hcosy- &u (1- cos8)] .
With the abbreviations

W=-a& (1- cos8)

f(y) =D(p)+H(p) cosy,

one obtains

where

F = W- 2m /&u —2m /(() W .
Z and E' can be expressed as

(28)

(29)

(30)

(32)

p= Ip I
(sinn cos(t) x+ sinn sing j+cosn z), (18)

p =
Ip I(sin)8cosyx + sinpsinyy +pco)s, z(19)

where (x, y, z) and (x, y, z ) are unit vectors. From
Fig. 1 i.t follows that

C(E —. ti cosf) = Cp(E/p —cost) ) (34)

where E/p = (1+m /f) ) ~ & 1, and C is a const;ant.
Because of this, Rand E have no real roots.
Hence, the integration of X over y can be performed
without restrictions as
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X{D+Hcosy} dy

[X(D+H cosy) +X(D H—cosy)] dy . (35)

Compton profile in Eq. (1}may be defined also when
relativistic effects come into play. 6' %e will here
discuss @whether this is also true for other values
of (9. For reasons given in. the Introduction, this
question is important.

For an isotropic system, Eq. (1) may be written
2g

21)xtnt )
&0

(36)

"'="t( - — )'- )'" (( — )'- ')'")
m 8-D 8-D-' *'

(( — )'- *)*"'(( — — )*— *)"')
(3V)

and D, H, and F as defined in Eqs. (25), (26), and
(33). The expression for the differential cross
section is then

d'a m'~(')(u'2v '"
pp(p)X„, „d(t)'dQ' 2(() lk- k'I .p Z(p)

IZ((()- t()')- &o(()'{I-cos8) I

~min lk- k'
I

Z = (p' „+m')'~' . (39)

Expression (36) is of centre. l importance in the
pl esent cwork. It Rllo%S us to cRlculRte, within the
fl ame%ork of the impulse Rpproximatl. on, diffel en-
tiRI cx'oss sections fol Rl bitl Rry scRttex'ing angles
8 for any given isotropic momentum distribution
p(p).

A good first approximation to p „in Eqs. (38)
and (39) is

Im(co- a) ) —(u(u (1- cos8) I

~min Ik- k'
I

=pg ~

An improved approximation may be obtained by
combimng Eqs. (39) and (40):

((t)- (d }pg
&min Ps (41)

and rewrite Kqs. (25), (26), and (39) as

D = ((d - &u cos 8)A(p)/ i
k - k

i

H=(&o'sin8/~k —k'~)(p1-p1 „)Ua .
(44)

(45)

III. COMPTON PROFILE

As mentioned in the Introduction, the choice of a
scattering angle 8 of 180' has the effect that the

The minus sign refers to the high-energy side of
the spectrumor ,m(&o- (d ) —(d&u (1 —cos8) & 0. The
correction term in Eq. (41), however, is small in
most cases.

Fol latex' use~ %'e def ine

&(p) -=Z(p)(~ —~') —~~'(I —cos8), (42)

B= &o[ {Zp„)-D-(p „)],
Z -=R- ~&a (1 —cos8) .

(50)

(»)

S=- [(I-D)'- H']'" and r -=[(ln- D- W)'-H']'~',

%e get

dX,„, ~'sino '
dP Ik-k I

Bm m-D m-D- 8'

(52)
Here me have a=const and E=eg. As a final re-
sult, me obtain

d(o'dQ' 2(elk-k') '" Z(p „)
&(0) dX„,~ ) (tt).p...Z{p} dp

It is pleasing to note that Eq. (49) reduces exactly
to the constant X factor used by Eisenberger and
Reed and Manninen et gl. if we put 8=180'. At
ills SRlne i'11116 'tile second tel'111 111 Eq. (53) VRlllsiles

~(p, ) = 2vpp(p) dp . (46)

Z(p, ) is a positive, monotonically decreasing func-
tion. Hence we can formally write the primitive
function to 2vpp(p) as —Z(p), with Z(~) =0. A sim-
ple pRl'tiR1 llltegl Rtloll Of Eq. (36) ylel(is

2 P. COd O' tB f'0(d Xt~t
d&o'dA' 2&elk-k'I Z

„" ~(p) dx„,
,

"
p+"

@
~"'d)'-

I
&((')&i. @ad)') .

(4'7)

The first term inside the large parentheses gives

~(p...)x,„,(p.,„)/Z(p„„),
because Z(~) =0 and X„, is limited. The second
term has the character of a correction, Rnd is
small compared to the first term (see Appendix A).
The third term can be neglected right off because
it is of the order I/m1. X„,(p „)can be simplified
Rnd rewritten

R R , 1 1 , 1 1'x=-x (p ) =—+—+2m ———+min& In in p & p 8 8' 8 R'
(49)
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~, (p,) J(p,) O eV)

0.228 236-1
0. 168 135-1
0.789 572-2
0. 314 100-2
0, 125 495-2

0.227 643-1
0. 167650-1
0.786 629-2
0.312 507-2
0.124 642-2

0.227 635-1
0.167 648-1
0.786 608-2
0.312 468-2
0. 124 583-2

121.80
125, 55
129.30
133.05
136.80

0.1563
12, 2173
24, 3100
36.1239
47. 6618

co=160 keV, 8=150', Z=10, (d ~=149.0 keV

0.227 899-1
0.208 948-1
0.164 313-1
0.115286-1
0.753 104-2

0.227 648-1
0.208 711-1
0, 164 112-1
0.115127-1
0.751 905-2

0.227 647-1
0.208 708-1
0.164 109-1
0.115124-1
0.751 876-2

101.0
103.0
105.0
107.0
109.0

0. 0283
6. 3908

12.6590
18.8348
24. 9203

and Eq. (53) reduces to the conventional expression.
Equation (53) is useful if we want to calculate the

Compton profile from experimental cross-section
data, because the second term is small (of the or-
der p, /m, as shown in Appendix A). We therefore
have good reason to neglect it. Solving for J(p „)
gives

( )
2(elk-k IE(p „) d o

m y0(d X (54)

We observe that in this formula there are no re-
strictions on the scattering angle. If we want to
calculate J'(p „)with greater accuracy than in Eq.
(54), we can write Eq. (53) as

Z( )=J( ) — " "'d (55&min
=

O dmin
—

~ @(p) dp"&mtn

with Jo(iO) as a first approximation [from, e. g. , Eq.
(54)]. Equation (55) is a diagonal-dominant system

TABLE I. Convergence of the Compton profile as
described in text. The component p, is given in natural
units (c=1, 1=1); atomic units are obtained by multi-
plication with 137.04/510. 98. The Compton profiles are
given in units of keV ~.

(a)

co=160 keV, 8 =90', Z=10, u&' =157.8 keV

of equations, which rapidly converge to the correct
values, J(P „). In the next section we show how

this iteration method works for a hydrogenlike sys-
tem.

A. Iteration of the Compton profile

In order to test the convergency properties of
Eq. (55), we consider the case of a hydrogenlike
system. In this case the differential cross section
in Eq. (38) can be worked out analytically (see Ap-
pendix B). We may say that this particular cross
section simulates a set of experimental data, and
defines a first estimate of the Gompton profile,
Jo(p, ), in accordance with Eq. (54). Iteration by
means of Eq. (55) should then yield the conventional
profile for a 1s system,

Z(p, ) = 8e'/3m(~'+ p,')'

(e is defined in Appendix B).
We have considered two cases: (a) &u =160 keV,

8 =90', and 2 =10; (b) &v =160 keV, 8 =150', and
Z=IO. Table I shows the results for Jo, J~ (after
one iteration), and the correct J according to Eq.
(56). Table I also shows that the convergence is
rapid and that one iteration is sufficient; in treat-
ing experimental data, J0 is probably accurate
enough.

IV. COMPARISON BETWEEN THE CORRECT X FACTOR
AND THE X FACTOR IN THE 180' APPROXIMATION"

As mentioned, the approximate methods of Ei-
senberger and Reede and Manninen et g/. for cal-
culating the Compton profile rely on a constant X
factor calculated for 8 =180'. For the high-energy
side we get Ix„o =-X(8 =180 )]:

2(u[lk —k I+p, ((u —(u )/m]E d o

Until now, experimental profiles have been derived
by means of Eq. (57) or slight variations thereof.

f(P,)jg(o)

1.01~ 60keV

1.00

~
Scat te ring

7

60keV

Pz
10 (a.LL)

330keV

FIG. 2. Corrections to
the Compton profile accord-
ing to Zq. (58) and 8=150'.

0.99a
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f(p, )/f(o)

660 kgb

330 keg

160 keV

FIG. 3. Corrections to
the Compton profile accord-
ing to Eq. (58) and 8=110'.

I ~Pz
10 (a.u.)

Obviously, this is permitted for 6) not too far from
180 (e.g. , in the experiments of Eisenberger and

Reed, 8 =173'). For other cases, previously pub-
lished profiles may be corrected approximately by
multipli cation with

Xl 80

Xl1 + p, (cu —cu )/m I k- k I I
'

and then renormalized. Figures 2 and 3 show

f(P,)/f (0) for two different scattering angles and
different energies. The value of f(0) varies strong-
ly with 6) and + and thus with the value of the dif-
ferential cross section itself. However, after re-
normalization of f(p, ), deviations from the correct
profile may not be large. For example, 8 =150',
f (p, ) is almost constant, which results in a, very
small error i.n the normalized profile. For small-
er angles corrections become increasingly impor-
tant, as shown by Fig. 3.

SUMMARY

We have considered the differential cross section
for Compton scattering against an isotropic mo-
mentum distribution. The heuristic approach of
Eisenberger and Reed and Manninen ef, g/. ' has
been elaborated, and it has been found that the
Compton profile is a well-defined concept at all
scattering angles. To obtain a high accuracy in

Z(p, ), a rapidly convergent iteration process is
proposed. For most purposes, however, the
zeroth-order estimate is accurate enough. Our
new form for the differential cross section is as
simple as those previously used, and should re-
place them. The present results can be extended
to anisotropic Compton scattering, as well as to
ihe polarization dependence of the differential cross
section. This will be presented in a separate pub-

licationn.
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Jf dP, d(P, ) =—, (Al)

where n stands for the number of electrons in the
atomic system. We define

N(p) = J(p, ) dp, .

With Z(p „)= m, and p „=p„we get for Eq. (53)

cf
2 oo

du dD 2 )k-k )

' " dj )
Define

Rem=- d(p) "—'dp,dX,„,
~p 8P

~Rem~= -A(P) '"' + A(P) P'dPlgXfng Cf Xflig

GP P ~f, CfP'

8 00

~( )
dXi~g ~(() d X(qg

Pz
yp yp2

&z

(A4)

p, & t&, A(p, ) &&V(g) &0; (A5)

~Rem ~& X(p, )
GP p-p

From Eq. (52), we obtain

(A6)

dx„, v sine 1 1

dg —, ' lk —k I ) —R' —8) ( —D)n)
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sions and many good ideas throughout this work.

APPENDIX A' CONTRIBUTION FROM THE SECOND
TERM IN EQUATION {53)

The normalization of the Compton profile is usu-
ally chosen to be
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sm'
(m —0) (I —8 —1V) )

If this expression is expanded in powers of I/(m
—D), the dominating term in IRem I is

p, &u sin8 v (1- cos8)' m Ik-k I cu

We solve for d(p, ) in Eq. (53):

d 0 rnrpz - )Rem]
(~') d~'dn' 2~ik-k'I '

g

(As)

(AO)

If IRem I is neglected, there will be an error of the
order

where Z is the atomic number and a the Bohr radi-
us. [There is no restriction in choosing a nonrela-
tivistic ground-state distribution in Eq. (7). In
fact, the relativistic effects are, in the present
context, mainly associated with the final states. j

We transform Eq. (a1) to p space as

X(P)=(2 )ngn d « (a2)

APPENDIX 8: DIFFERENTIAL CROSS SECTION FOR A
HYDROGENLIKE SYSTEM

The nonrelativistic wave function for a hydrogen-
like system is

«(p. ) =~ IReml/x (AIO) Then

We now estimate N(p, ) in Eq. (AS). A straight-line
approximation of Z(p, ) is

8~'
PV) =

n2 (en p2)4 (a3)

~(P,) = nip. „(I p,/—p.„) „ (A11) where c = nmZ; o. is the fine-structure constant.
The distribution is isotropic, and we get from Eq.

with p as the largest experimental value of p, .
Equation (A11) is normalized as

"&max =nJ(P,) dP, =2 .
kP

We get from Eqs. (A2) and (All)

(A12)

N(y )= —. (1
— '

)dp, = —
(1

— '
) . (A13)

d O' Pl% pQ) 27l'8E' Xfgtp
d(u'dfI' 2(uik —k In ~. (e +pn) (a4)

where we have put Z(p) = m in the denominator. It
is convenient, however, to keep the Z(p) depen-
dence in X,„, to avoid nonphysical singularities.
Equation (a4) can be integrated by elementary
methods.

With
With X=2 the final estimate is

2 I3
P'g Pg 2&d(p, ) =+ Gn 1 — —

n
-

n sin 8 sin —.
g milk —kl

(A14)

T= lk-k
l /(&u —sin8)

v=- (~'+ p,')/T,
and Ii given by Eq. (33), we define the function

(a5)

(as)

S&F N 5 N 5N 5 (U+N)i+N
nT 6(U+N )U 24 (U+N ) U 16(U+N ) U 32(U+N ) (U+N ) —N

gyes y y~ $9~
nT (u 24(U+N ) U 16(U+N ) U 6(U+N ) U

1 35N (U+N2) i +N
(V+N')' 32(V+N')"' (V+N')"-N

The analytic expression for the differential cross section is then

2 I

n
=

ik k'I "~'+"'~-D)+"-(~-D- ~)j.

(a7)

(as)
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