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The van der Waals (or polarization) force between ions in the noble metals is calculated within a simplified
model in which the ions are regarded as nonoverlapping and immersed in a uniform electron gas. The
conduction-electron screening of the ion-ion interactions is straightforwardly taken into account. Using
effective ionic polarizabilities derived from the measured optical constants, we find that the contribution of the
polarization forces to the cohesive energy per atom is 0,21, 0.42, and 0.63 eV for Cu, Ag, and Au,
respectively. By comparison, the total cohesive energies in these metals are 3.SO, 2,96, and 3.78 eV,
respectively.

I. INTRODUCTION

It has long been recognized that the attractive
van der Waals forces between ions in a metal con-
tribute to the total cohesive energy. ' However,
the magnitude and relative importance of this con- .

tribution has remained an unresolved question.
For the noble metals, the estimates have ranged
from being of negligible importance~ to contribut-
ing roughly a third3 of the total cohesive energy,
which is typically 3 to 4 eV. This large varia-
tion reflects discrepancies in the estimates of the
ionic polarizabilities and differences in the calcu-
lation of the conduction-electron screening of the
polarization forces.

In an attempt to resolve this issue, we have
estimated the magnitude of these polarization
forces by a perturbation-theory calculation in a
simplified model in which the ions are regarded as
nonoverlapping and imbedded in a uniform electron
gas. While the use of this model is of course
much too crude to determine other contributions
to the cohesive energy, it should be appropriate
for the calculation of the polarization forces be-
tween the ions.

We obtain an expression for the dipole-dipole
contribution to the polarization force which is
analogous to the usual expression for the van der
Waals interaction between atoms or molecules.
This interaction depends explicitly on the fre-
quency-dependent polarizability of the ions &„,(~)
which is determined phenomenologically from the
observed optical constants. 6 Local-field effects,
which w'e find to be important in these calcula-
tions, are taken into account using an appropriate
modification of the Lorentz-Lorenz formula. v

The presence of the electron gas gives rise to
a dynamically screened interaction between the
ions. This screening is given in terms of the
dielectric function of the electron gas &(q, co)

which, in our calculations, is approximated by
the random-phase approximation (HPA) expres-

sion evaluated for the value of z, corresponding
to the "free-electron" densities in the noble
metals.

Our calculations give for the dipole-dipole con-
tribution to the cohesive energy 0.18, 0.35, and
0.52 eV, for Cu, Ag, and Au, respectively;
higher-order polarization forces are estimated
to increase these figures by roughly 20%.

A description of the model and a summary of
the theoretical results are given in Sec. II. These
results are applied to the noble metals in Sec.
III. Details of the theoretical development are
contained in an Appendix.

II. SCREENED VAN DER WAALS INTERACTION

Let us consider the interaction between two
ions, a and b, a distance R apart, immersed in a
uniform electron gas of density n =An/3r', We.
assume that B, is large enough that the ionic charge
distributions are nonoverlapping 2nd spherically
symmetric. The Hamiltonian of the system con-
sists of two parts,

SC= Xo+ ~i ~

-X +X +X +K

dq a 5 a e

(2~)
U(q) (Pit P~+Pf P-r

+Pf PA+Pi/ P~) ~ (3)

The unperturbed part, Ko, includes three terms:
the Hamiltonian for a noninteracting electron gas
and two effective one-electron Hamiltonians which

respectively describe each of the ions in the metal,

+0 +e+ +a+ b (2)

The perturbation +, consists of the Coulomb in-
teraction between the charge distributions of the
ions and the electron gas,



Here p,
' (j =a, b, e) are the appropriate density

fluctuation operators, and v(q) —= 4))'/q~ is the Cou-
lomb interaction (we use atomic units, e =8=m
=1).

We now calculate the net interaction between
the ions in perturbation theory, treating the inter-
actions between the ions and the electron gas and

between the ions themselves to lowest nonvanish-

ing order, while keeping the electron-electron
interactions to all orders. The details of this
perturbation expansion are given in the Appendix;
I16x'6 we Qlerely summarize the results

First, the electron-electron interactions, when

summed, give rise to a frequency-dependent
screened interaction of the form

where c(q„&u) is the electron-gas dielectric func-
tion. In terms of this effective potential, the
polarization interaction between the ions is given

by the expression

&& V(q', iu) &'(q', q, iu) VCq, in),

where we have chosen to evaluate the frequency
integral over the positive imaginary frequency
axis ~=in, and 5) (q, q', im) is the continuation to
complex frequencies of the Fourier transform of
the density-density correlation function

ln this expression, the state IO} indicates the
ground state of the ion with Hamiltonian X&. With

the assumption of spherically symmetric ions, we
find that u &

Cq, q', iu) to leading order in q and q'
is proportional to the ionic polarizability n~(iu)

Here, V(R, iu) is the screened Coulomb interaction
at the separation R and complex frequency jN,

dq 47) 8
„I (2)))' ~q ~(q, iu)

2 " sinqB 1
)) 0 qR K{qi 2S)

(10)

Note that in the limit that &-1, i.e. , for a
very dilute electron gas or for frequencies much

larger than the plasma frequency, the bracketed
quantity in Eq. (9) is equal to 6/R, in which
case the expression for U~„«,(R) reduces to the
usual expression5 for the van der %aals interac-
tion between atoms or molecules. The screening
at the lower frequencies is important, however,
and reduces the magnitude of the ion-ion inter-
action consldel ably.

The essential ingredients which are required in
the evaluation of the dipole-dipole contribution to
the van der Waals interaction (9) between the ion
cores are: (i) the screened Coulomb interaction
in Eq. (10), and (ii) the frequency dependent polar-
izabilities of the ions. The screened Coulomb
interaction, together with its first and second de-
rivatives with respect to R, was evaluated numeri-
cally using the BPA dielectric function. This
potential ls l'eproduced ln Flg. 1 for representative
values of the frequency N. As one would expect,
the screening is most effective for frequencies
less than the plasma frequency.

The oscillator strengths defining the effective

$~(qi q, iu) = -q ~ q 8 ~ ' ~i&~(ig) i

, .
)

2 gg E„OI{0lrin}l'
3 „E„'0+u'

and E„o is the excitation energy of state In).
On using the approximation (f) in Eq. (5), we can
write the dipole-dipole contribution to the polar-
ization forces between the ions as follows:

0.5-

l.0
i J

2.0 3.0 4.0 5.0 6.0
R (o.u. =0.55A)

FIG. l. Screened potential V(R, iu) in Au (u=0, long-
dash-short-dash line u = ~, dot-dash line; u =2~&, dash
line; u=~, solid line. Here cu&2=3/28 with &~=3.01).
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FIG. 2, Plot of the ionic polarizabilities in the nob1. e
metals as a function of the complex frequency x =iN, .
(Au, sol, id line; Ag, long-dash line; Cu, l,ong-dash-
short-dash li ne}.

where n is the number of ions per unit volume„
and n(iu) is obtained from the imaginary part of
the observed dielectric function

2 "
to «2'(ru)

o(iu) =, 7f~
rQ)p 0 K +u

Here &~ = (477n)'7'. The prime on «, (~) signifies
that the "free-electron" part of the dielectric func-
tion is subtracted, 3ince the core electrons in
the noble metals are relatively well localized,
Eqs. (11) and (12) should provide a good approxi-

ionic polarizabilities used in the ca.lculations were
extracted from the optical data for the noble metals
given in Ref. 5. Within the model being considered,
the long-wavelength limit of the dielectric function
of the metal can be expressed in terms of these
ionic polarizabilities. Accounting for the local
field at the position of the ions approximately by
the I orentz-Lorenz relation, one finds that the
ionic polarizability is given by

(7E0)=77&('t77)/[1 + 3 7777 B('E74)]
7

'

mation to the effective ionic polarizability.
The subtraction of the "free-electron" contri-

bution was performed by extrapolating the low-
frequency part of «, (~) past the onset of the d-
electron transitions using a simple Drude formula.
While this procedure is crude, the error incurred
is negligible; the associated error in the oscillator
strength is a small fraction of an electron, and
furthermore, the ion-ion interaction at these low
frequencies is highly screened.

The ionic polarizabilities obtained in this manner
are plotted in Fig. 2. On going from Cu to Ag to
Au, the increasing magnitude of the polarizability
reflects the increasingly larger low-frequency
oscillator strengths. A significant part of the low-
frequency oscillator strengths is attributable to
d-electron transitions; excitations of the lower
core states make a rather small contribution to
the static polarizabilities.

The total dipole-dipole interaction per atom is
obtained by summing one half of the interaction
(9) over all ion pairs. This sum is rapidly con-
vergent; the results for the three nearest neighbors
(nn) and the total dipole-dipole contribution

(E«, d, ,) are listed in Table I.
The importance of inctuding the local-fieM cor-

rection is demonstrated by evaluating Eq. (9) with
the uncorrected n(iu) rather than the corrected
&„„(iu) of Eq. (11). In this case, the calculated
dipole-dipole interactions were typically twice as
large as the results based on Eq, . (11).

The conduction-electron screening of the ion-ion
interactions was also found to be a significant ef-
fect. By setting «(q, iu) =1 in Eq (10), .the con-
duction-electron screening is neglected altogether;
the resulting value for the integral in Eq. (9) is
then about 2-3 times larger than the screened
results listed in Table I. It should a,iso be noted
that at the relatively large ionic separations in the
metals, only the small-q behavior of the dielectric
function is important in evaluating V(R, 7'I) Thus.
the local approximation «(0, iu) =1++~2/77' gave
values for the interaction which were typically
only 10% smaller than those obtained with the full
RPA dielectric function. This simple expression

Contribution to cohesive energy from polarization forces (eV/atom)
Experimental

Higher-order Total cohesive
polarization. polarization energy (g,ef. 4)

2nd nn. 3rd nn Ed)p @p energy energy (eV/atom)

Dipole-dipole energy

TABLE I. Estimates of the van der Waals contribution to the cohesive energy of the noble
metals.

0, 151
0.289
0. 438

0. 009
0, 018
0. 027

0, 010 0. 179
0. 021 0. 347
0. 031 0. 524

0, 036
0. 069
0. 105

0. 21
0.42
0, 63

3.50
2. 96
3.78
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could therefore be used to obtain a good estimate
of the effect of screening.

The total contribution to the cohesive energy from
the polarization forces includes the dipole-quadru-
pole, quadrupole-quadrupole terms, etc. , which
arise on expanding u'{g, j', iu) to higher orders in

q and q'. These higher-order terms are also at-
tractive, but areusually much smaller than the
dipole-dipole term. The magnitude of these addi-
tional terms was estimated on the basis of the model
calculation of Fontana" for the rare-gas atoms.
At the equilibrium separation in the rare-gas
solids, the higher-order terms are approximately
20%%uo of the dominant dipole-dipole term. The im-
portance of the ion-ion interactions in determining
the elastic constants of the noble metals suggests
that the ion cores in these metals are not far from
a corresponding "equilibrium separation. " We
have therefore assumed that the higher-order terms
make a contribution which is 20% of the dipole-
dipole term, as indicated in Table 1. (Screening
of the higher-order terms is expected to be similar
to that of the dipole-dipole term. ) The magnitude
of the repulsive three-body forces was also esti-
mated using an appropriate generalization of the
usual expression1' to include conduction-electron
screening. These forces can be thought of as
representing the screening of the two-body van der
Waals interaction by the surrounding ions. In this
respect, they are analogous to the local-field cor-
rections considered previously. Since their mag-
nitude was found to be roughly 5% of the pair-wise
interactions, their contribution to the cohesive
energy was neglected.

Including the higher-order terms, the contribu-
tion of the polarization forces to the total cohesive
energy is estimated to be 8%, 14'%%uo, and 17%%uo in Cu,
Ag, and Au, respectively.

APPENDIX

+0 ~+1 1 t1 1 ~n +0 c'
~n 00

Here EQ is the energy of the noninteracting ground
state 40, T is the time-ordering operator, and the
subscript c indicates that only connected graphs
are to be summed. Gf all possible connected
graphs, only those containing both charge-density
operators p' and p' contribute to U(R), since the
remaining ones are cancelled by E(~). This re-
striction will be implicit in the following.

The nth-order contribution to (A3) is

( )n

( 1) t
dfy' ' ' dhn

+ &@0
1
~+i&i(4)' ' 'sci(t ) I @0).,

the ~ integration having been done explicitly. When

(3) is substituted for X, in (A4), a large number of
different terms is generated; a typical term will
contain m; factors of each component +, with

P, , m, =n+1. The permutation of the time argu-
ments (f„.. . , t„) among these factors gives n!
equal contributions. There is, in general, an ad-
ditional factor of (n+1) corresponding to the nurn-
ber of ways of positioning the external fixed point
t =0 on the graph. However, not all positions
necessarily give distinct contributions, since
identical contractions may arise. This possibility
must be accounted for by multiplying the contri-
bution of a given graph by an appropriate factor.

This counting problem is trivial when only the
limited set of diagrams leading to (9) are retained.
These diagrams correspond to keeping only the
lowest-order interactions with ions a and b and
only simple screening processes in the conduction-
electron gas. A typical diagram is illustrated in
Fig. 3(a); the shaded bubble represents an arbi-
trary polarization insertion and the appropriate
factor to such a diagram is (n+1)!. Fig. 3{b) can

In this appendix we present some additional
details in the derivation of Eq. (9). The analysis
is based on a straightforward -appbcation of many-
body perturbation theory'~ to the model introduced
in Sec. II. The interaction energy between ions g
and b is

~(R) =E(R) -E(-),
where E(R) is the ground-state energy of the sys-
tem at separation B. Making use of the Feynman-
Hellman theorem, E(R) is given by

1

E(R) =E.+ (A2
0

&ab

(a)

Aae

ba

ae be

(c)

a b

(b)

"1 ~
( )n

= Eo+ dA Q t
X" dt(. . .o "o n&

FIG. 3. Diagrams retained in the derivation of Eq.
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with

x v(q', (o)n'(q', q, ~)v(q, &),

be included as a distinct contribution if the sum of
Figs. 3(a) and 3(b) is divided by 2. Symmetric
diagrams such as shown in Fig. 3(c) similarly
have a weighting factor —', (n+ I) ~

Summing (A4) over all diagrams of the type in
Fig. 3, we obtain

&(q, &) = =; ~(q, ~) =I -u(q)ll(q, ~). (A3)

Here H(q, &) is the proper polarization insertion
which determines the dielectric function e(q, &) of
the electron gas. By choosing an integration con-
tour along the imaginary frequency axis in Eq.
(A5), we obtain Eq. (5) of Sec. II.
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