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General expressions for the electrostatic energy and its contribution to the first- and second-order elastic
coefficients are presented which can be used to evaluate the change in these quantities with arbitrary
homogeneous deformations. Results are given for a bec lattice under finite uniaxial deformation, i.e., the bct
lattice. All the quantities calculated are shown to satisfy the internal check that the bet lattice with

c/a =(2)"? is identical to the fcc lattice.

I. INTRODUCTION

An important part of the calculation of the elastic
constants of metallic solids is the evaluation of the
electrostatic energy of the jellium model (i.e., a
lattice of positive ions embedded in a uniform sea
of electrons). General expressions for the electro-
static energy and its contribution to the first- and sec-
ond-order elastic coefficients are presented which
can be used to evaluate the change in these quanti-
ties with arbitrary homogeneous deformations.
Results are given for a bcc lattice under finite
uniaxial deformation. Similar general expressions
have appeared elsewhere!'? but they are not direct-
ly applicable to the calculations presented here,

Fuchs®* was the first to use the Ewald trans-
formation of the electrostatic energy in an evalua-
tion of the second-order elastic constants of metal-
lic solids. In the Fuchs calculations the deriva-
tives of the transformed electrostatic energy ex-
pression are taken with respect to pure shear and
pure dilatational strain parameters. Following the
Fuchs method Cousins obtained the third-order
shear constants for bce and fce metallic struc-
tures, ® and the elastic constants through third
order for hexagonal metal structures®” with various
c/a ratios. Suzuki et al.® calculated the elastic
constants to third order for bce structures by first
taking derivatives of the untransformed electro-
static energy with respect to general Lagrangian
strain parameters. The resulting expressions
were then transformed to facilitate rapid con-
vergence of the lattice sums.

Using a general method MacDonald ef al.' (re-
ferred to as I) obtained elastic constants to third
order for bee and fec metallic structures. The
transformed electrostatic energy expression is
first simplified by choosing the Ewald convergence
parameter so that the reciprocal-lattice terms can
be omitted. The remaining parameters of the
transformed electrostatic energy are then ex-
pressed in terms of Green’s deformation tensor
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and derivatives taken with respect to Green’s de-
formation tensor.

By a similar general method Fuller and Naimon?
calculated the electrostatic energy contribution to
the elastic constants to third order for six metallic
and five ionic structures. Here again the parame-
ters of the transformed electrostatic energy are
expressed in terms of Green’s deformation tensor
but the derivatives are taken with respect to the
Lagrangian strain parameter. The elastic coef-
ficient expressions of Fuller and Naimon are ap-
plicable to nonmetallic lattices and in that respect
are more general than those of I.

In one respect the expressions of I are advanta-
geous in that the elastic coefficients are defined
for a homogeneously deformed state, whereas in
Fuller and Naimon’s? paper they are defined just
at the equilibrium state. Thus, only the expres-
sions in I are applicable to the evaluation of the
change in the elastic coefficients under finite ho-
mogeneous deformations. This paper illustrates
the usefulness of the approach used in I and serves
to clarify the interpretation of the expressions
given there for the elastic coefficients.

General expressions for the complete transformed
electrostatic energy and its contribution to the
elastic coefficients to second order are given in
Sec. II. The results for the body-centered-
tetragonal metallic lattice for ¢/a from 0.5 to 2.0
are given in Sec. III.

II. ELASTIC-COEFFICIENT EXPRESSIONS

Using the Ewald- Fuchs method the electrostatic
energy per atom of a homogeneously deformed
lattice of positive ions embedded in a uniform elec-
tron gas can be written®
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where the summation signs indicate triple sums
over the lattice sites and the prime on the lattice
sums indicates thatthe originlattice site is omitted.
R’ and K’ are the homogeneously deformed direct
and reciprocal-lattice vectors, respectively; Q

is the deformed atomic sphere volume; e is the
electron charge; and Z is the ion valence. The
abbreviation erfc denotes the complementary error

function and E is the Ewald convergence parameter.

For calculations of the variation of the electro-
static energy under finite homogeneous deforma—
t1on, it is convenient to write the variables R '
K’,, and Q in terms of the Green’s deformatlon
tensors, C,, and C;}, referred to coordinates of
the undeformed lattice configuration':

IR" —2“(”3”4.‘ st)l/z @)
K'E=(n/affmgm, C2L, (3)
Q=0,I3/%, IL=det|Cy . @)

In the above, a is the lattice constant, £ is the
undeformed atomic sphere volume, and I; is the
third principal invariant of C,

By writing the convergence parameter as E= n/ a
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and the undeformed atomic sphere volume as §,
=a®/2p, the explicit volume dependence of the
electrostatic energy can be factored out. Here u
is a parameter that depends on how many atoms
there are per unit cell (e.g., p=1 for bee and

u =2 for fcc). The resulting expression for the
electrostatic energy in terms of the Green’s de-
formation tensor is then
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The electrostatic energy contribution to the total
strain energy density is found by dividing Eq. (5)
by the initial volume, i.e., Zgpg=ELs/Qy. The
elastic coefficients are defined here as derivatives
of the strain energy density with respect to the
Green’s deformation measure evaluated at a homo-
geneously deformed state. The electrostatic en-
ergy contribution to the first-order elastic coeffi-
cient is then
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The electrostatic energy contribution to the second-order elastic coefficient is then
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In the above expressions the following relations <’9C',:1s Limal qa - -
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The coefficients in expressions (6) and (7) are de-
fined relative to the undeformed state since the
Green’s deformation tensor is referred to the co-
ordinates of the undeformed lattice. It should be
pointed out here that in I an expression similar

to Eq. (7) above [i.e., Eq. (7) of I| was incorrect-
ly described as being the contribution to the sec-
ond-order elastic coefficients relative to the de-
formed state. The distinction between coefficients
evaluated at the deformed state but relative to either
the undeformed or deformed state is significant
when dealing with finite deformations.

In general, the first derivative of the strain en-
ergy density with respect to a deformation measure
results in an expression for the thermodynamic
tensions (or “stress”) conjugate to the deforma-
tion. The particular type of “stress” depends on
the deformation measure used. The T} shown
in Eq. (8) are in fact the pseudostress components
introduced by Piola.? The actual stress compo-
nents at any deformed state are obtained from the
derivative of the strain energy density with re-
spect to the strain measured from that state. 1
Thus, the actual stress components ¢§7 and the
pseudostress components of Eq. (6) can be related
by

ms(c) - 5172 2%i 0%

S
tij 3 aar aas Tf's (C) )

12)
where a; and X; are the coordinates of the unde-
formed and deformed states, respectively. Equa-
tion (12) for the actual stress ¢ F(C) is the general
expression for the electrostatic energy contribution
to the first-order elastic coefficients defined

o
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FIG. 1,
tures.
is illustrated for bet with ¢/a=v2,

Unit cells for bee, fee, and bet lattice struc-
The relationship between the fcc and bet unit cells
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FIG. 2, Variation of the electrostatic energy in units
of Z%%/a as a function of the axial ratio c/a, here a is
the “undeformed” bcc lattice constant.

relative to any deformed state.
The true general expression for the electrostatic

energy contribution to the second-order elastic

coefficients defined relative to any deformed state

can likewise be found by substituting Eq. (7) for

CT} into

9

X
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III. RESULTS FOR bct LATTICE

To obtain results for the body-centered-tetragonal
lattice, a bcc lattice was subjected to uniaxial de-
formation along one of the edges of the unit cell
(i.e., along @y, see Fig. 1). The transformation
equations representing this uniaxial deformation
are

Xy=xy, Xy=az, and Xg=a;, (14)

where as before g, and X; are the coordinates of
the undeformed and deformed states, respectively.
(Note that the ratio ¢/a=2.) Since the Green’s
deformation tensor can be defined as®
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aX™ axX™
Cn—‘g&{* b, (15)

the values for uniaxial deformation are given as
Cy=2, Ch=1/22, I,=2, (16)

and C,;,=Cj;=3,, for all other 7 and j.
The electrostatic energy for the bet lattice is
obtained from Eq. (5) using Eq. (16), i.e.,

Efs=E4s(Cp=2*, Cii=1/2,..., etc.) .
am
Using Egs. (14) and (16) together with the general
expressions (6) and (12), the relations for the
electrostatic energy contribution to the first-order
elastic coefficients for the bct lattice can be repre-
sented schematically by

Cil=1/x%,.
Cil=1/2,.

where ¢ =35, and all other ¢§5=0,
Similarly, starting with the general expressions
(7) and (13), the relations for the electrostatic en-

HE =TT (Cyy =22,
=1/ TE(C, =2,

..,ete.),
(18)
.,ete.),

(a)
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FIG. 3.
atomic sphere radius in the deformed state.
structures, respectively.
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ergy contribution to the second-order elastic coef-
ficients for the bct lattice can be represented by

B =2CES(Cy =2, Cil=1/%, ... etc.),

Coa=A"CERa(Cy=2, Cii=1/X, ..., etc.),

19
el = ACi3.(Cl =22, Cii=1/%,...,etc.), (19)
c 3= A1CER3(Cry = 22, 11—1/7\2 ., etc.),

where ¢33, = C3533, C1lize=Cliss and all other ¢,
=0. The relations represented by (17)-(19) were
programmed on an IBM 370 computer and results
obtained for the axis ratio c¢/a from 0.5 to 2.0.

There are several ways the values of the com-
puted quantities can be presented. For instance,
the electrostatic energy in Eq. (5) is expressed in
terms of the dimensions of the “undeformed” bce
lattice constant a, i.e.,

Es=(Z%%/a) q,, (20)

where the expression within large parentheses in
Eq. (5) is written here as @, and is known as the
geometric coefficient. The plot of a, for c/a

(b)

-L79ll -1.7909
1 ]

ELECTROSTATIC ENERGY
-1.7914

-1.7916

T T T T T T 1
0.9 1.0 [ 1.2 1.3 1.4 1.5 1.6
c/a

-1.7919

Variation of the electrostatic energy in units of Z"’e2/2';"s as a function of the axial ratio ¢/a, where 7, is the
The minima in (b) at ¢/a=1 and c¢/a=v2 correspond to the bec and fce
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TABLE I. Electrostatic energy and its contribution to the elastic coefficients for body-centered-tetragonal structure.
Electrostatic energy entries are in units of 2262/273 and the elastic coefficient entries are in units of 2232/21'59, where
vs and Q are the atomic sphere radius and volume, respectively, in the deformed state.

Electrostatic
energy 121 ty Cyq Caa Cio Ca3

—1,688771841 0.119060694 0,784855573 1.158307548 —1,812381895 —0,757744481 0.215559 989
—~1,750183044 0,343160770 0.703511137 0.223721988 —1,636578260 —0,626602150 0.152 646 999
~1,777169870 0,474833518 0.651168176 —0,422074576 —1,524120561 —0,501 212989 0,071 829 022
—1.787861712 0.547762737 0,620049488 —0,866892503 ~—1,447763108 —0,388197853 —0,024187502
—1,791270047 0.583557958 0,603856045 —1,157606812 —1,386999107 —0.296533531 —0,128 035495

o
~
Q

© w30 v

1,0* -1,791858511 0,597286170 0.597286170 —1,328364763 —1,328364763 —0,231746874 —0.231746874
1.1 —-1,791693349 0.599512845 0,596090252 —1,408721977 —1,264466865 —0.194908279 —0,328895611
1.2 —-1.791571097 0.597404865 0,597083116 —1.424710901 —1,192239909 —0.183751847 —0,415257592
1.3 —1.791639883 0.595567318 0.598036282 —1,398286443 —1,111245318 —0,194207756 —0.488655773
1.4 —1.791744588 0.596741574 0,597501507 —1,346955267 —1,022385777 —0.221634727 —0,548484016
v2r —1,791747230 0,597249077  0,597249077 —1,338452706 —1,009197246 —0,226647262 —0,555902722
1.5 —1,791614797 0.602372350 0.594621224 —1,283915457 —0.927075369 —0,261600797 —0.595187505
1.6 —1.790962484 0,613045169 0,588958657 —1,218569425 —0,826769595 —0,310283042 —0,629823336
1.7 —1.789528445 0.628807414 0,580360516 —1,157206253 —0,722737162 —0.364607995 —0,653736390
1.8 —1.787100475 0.649393678 0,568853398 —1,103701637 —0.615977200 —0,422239699 —0.668 343296
1.9 —1.783516663 0,674377421  0,554569621 —1,060149297 —0.507215400 —0,481491483 —0.675001979
2,0

—1.778661500 0,703268640 0,537696430 —1,027387222 —0.396937559 —0,541209349 —0.674 942382

3c/a=1 corresponds to bcc,
®c/a=v2 corresponds to fcc referred to the rotated axes Xy, X,, and X; of Fig, 1,

0.5955 0.6015 0.6075 0.6135

0.5895

T T 1
0.5 1.0 1.5 2.0 0.9 1.0 1.1 1.2 1.3 .4 I|.5 1.6

c/a c/a

0.5835

FIG. 4. Variation of the first-order elastic coefficients ¢ and #, in units of Z%¢*/2%,Q as a functionof the axial ratio
c/a, where 7s and Q are the atomic sphere radius and volume, respectively, in the deformed state. The points in (b)
where ¢y =¢, correspond to the bcc and fce structures as well as to the intermediate metastable structure,
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from 0.5 to 2.0 is shown in Fig, 2. With this par-
ticular representation of the electrostatic energy,
however, it is not apparent that for ¢/a=v2 the
bet lattice is identical to the fce lattice (see Fig. 1).
In order to sensibly display the variation of the
electrostatic energy and its contribution to the
first- and second-order elastic coefficients, the
computed values are scaled to the “deformed”
atomic sphere radius 7, and volume Q=% 773,
That is, the results are presented for the particular
bet lattice at equilibrium and not in terms of the
“undeformed” bcc lattice dimensions.
For example, the electrostatic energy can also
be written

Ehs=(Z2%3%/27 )ay , (21)

where a, is the geometric coefficient relative to
2r,. The variation of a, with ¢/a from 0.5 to 2.0
shown in Fig. 3(a) now exhibits a broad relatively
flat region for a, when the axial ratio c¢/a is be-
tween 0.9 and 1.6. Figure 3(b) isagreatly expanded
plot of this region showing the minima correspond-
ing to the bee (¢/a=1) and fcc (c/a=v2) structures.

.2

7 (a)

C22

TR

-1.2

[+0]
T‘ T T 1
0.5 1.0 1.5 2.0

c/a
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In Table I the values of the electrostatic energy in
units of Z%e?/2r at these minima c/a=1 and c¢/a
=vV2 agree with the published values for the bcc and
fce structures, respectively.!'?

Also included in Table I are the values of the
electrostatic energy contribution to the first- and
second-order elastic coefficients listed in terms of
the Voigt reduced notation and expressed in units
of Z%?2/2r ;Q. The plots of the first-order elastic
coefficients for ¢/a from 0.5 to 2.0 are shown in
Fig. 4(a). The detail plot in Fig. 4(b) of the re-
gion 0. 9=c/a=1.6 shows that, as required, #,
=1, for the bce and fcc structures as well as at the
intermediate metastable structure. The graphs of
¢y, and ¢y, in Fig. 5(a) and ¢, and ¢y in Fig. 5(b)
cross at ¢/a=1 and the values there (see Table I)
correspond to the proper ones for the bece struc-
ture®. The match of ¢y, and c,, as well as ¢, and
Cag for the fcc structure (c/a=v'2) is not apparent
from Figs. 5(a) and 5(b).

In order to see that the second-order elastic
coefficients satisfy the requirement that bet (c/a
=v2)=fcc, the following coordinate transformation

(b)

0.030 0.230
1

-0.170

Ci2r Ca3

-0.370
]

-0.570

T T 1
0.5 1.0 1.5 2.0

c/a

-0.770

FIG. 5. Variation of the second-order elastic coefficients in units of Z%¢%/27,Q as a function of the axial ratio ¢/a,
where 7, and Q are the atomic sphere radius and volume, respectively, in the deformed state. (a) ¢y and ¢y, () ¢4y

and cy3.
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is needed (se¢ Fig. 1):
X/ =X,
X;=(1/V2) (X, - X;) (22)
Xh=1/V2)(Xy+X,) .

Using the transformation equations (12) and (13) the
relations between the elastic coefficients for the
bet (unprimed) and fce (primed) coordinates are
th=ty, v t;z=téa s Cim =Ci11 5 €122 Craze »

€222 = (Caap +3C3335) (23)

2061

roo_ 1,
C 2233 = 2 (Canpp — Cangg) -

The entries in Table I for ¢/a=v2 confirm that

€ 1111 =C 5325 and that ¢ 1155 = C g and that these val-
ues corrvespbnd to the fcc structure.® Thus, all
the calculatiohs satisfy the internal check that
bet (¢/a=V2)=fcc.
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