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The resonant and nonresonant effects of paramagnetic spins on acoustic velocity and attenuation are treated

self-consistently and on the same footing. The acoustic waves are treated using elastic continuum theory and

generalized Bloch equations are used for the spins although the same results can be obtained more formally

using quantum-mechanical equations of motion. and time-dependent correlation functions. Detailed formulas

are derived for angular dependence and magnitudes of both resonant and nonresonant effects. Nonresonant

velocity and attenuation changes are related to adiabatic and isothermal regimes and the transition betmeeri

the two regimes. %e suggest that nonresonani experiments can be used to measure spin decay rates and spin-

phonon coupling constants in regimes or substances where resonant techniques cannot be used.

I. INTRODUCTION

Resonant spin-phonon coupling or acoustic mag-
netic resonance is used to study the internal struc-
ture of spin systems embedded in a lattice and has
been adequately treated in the literature, usually in
a, way that emphasizes the quantum-mechanical na-
ture of the spins. ' On the other hand, the internal
structure of molecules in fluids is studied acousti-
cally using nonresonant techniques and is usually
viewed in terms of rate equations and thermody-
namic derivatives. 3 In this paper we treat both the
resonant and nonresonant effects of paramagnetic
spins on the acoustic velocity and attenuation on an
equal footing. Our unified point of view is that both
the resonant and nonresonant effects can be under-
stood in terms of the coupling of acoustic modes to
spin normal modes. We point out the way in which
different and distinct spin correlation functions or
spin normal modes couple differently to the acous-
tic modes a.nd derive detailed formulas for a sys-
tem. with, cubic symmetry. In particular, we em-
phasize that the "zero-frequency" resonant modes
or longitudinal spin cox'relation functions can cause
Donresonant velocity and attenuation changes.
These changes can be used to study spin decay rates
and spin-phonon coupling consta, nts that may be dif-
ficult ox" impossible to study in resonant experi-
ments.

In the rest of this section we will desex'ibe the
spin-phonon Hamiltonian used and discuss the spin
variables in terms of effective normal modes.
Section II contains a calculation of the changes in
velocity and attenuation on an arbitrary acoustic
mode due to the spins. In Sec. ID we. apply the for-
malism to a. specific lattice mode, connect up our
formalism with other treatments, and suggest some
possible experiments.

In this paper we shall consider only the interac-
tion of spina in a cubic crystal environment with the
lattice vlR the spin-phonon Hamiltonian
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where 8 is R spl. n operator, 8 ls RD external mRg-
Qetlc field~ Rnd p~g ls the elRstlc strRln

~Q~ ~Q~
(2)

where u is the local lattice displacement. Latin
indices denote Cax'tesian directions which coincide
with the symmetxy axes of the crystal and a px'i. me
on a summati. on over z and j means that the terms
with 5=j are omitted. This is the most general
form possible fox a single spin in a cubic environ-
ment interacting with the lattice linearly in the e;,
The first three terms correspond to a modulation
of the spin's g factor by the lattice and the last two
terms correspond to the acoustic modulation of a
spin-orbit interaction ol Rn interaction of tile splns
quadrupole moment with electric field gradients
generated by the lattice. Equation (1) does not de-
scribe the most general form of spin-phonon cou-
pling in that it does not include the lattice modula-
tion of spin-spin interactions between spins at dif-
ferent sites. Finally, although we use the notation
and vocabulary appropriate to electronic spins, the
treatment is also valid for nuclear spins.

It will be our approximation to treat the lattice
entirely by elastic continuum theory. In fact, this
is entirely rigox'ous and the results obtained are
ldentlcRl to tllose obtRlQed through quantizing the
1Rttlce lD the hRrmonic approximation. Tllls point
will be considered again near the end of Sec. II.
The treatment can also be easily generalized to
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substances in which cubic symmetry does not ob-
tain.

Our treatment of the spin variables is somewhat
more involved. We assume than an external mag-
netic field on the system H makes the polar angles
(8, Q) with the crystalline axes. In this case it is
convenient to use the direction of H as the quantiza-
tion axis for the spins but still use the crystalline
axes for the lattice. In addition, we wish to ex-
press the spin operators in terms of the irreducible
tensor spin operators ' A, , where I m I

& l and
0& I &2S. Terms in Eq. (1) linear in the vector spin
operators 8; are proportional to dipole or l =1 op-
erators and terms quadratic in the spin operators
are proportional to quadrupole or / =2 operators.
The irreducible spin tensor operators as applied to
the type of problem being considered here are ex-
tensively discussed in Ref. 6. Under a wide variety
of conditions these operators correspond to normal
modes of the spin system and Bloch-like phenome-
nological equations can be written for them. Even
in cases where the A, do not diagonalize the spin
system, they are a convenient starting place and
their use in no way restricts our treatment.

The appropriate transformation can always be
carried out and will result in Eq. (1) being ex-
pressed as

d(y; 0) = sin8 sing/(3g, )'t

d(e; 0) = cos8/(3a, )' ',
where aq ——[S(S+1)] ~ . The transformation coeffi-
cients d(i, j; m) are given in the Appendix of Ref. 5
and will not be reproduced here.

In the continuum limit the equations of motion for
the lattice can be modified by turning the spin-pho-
non Hamiltonian into an additional energy density.
Effectively this is accomplished by multiplying
3C, p by n„ the density of spi.ns, and replacing A,
by (A, ), the thermal average of A, . This is a
valid procedure if the spins form a lattice or if the
spins are randomly distributed and the average in-
terspin distance is much less than an acoustic
wavelength so that fluctuations in spin density can
be ignored. Thus, there is an additional elastic
energy density U~ ~ associated with the spins which
is given by the equation

Ua~= Q n f, (ij)e (A, ).
&,m, i&y

The equation of motion for the lattice displace-
ment u,

[;)=
X, , = Q f, (i j)e;,A, (3)

where p is the crystal mass density, is obtained in
the usual way. The additional energy density giv-
en by Eq. (6) yields an additional force r f, , where

where l =1, 2 and nz takes on integral values Inc l&l.
At least in simple spin systems the form of Eq. (3)
emphasizes the coupling of the acoustic modes rep-
resented by e;,. to the spin modes represented by

A,

II. CALCULATION

In this section we shall obtain the changes in an
arbitrary acoustic mode due to the presence of the
spins. As discussed at the end of Sec. I, the spin-
phonon Hamiltonian for a single spin can be trans-
formed to Eq. (3). A straightforward transforma. —

tion for the coefficients f, (i, j) yields

(i, j) = d(i, j; m)[2Ggg6;„+2G44(I —6;,g)] (4a)

(i, j) = tJ.,Hid(i; m)d(j; 0)[(gpss-gl2)6;„

+2@44(1 —6; )](3aq) +gq26;, (3&x) 4,0] .

(4b)
In these equations the d(i, m) transformation coeffi-
cients are

d(g; + 1)= + (cos8 cosp +i sing)/(6a&)'~',

d(y;+ 1) =+ (cos8 sin&]&+i cosp)/(6aq)'~',

d(a; + 1) = a sin8/(Ga&)'t',

d(x; 0) = sin8 cosQ/(3aq)

8(A, )tf,. = g n. f,.(i, j) (6)

—r,„[(A, (t))-(A, (t)) ], (9)

where ~o = pH, z is the gyromagnetic ratio for a
spin, and (A, (t))0 is the instantaneous local equi-
librium value of (A, (t)). All of the terms except
the one proportional to I', arise rigorously from
taking the expectation value of the Heisenberg equa-
tion of motion for A, . The last term includes spin
relaxation phenomenologically and we assume that
the (A, ) are good normal modes of the spin system
with decay rates I,

We shall now derive semiphenomenological
Bloch-like equations for the (A, ). This will be
generalized to a more rigorous formulation in
terms of time-dependent spin correlation functions
later in. this section. However, the present treat-
ment is probably easier to understand for most
readers and makes the physics of the system easier
to follow. For simplicity we assume that the spins
feel an external magnetic field Hz, a driving torque
due to X~ ~, and some intrinsic decay mechanism.
As in Ref. 6, this leads to effective Bloch equations

(„(,)) ([Ar. (t) &s-p]&
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= (im m ~ i', ) (- (i Q f,"„(i,i)e;,), (10)

where p= 1/@7' and f& = ff . By comblnl. ng Eqs.
(2), (7), (8), and (10), we obtain the wave equation

((d'- v(2(q')u;=-- "-' Q f, (i, j)fP (kf)
P i,m, g, u&i

qy(qk"i+ql "k)( k5k, i)+!m((d) i

(»)

F, ((d) =(m(do- ir, )/(m(do- (d —iI', ) (l2)

and vo is the acoustic velocity in the absence of the
splns.

At this point we wish to point out that we have
performed exactly the same calculation using har-
monic quantized phonons and time-dependent spin-
correlation functions. This calculation is similar
to calculations already in the literature. ' The re-
sults are exactly the same as Eq. (11) except that
the phenomenological spin correlation functions
E, ((d) are replaced by the exact spin correlation
functions g, (q, (d) with the prescription

P&,.(~)- y,.(q, ~), (18)

In the rest of this paper we shall assume that the
acoustic wave has the space-time dependence
exp[i(q ~ r —(dt)]. All of the quantities in Eq. (9)
can be computed by methods identical to those used
in Ref. 6. In the high-temperature limit (kT» iI(do),
some straightforward algebra yields

(- i(d+im(do+I', )(Ai (f))

the lattice coordinates. In this case the dispersion
relation, Eq. (11), reads

,I=ad si. n' e[F, 3((d)+E, ,((d)]

+sin'28[/2 i((d)+F, i((d)]

+ -', (3 cos'8 —1)'F, 0((d)],

where

(16c)

~ =—„',(-,'G„)'S(S+I)(2S I)(2S+8) . (1~)

By decomposing the expression in this fashion it is
easy to see the contributions from 3=1 and 1=2
separately. In addition, the real and imaginary
parts of I', are F, and I',„, respectively, where

((d) —1 = —(d((d —m(do)/[((d —m(do) + I', ],
(18a)

Ei ((d) = (dT i /[((d —m(do) + I i ] (18b)

~Of = — ~ i' ~~ ~ -~&~ (d ~

$ ~ fit

.Assuming that the right-hand side of Eq. (15) is
much less than voq, the real and imaginary parts
of this expression divided by 2p~q" are equal to
&v/v and —&o'/q, respectively, where &v and &n
are the velocity shift and attenuation change due to
the spine. Using Eqs. (4), (5), (15), and the Ap-
pendix of Ref. 5, we obtain

[(&v/v) —i(& n/q)] = - (Pii, /2pv', )(I, +&,), (16a)

fi = [kP I& 8(8'+ I )]I 2 (a'll - g'la) s'" 8[Fi,i((d )

+ &i, i(~)]+[(Aii -A'i2) cos's+ai2]'Fl, o(~H
(16b)

m (e

g, „(q, (d) = —' dt e '"'([&, (q, i), &', (q, 0)])
0 (14)

In fact, it is somewhat obvious that such a replace-
ment must be possible since the driving term in the
Bloch equation given by Eq. (9) is exact because it
was obtained from the Heisenberg equations of mo-
tion. Since only the deriving term determines
which correlation functions enter an expression,
the rest of our phenomenological treatment deter-
mines only the form of the correlation functions.
Thus our equations can be generalized to spin sys-
tems with greater structure including non-I orentz-
ian. decay and spin-spin interactions.

III. DISCUSSION

The results given in Eq. (11) are valid for any
lattice mode and thus yield quite general angular
dependences for resonant and nonresonant disper-
sion and absorption. In order to discuss the re-
sults in a less cumbersome manner, we will re-
strict the discussion in the rest of this paper to
longitudinal phonons traveling in the z direction in

Equations (16) describe the usual m.= 1 and m =2
acoustic resonances from the (1=2) or quadrupolar
terms. It also describes a distinct m =1 reso-
nance from the (I = I) or dipole term. This reso-
nance corresponds to a distinct normal mode which,
in general, has a different line shape or decay rate
than the (I = 1, m = 1) mode.

At large enough frequencies all of the F, ((d) are
vanishingly small and &v/v is zero. In this limit
the spins are decoupled from the lattice since they
cannot respond to such a high frequency. This cor-
responds to the isothermal limit in that the spins
remain in thermal equilibrium because they are un-
affected by the lattice. In the opposite limit of
(d- 0, all of the Il, ((d) are one. This corresponds
to the adiabatic limit since the driving frequency is
so slow that the spins adiabatically follow the lat-
tice and remain i.n local instantaneous equilibrium
instead of thermal equilibrium. In other words,
with respect to Eq. (9), (A, )=(A, )o. Note that in
this limit there is no attenuation and that I, =-,' ~
and is independent of angle. This is necessary
since H should have no effect in this limit. I& still
depends on H since this quantity came from cou-
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pling terms which explicitly depend on H.
Finally, let us consider the case where e «coo

and so the terms with m & 0 are trivial. If we .focus
on just the k=2 contributions we obtain

I, = a (3 + -', (3 cos'8 —1)'[F, 0((u) —1]) .
In this case the att;enuation is proportional to

COT /((d + f ) =(07'/(1 +(d 7 ),
where 1'=1/v refers to the l =2, m =-0 mode. Simi-
larly, the velocity change is proportional to

may be valuable in. studying the spin relaxation. rates
either in systems where the resonant frequencies
cannot be reached or in systems where inhomoge-
neous broadening entirely. masks intr insic line-
widths, In the latter case the resonant frequencies
of the yn ~0 modes are severely and randomly al-
tered but the w --0 mode remains essentially unaf-
fected. In additj. on in many cases l"„. 0 is magnetic
field and temperature dependent in such a way that
the region, near +7- I. can be passed through without
val ylng the fr eguency,
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