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Theory of phonon dynamics near a charge-density-wave instability*
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A dynamical Landau theory is proposed to describe the coupled motion of phorions and charge-density waves
{CD') near the CD& instability in transition-metal dichalcogenides. The dynamic structure factor is shown
to exhibit a Kohn anomaly and a diverging central mode.

I. INTRODUCTION

The anomalous properties of transition-metal
dichalcogenides, attributed to the formation of
charge-density waves (CDW), have been of great
interest in recent months. '~ The CDWs have been
studied on a microscopic basis by Overhauser and

by Chan and Heine. The Chan-Heine theory pre-
dicts soft-mode behavior of the lowest longitudinal-
phonon branch; however, neutron-scattering
studies on the superlattice formation in 2II-NbSe2
and 2H-TaSea showed a Kohn anomaly in the longi-
tudinal-phonon branch but no soft-mode behavior.

Static~ and dynamic Landau theories have been
developed by McMillan to describe the CDWs, and
predict both the sequence of normal-incommen-
surate-commensurate phases separated by first-
order transitions and the existence of oyerdamped
excitations of the CD%. The order parameter in
the theory is a linear combination of charge-den-
sity-wave and phonon-displacement amplitudes.
Moncton et al. 6 have independently proposed a sim-
ple form for the Landau theory.

In order to study phonon dynamics, we formu. late
a dynamical Landau theory treating the charge-
density-wave amplitude and the phonon displace-
ment as independent dynamical variables. The
dynamical equations in the normal phase are then
solved and the dynamic structure factor is com-
yuted. The theory predicts some softening of the
longitudinal-phonon mode (the Kohn anomaly) and
shows that there are two distinct regions where
the spectral function exhibits different behavior',
in one of the regions the theory shows the growth
of a central (~ =0) component in the dynamic struc-
ture factor.

II. FORMULATION

The CD% order parameter g is a complex scalar
with the d-band conduction electron density given
by

Throughout this paper we consider a single layer
of the metal; all quantities referred to are, there-
fore, two dimensional, The phonons are described

by the normal-mode coordinates Q„where the
transition-metal atomic coordinates are given by

6 QQ'e' ' n

We consider only one longitudinal-phonon mode
for simplicity, The free energy may then be
written as

E=g [e,f,*K, + v, (t,*Q, + f,Q,*)+v, Q,*Q,],

where the first term is just the unrenormalized
form of the expression for the free energy given
in Refs. . 7 and & and can be written in an analo-
gous manner,

e, = 2a+e(Qz ~ 0 —&|) +f (Qsx9) .
The tilde is used to denote unrenormalized param-
eters. The second and third terms represent the
electron-phonon coupling and the lattice elastic en-
ergy, respectively. Terms of higher order than
quadratic in Q and & are unimportant in the normal
phase and have been neglected. a is taken to be of
the usual form,

a=a'(T- T*)

(where T* is the unrenormalized transition tem-
perature and a' is a constant), while e and f are
taken to be constant. q, is the wave vector of the
CD%' in the incommensurate state. The three
CDWs act independently in the normal state and
we treat only one. The kinetic energy of' ionic mo-
tion is

where the dot denotes partial differentiation with
respect to time. The zeroth-order phonon fre-
quency is given by

~', =(Tc, /M )' '

In the normal state the coupling to the long-
wavelength components of the electron-charge den-
sity, which may be treated as an incompressible
fluid and described by a velocity field, is unim-
portant and therefore we omit the electron-fluid
velocity as a dynamical variable. The dissipative
nature of the CDW motion is described in terms of
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the dissipation function, E=Q (K, + z,», —2z,v, )$,*$,

k=rP (g,' 4+x, &,*); (io)

where g, (f) is a Gaussian-distributed random vari-
able. It can be represented by an ensemble of
functions g,"(f) with the ensemble averaged corre-
lation function

&g,*(f)g„(f'))= (4&&/r) 5;,q, 5(f- f').

The equations of motion obeyed by Q, and g, are
then

From Ref. 8 an order of magnitude of y may be
obtained from the equation

r po-/2elo,

where o is the electrical conductivity of the metal.
To calculate the dynamic structure factor, we

need to consider the system in thermal equilibrium
with a reservoir. This is achieved by adding on a
random thermal force which pumps power into the
system to counteract the power given up to the
reservoir, represented by D. The thermal force
term is

», = }t,[1+(e,'/»,')]'+ O(r —r*), (16b)

where W, the renormalized transition temperature
is given by

P" = T++ 21Jq /kq 0 (17)

and fox the particular normalization chosen for P,
and 5, in Eqs, (13), a', e, and f are equal to their
unrenormalized values used in Eq. (4). Thus we
drop the tilde from these parameters hereafter.

As a result of coupling of the CD% and the ion
motion, the normal modes of the system are linear
combinations of the two; the order parameter used
in previous papers" is to be identified with P„
whose eigenvalue goes to zero at the transition
temperature. The other mode is a high-frequency
mode at these temperatures, as can be seen from
Eq. (16b), and does not take part in the critical
behavior.

+(Kq+zq~eq+ 2»qUq)6+5q g(eqfq+$ + Kq5q+5q)

(»)
where g, and a, are renormalized parameters.

Near the (renormalized) transition temperature
T*, we can solve for the renormalized parameters
by linearizing Eqs. (14) and (15) in (T T*-). We
obtain, after some straightforward algebra, the
result

s, = ~a'(T- T*)+e(q, q —q, ) +f(q, xq), (16a)

8I" 1 8D 8R0= — ——~+
ef, 2 eg, Bf, ' (12b) IY. DYNAMICS: THE DYNAMICAL STRUCTURE FACTOR

where the inertial forces are on the left, and the
elastic, dissipative, and thermal-force terms are
on the right.

III. STATIC BEHAVIOR: RENORMALIZATION OF
TRANSITION TEMPERATURE

0, =(&,-z,Q, )/(1+»', ),

5e = (Qe+ &e&a)/(1+ &,') ~

(13a)

(13b)

where

2tfq/(K~ —eq)
1+[1+4v,/(», —e, )']'~

The free energy in terms of P, and 5, is

Before we go on with the dynamical problem, we
consider the normal modes of the system in the
static case. The free energy of Eq. (3) is easily
put into a diagonal form by introducing new field
variables P, and 6, which are linear combinations
of 1, and Q„

The Eqs. (12) are linear in g, and Q, and are
easily solved by Fourier transforming all variables
in time, e. g. ,

4, (t) = (1/2w) drub, (cu) e'"' .

For Q, (co), we obtain

[- (f~+ 24,/y) (», —m, ~')+ 2v,'/y] Q,(~) = ~,g, (~).
(is)

The normal modes are just the roots of the poly-
nomial on the left of Eq. (18). Far away from the
transition where effects of the coupling are not
drastic, this yields an overdamped CD% mode,
and damped phonon modes with frequencies + co„
with (d, slightly smaller than the zeroth-order fre-
quency ~,. To look at the details of the behavior
of the frequency and width of the phonon mode, we
look at the dynamic structure factor S(q, &o), which
is just the Fourier transform of the correlation
function (Q,(t)Q, (f')).

%'e may calculate the correlation function for a
given random force g," using Eq. (18) and then
perform an average over the ensemb1e of functions
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g," according to Eq. (11) to get

2p»/~, '~,
[P- (1/~,'r, + P)(1-x')j'+x'(1-x') '

(19)
~~~~~ x = ~/~.' is the reduced frequency,

~, =y/[a'(T- T*)+2e(q q, -q, ) +2fi qxq, i ] (20a)

is a relaxation time characteristic of the dissipa-
tion process, which diverges at the actual (re-
normalized) transition temperature W as
(T- T+), and

p= 2v~/pK &dq

is a dimensionless coupling constant (approximate-
ly independent of q).

Equation (19) is the result of an exact solution
of the dynamical equations of motion. In order to
discuss its consequences, we consider the two
frequency regimes (d,7, «1 and (d, 7', » 1 separate-
ly. Fax from T*, z,7, «1, and in this fast re-
laxation case, the CD% adiabatically follows the ion
motion. S(q, ~) has the usual two-peaked behavior
with poles (phonons) at the frequencies given by

(dz —(0 (1 —pX&T ),

which gives a Kohn anomaly which progressively
deepens as the temperature is lowered. This is
the behavior predicted by microscopic mean-field
models which use the Born-Qppenheimer adiabatic
approximation. On the other hand, when one gets
close enough to T* that (d,v, is greater than unity,
the CD' can no longer follow the ion motion, and

Eq. (19) predicts a broadening of the phonon peak
with no further softening, and the appearance of a

zero-frequency peak in S(q, u&). At u&=0, S(q, tu)
diverges as (T- T*) 2 and the integrated intensity
diverges as (T —T*) '. Thus the arrest of the soft
phonon and the appearance of the zero-frequency
mode result from the breakdown of the adabatic
approximation, and the measurements to date are
not in conflict with the Chan-Heine theory. This
theory, with its emphasis on Fermi-su&'face nest-
ing and a strong electron-phonon interaction, seems
to be a viable microscopic model for CD' forma-
tion in the dichalcogenides. High-resolution neu-
tron measurements should provide an important
test of the theory.

Moncton et a/. report the observation of quasi-
elastic critical scattering in the normal phase of
2H- TaSe2. In order to distinguish scattering from
thermal fluctuations treated here (which is dynam-
ical) and scattering from impurity driven fluctua-
tions treated earlier (which is static), it is nec-
essary to measure the width of the central mode',
this measurement is not yet available.

Dynamical central peaks are observed in many
structural transitions. Yamada ' and co-workers
have studied a model of the structural transition in
ND48r where the orientational motion of the ND4
couples to the phonon coordinates. They obtain an
expression similar to Eq. (19) for the dynamic
structure factor. It appears that any model with
an internal relaxing order parameter coupled to
the phonon coordinates will produce a similar soft-
phonon-central-peak behavior. The present model
shouM be applicable to the Peierls transition"
model of tetrathiof ulvalene- tetracyanoquinodimeth-
ane" (TTF-TCNQ) and the platinum salts" (except
for one-dimensional fluctuation effects), and with
modifications to the Gorkov model of the struc-
tural transition of V33i and Nb38n. '
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