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Fermi surfaces and phase shifts of PdIn and other P brasses
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The de Haas-van Alphen frequency branches of PdIn are explained with a Fermi surface similar to those of
CuZn and AgZn. Some new measurements provide better information in the region near (100). The Fermi-
surface areas of PdIn and Agzn are fitted with adjustable phase shifts in an augmented-plane-wave formalism.
The phase shifts of PdIn are also fitted while varying the energy parameter. The phase shifts and Friedel sums

behave as expected when the methods used previously for monatomic metals are generalized to diatomic

ordered alloys. The results suggest that —1 electron is shifted from the In to the Pd atom.

I. INTRODUCTION II. P BRASSES

The three P brasses CuZn, AgZn, and PdIn have
been studied experimentally for many years but

only recently has the correct identification of the-
oretical and observed de Haas —Van Alphen (dHvA)
branches been made. Data taken by pulsed-field
methods were presented by Jan, Pearson, and

Saito for all three alloys and by Karlsson for
PdIn and CuZn. The amount of data was much in-
creased when the field-modulation technique was
used to remeasure first PdIn and CuZn, and then
AgZn. 4 The similarity between the areas of the
three alloys when expressed in units of (2m ja)2 was
noted immediately. ' The free-electron model sug-
gested a closed first-band section mhich should be
observed in all angular positions. Various orbits
were identified with this piece, leading to partial
explanations of other branches. Unfortunately, the
orbit actually arising from the first band was seen
only over a very restricted range in CuZn and in
broken sections in PdIn. The more complete re-
cent data in3 PdIn and AgZn allowed inversion of
the frequency branch and the expected first-band
shape was found. There is still no explanation for
the absence of the first-band signals over large re-
gions in CuZn. The band structure of Skriver ' on
CuZn agreed quite well with experiment and made
the orbit identifications obvious. A similar calcu-
lation of AgZn. agreed in the same way. This pa-
per presents some new measurements on PdIn taken
to clarify its Fermi surface in light of the two pre-
vious band structures and shows how the PdIn Fer-
mi surface can be explained. Furthermore, a
phase-shift parametrization is used to fit the Fermi
surfaces of PdIn and AgZn. By fitting certain radii
of the PdIn surface, it is shown that the phase
shifts and Friedel sums as a function of energy be-
have in a similar way to those found in monatomic
metals by other workers, thereby extending to or-
dered alloys this useful technique of dHvA data
reduction.

The p brasses form in a CsCl structure with two
atoms per cell. If one atom is taken at (0, 0, 0) then
the other is at (-,', —,', —,') in the primitive cubic cell.
For both atoms identical, this arrangement is body-
centered cubic. The three alloys discussed in the
paper all have three electrons per cell (in PdIn, In

contributes all three electrons and in AgZn and

CuZn, Zn contributes two electrons) and a Bril-
louin zone and Fermi surface similar to that shown

in Fig. 1. The prominent orbits will be discussed
briefly here to avoid confusion in the later sections.
The second-band electrons form the large speckled
surface in Fig. 1 where the front section. has been
removed for clarity. The orbits called the arm,
square hole, neck, muffin, and triangular hole all
arise from this surface while another orbit arises
from the closed first-band octahedron at R.

The triangular hole orbit is the prominent ex-
perimental feature common to all the alloys. Its
large range of existence caused it to be mistaken
for the octahedron at one time. The octahedron
is seen strongly in AgZn, less so in PdIn and only
in certain regions in CuZn. The remaining orbits
are seen only near symmetry axes. Table I shows
a summary of the observed major frequency
branches in the three alloys along with the regions
of Fermi surface responsible for them. The data
branch labels correspond to those given in earlier
papers.

Since the Fermi surfaces of these P brasses have
the free-electron topology, it is natural to expect
a phase- shift parametrization scheme to describe
the data fairly easily with parameters near zero.
Two variants were used for fitting as mentioned
below, with details left for Sec. III. The first
method fits some observed areas in high-symmetry
directions with a relatively low-order augmented-
plane-wave (APW) matrix. The aim is to find a
numerical description of the Fermi surface in
terms of five or six phase shifts at the free-elec-
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FIG. l. BriQouin zone and Fermi surface of a P brass
with three electrons per cell. The front surface is cut
away to show interior orbits.

iron energy. The agxeement is discussed under
the heading of each alloy. The second fits phase
shifts in a symmetrized AP% fox'malism to radii
deduced from the areas of PdIQ. This fit is used
to explore the energy dependence of the phase shifts
and Friedel sums in a more fundamental way than
simple data description.

The main body of data for PdIn are given by Jan
and Perrott, part of which is shown in Fig. 2. The

new measurements shown in Fig. 3 were made with
the same sample and method used previously. The
(100) data show a clear separation of F, and Fs with
a slight gap between them. There is no indication
of F~- F, overlap as found before. In the (210) plane
the separation is less clearcut with F3 and F1q be-
coming mixed and several side branches appear-
ing. These side branches also occur in the (110)
plane and near the (V10) in the (V10) plane. They
have the common features of lying - 5'-l5' from
(100), falling between Fs and Fs and existing only
over a small angular range. Since the (V10) is
only 8' from (100), this plane fits in with the trend.

These orbits are caused by magnetic breakdown
between the octa.hedron and the square hole. In
the nonrelativistic case, the bands touch along the
RM line. The span-orbit effects generate a small
gap which causes partial breakdown. Frequencies
corresponding to three breakdown areas have been
observed near the (100) axis. The orbit Es is
formed by electrons spending half an orbit on the
octahedron Rnd half on the square hole. This orbit
is prominent in the medium breakdown region, and
is the only orbit expected if there is a complete
breakdown. Old data were reexamined with care
being given to the significance of small Fourier
amplitudes. The existence of branch I" 6 lying
slightly below I j is doubtful Rod the upper branch
of &q at (110) in the (110)plane has a range of ~ 1'.

The inversion of the Ez and Ea branches to give
an octahedron along with the band structures of
Skrlver allow 1nterpretatlon of Rll brRnclles 1n
PdIQ, Qy comes from the second-band QonceQtx'Rl

TABLE I. The branch labels of experimental data, in
PdIn. , AgZn, and CuZn and their origin on the Fermi sur-
face,
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FIG. 2. Dots are the observed data of PdIn in the 0.10}
and O. 00} planes. The ~'s are calculated values for the
8, p, d phase shifts —0.252, 0. 003, —0.138 of Pd and
0.048, 0, 279, 0. 000 of In. at the free-electron energy.
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triangular hole along (ill), Fz and Il, from the
first-band octahedron at R, E~ from the second-
band muffin centered at X, 5'9 from the second-
band necks at M, E» from the second-band square
hole at R and E& from the noncentral arm parallel
to (100).

Some areas calculated from a phase-shiftparam-
etrization are shown in Fig. 2 for a range of
angles. All the calculated orbits are central ex-
cept for Ej and Ez which were found by sea, rehing
parallel slices of Fermi surface perpendicular to
the orbit direction for an extremum. The agree-
ment is quite good overall. In this fit, the octahe-
dron square-hole splitting at (100) is forced to be
correct at the expense of a low value for the tri-
angular hole at (111).

The band structure has been calculated by Cho
who obtained a topologically correct Fermi surface
with nearly the right dimensions. His comparison
of theoretical and observed areas was made diffi-
cult by the lack of data at that time and problems of
correctly relating observed and predicted branches.

The radii used as parameters for fitting are
listed in Table II. The three values in the first
band were found by inverting the octahedron areas
to radii. The errors are estimated from the rela-
tive sensitivity of each radius to changes in the
number of inversion coefficients, Since the second
band cannot be inverted, the radii were deduced
from some observed areas in high-symmetry di-
rection. To do this, it is necessary to know the
shape of the Fermi-surface piece involved. There
is no direct measurement of this so it was assumed
that the actual and calculated shapes were the same
when the numerically integrated theoretical areas
equalled the measured areas. This shape was
used to get a simple analytic form relating the area

ANGLE

FIG. 3. Detail. of the frequency branches around (100)
in the (100) and (210) planes.

to the radii, for instance mab. The three areas
chosen, the neck, square hole, and mUffin, all
have simple shapes as suggested in Fig. 1, The
Ml" neck radius (I' is the zone center) is deter-
mined by the neck area and the radius along MR.
The MR radius is fixed by the (100) octahedron ra-
dius since the sum of these two is one half the cube
edge in the absence of spin-orbit splitting. The
actual splitting here must be small otherwise the
large neck area could not be accounted for. The
difference between the (100) square hole and octa-
hedron areas gives the second-band radius along
RX (X is the zone face center) since the RM radius
is shared by both orbits without spin-orbit effects.
The RX radius immediately gives the XR radius of
the muffin orbit since the sum of the two is the
whole XR distance. The thickness of the mUffin
Xl' follows from this. Therefore, there are three
independent radii M I', RX, and XI' in the second
band. The errors listed in Table II for the second
band are minimum estimates based on the assump-
tions made above.

The data for C u Zn are given, by Jan and Per rott
and are compared with an. APW calculation by
Skriver. ' The Fermi surface is very similar to
the two previous materials and also shows ex-

TABLE II. H, adii from the Fermi surface of PdIn and

AgZn in units of 2x/~.

Direction

R T
R
M Z
x-&
R-8

PdIn

0.174+ 0.001
0.267+ 0.002
0.222+ 0.001
0.242 + 0.002
0, 192+V. 001
0.229+ 0.008

AgZn

0.174+ 0.002
0.268+ 0.002
0.218 ~ 0.001
0.242+ 0.002

8. Agzn

The data for AgZn are given in Dunsworth and
Jan an. d are compared there with the APW band-
structure calculations of Skriver. The general
features of the Fermi surface are the same as
those of PdIn but the data are not so plentiful so
several orbits expected are not observed. How-

ever, the main features of octahedron and tri-
angular hole are present and have very similar
proportions, The data shown in Fig. 4 are com-
pared with areas calculated from the phase-shift
parametrization and by Skriver from first princi-
ples. The phase-shift agreement is excellent.
Some radii deduced from the data are listed in Ta-
ble II. Since there are insufficient values to form
a, proper least-squares sum, no fitting of the type
described later was done for AgZn.

C. CuZn
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perimentally some interesting noncentral sections
predicted by theory but not observed in either PdIn
or AgZn.

The orbit Fe in CuZn, previously considered to
be the square hole, is the breakdown orbit formed
from half the octahedron and half the square hole.
It is prominent experimentally while the octahedron
points below are only weakly observed, suggesting
that in CuZn the magnetic breakdown is nearly com-
plete. Indeed a relativistic band structure of
Skriver' shows the spin-orbit splitting to be very
small. This explains the discrepancy of curvature
noticed between the calculated bands and the ex-
periments.

Unfortunately, for unknown reasons, the octa-
hedron branch is not observed over large regions
of the (110) and (211) planes so no inversion can
be done to verify the shape and calculate its radii.
For instance, in the (110)plane, the branch is not
seen for a range of 70'. It seems unlikely that a
spin splitting zero could occur over this wide
range. The possibility of magnetic breakdown was
checked by Jan who measured the field depen-
dence of the amplitude 10' from the (110) axis,
just before the region where the branch vanishes.
He finds no unusual amplitude variation. No phase-
shift fits have been made for CuZn because the
lack of an octahedron inversion removed the basic
starting point of the method.

III. APW

Using SAPWs removed the problem of closely spaced
and double roots found in the unsymmetrized case
along the RX and RM lines. Radii chosen along
high-symmetry directions (RI', RM, RX, ÃI', and
MI') were used to specify the experimental Fermi
surface. The method of deducing these radii from
the experimental areas was described in Sec. IIA.
Radii are chosen rather than areas to reduce com-
putation time since a calculation of an area re-
quires at least five radii, each one of which is in
general in a low-symmetry direction thereby further
enlarging the number of RLVs needed for given ac-
curacy. A nonlinear minimization scheme de-
signed for functions having the form g& f& was used
to determine the best set of phase shifts at each
energy.

Examples of the agreement between observed and
calculated areas at various places are shown in
Fig. 2 and 4. These areas were found using - 25
RLVs in the determinant for the parameters listed
in the figures and with E set to the free-electron
value. The phase shifts listed are not identically
the same as those found using the SAPW scheme
but are quite close. The agreement is quite good
especially for AgZn.

IV. DISCUSSION

Figure 5 shows the fitting error, phase shifts,
and Friedel sums of PdIn as a function of energy

The symmetrized-APW (SAPW) method as de-
scribed by Mattheiss, Wood, and Switendick' was
followed in constructing the main APW foundation
of the calculation. The potential was parametrized
by phase shifts &, and passed into the SAPW matrix
elements as logarithmic derivatives 1,&(R, E) found
from the following equation:
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where E is the energy above the APW zero; R is
the muffin-tin radius; and j, n, j', n' are the spheri-
cal Bessel and Neumann functions and their de-
rivatives. Six phase shifts (s, P, and d from each
atom) were available as parameters but, in prac-
tice, the d phase shift on the nontransition or non-
noble metal was not varied and was set to zero
along with all other phase shifts having l &2. Equal
muffin-tin radii were taken for each atom; the l
sum was cut off at l = 8 and sufficient SAPW proto-
type reciprocal-lattice vectors (RLVs) were taken
to make the results equivalent to using -60 unsym-
metrized RLVs. No spin-orbit or other correc-
tions were included in the potential. Fermi-sur-
face radii were found by searching for determinant
zeros as a function of wave-vector magnitude keep-
ing the search direction and the energy E constant.
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FIG. 4. Dots are the observed data of AgZn in the
(110) and (100) planes. The &'s are calculated values
for the phase shifts —0.194, —0. 004, —0.142 of Ag and
—0. 028, 0.289, 0. 001 of Zn at the free-electron energy.
The broken lines are the results of Ref. 7 from first
principles.
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in free-electron energy units. The rms fitting er-
ror in Fig. 5(a) has a definite minimum near the
free-electron value in contrast to the rather flat
minima, found in monatomic metals such as Sn, ~

alkali, ~5 and noble~6 ~8 metals. This follows from
the argument of Lee and Heine'8 who show that
setting the energy parameter to the free-electron
value is equivalent to choosing a "minimum-per-
turbation" potential. This potential causes the

-2.0—
I I I I I

0 0.25 0.50 0.75 1.00 125 1.50

REDUCED ENERGY

FIG. 5. (a) The rms fitting error as a function of
energy/free-electron energy~. The dashed line
represents an estimate of experimental accuracy. (b)
Fitted In phase shifts for s and P waves. (c) Fitted Pd
phase shifts for s, p, and d waves. (d) Friedel sums for
each atom: the sum and difference of the two atoms.

E = (2/m)(co+ 3e&+ 5&2) .
The E for the unit cell (both atoms) is shown in
Fig. 5(d). This has the behavior expected for a
system with 3 electrons/cell, being - 0 at the free-

TABLE HI. Potential parameters~ from the fits of
PdIn phase shifts.

Material

l. 01 +0, 08
1.04+ 0. 01
1.56+0. 02

0.86
l. 00
0.7

In 0.71 + 0.11
l. 04+ 0.15

l. 04
1.2

~Reference 19.
8& in units of inscribed radius. Then the exscribed

radius is 1.29.
'X, in units of free-electron wave vector.

least breakdown of various approximations and
assumptions used in the APW formalism. As the
energy is shifted away from the free-electron value
towards 0, the potential approaches the ionic po-
tential. Setting the In d and other phase shifts with
E &2 zero becomes less valid for these stronger
potentials. Unfortunately, the necessity of having
five or six phase shifts even for a basic description
of a diatomic system make it impossible to add
further phase shift parameters when there are only
six convenient dRtR points. No check wRs made to
see if the use of more parameters allowed better
fits at energies away from the free-electron value.
A similar argument based on the strength of
Fourier potential coefficients is given by Devillers
and de proomen.

The fitted phase shifts as a function of energy
are shown in Figs. 5(b) and 5(c) for In and Pd. All
the phase shifts are smoothly varying functions of
energy as expected. It is interesting to relate
these phase shifts to Andersen's crystal potential
parameters shown in Table III. X, is the energy
at which the 1th phase shift crosses zero. 9, is
the radius at which the Eth logarithmic derivative
is energy independent. The 8, were determined
from the "focusing points" of the logarithmic de-
rivatives evaluated at E = 0. 75, 1.0 and 1.25. Only
the In P' logarithmic derivative showed a slightly
diffuse focus. According to Andersen, the 8, should
all fall between the inscribed and exscribed spheres
of the Wigner-Seitz cell, i.e. , between 1.00 and
1.29 in units of Table III. There is a substantial
deviation for two values. The free-electron value
of ~, is of course 1.00. The deviations found sug-
gest a Fermi surface not far from a free-electron
one as is found, in fact, the major differences be-
ing near R and M.

The Friedel sum truncated at E = 2 is
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electron energy (Eo) and rising to -3 at 4EO.
Monatomic metals ' ' ' have previously been
found to follow this trend. A simple argument of
Lee and Heine suggests the curve goes as (Z is
the valence)

Z=Z-Z[E/E, j'".
A linear least-squares fit of E vs (E/E,)"gives
F=3.2-3. 3(E/Eo)~~. The Friedel sums for each
atom are also shown in Fig. 5(d), where a least-
squares fit gives for pd F = 1.2-1.8 (E/Eo)3~2 and

for In, F=2.0-1.5(E/Eo) ~. An extension of Eq.
(1) for each of these is

&c = &~ —~(E/Eo)

where Z is the average valence (1.5). The two

slopes are in rough agreement with this. Note,
however, that the apparent valences (the inter-
cepts) are -1 and -2 for Pd and In rather 0 and 3
as expected from ionic considerations. This
change suggests that charge transfer has taken
place in the alloy. The plot of Fv;Fz, in Fig. 5(d)
also shows a separation of -1 electron. It is un-

clear whether the energy variation of this difference
is significant or not. In any case approximately

one electron has been transferred from the In to
the Pd atom.

V. CONCLUSIONS

All three P brasses have essentially the same
Fermi surface with each having only slight in-
dividual differences, in contrast to the remarks
of Ref. 3. However, the range of sample quality
makes the data only fair in AgZn, better in PdIn
and best in CuZn. The strange disappearance of
the octahedron orbit over large regions in CuZn
probably was the main cause of interpretation dif-
ficulties. Skriver's calculations have shown that
good agreement is obtained from first principles
in Ag Zn and CuZn and the present paper describes
how successful fits of data can be made with phase
shifts as parameters in an APW formulation.
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