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Nature of the "Griffiths" singularity in dilute magnets~
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The nature of the singular behavior pointed out by Griffiths for H = 0 in dilute magnets is

investigated. It is argued that for concentration p less than that for formation of an infinite cluster, all

derivatives of M(H) are finite. The nonanalyticity in M(H) is due to a branch cut along the

imaginary H axis having weight exp[ —(const)/~H ~] for )H~~O, and is thus too weak to be

experimentally observable. Some numerical and exact analytic results for the dilute magnet on a Bethe
lattice are presented.

I. INTRODUCTION

Recently there has been great interest in the
precise nature of the singularity in the critical be-
havior of dilute magnets. ' Some years ago Grif-
fiths showed that the free energy of a dilute ferro-
magnet is a nonanalytic function of magnetic field
H at H = 0 for all temperatures below the transition
temperature T, of the undiluted system. As yet,
this singularity has not been detected either by
high-temperature expansions ' or by renormaliza-
tion- group methods.

Lifshitz has studied a related problem, namely,
the density of states g(tc) of an electron in a random
potential. If the potential at each site V is distrib-
uted uniformly over an interval 0» V» Vp, then
the density of states near the lower band edge ~p
is of the form

where $ was determined by a single dimensional
argument to be 2 for a three-dimensional system.
This form results from the relatively infrequent
occurrence of large regions having arbitrarily
small values of V.

For a ferromagnet it is known ' that the singu-
larities in the free energy occur at imaginary H,
with a density at H = 0 which is proportional to the
spontaneous magnetization. ' As we shall see, an
argument similar to that of Lifshitz shows that the
magnetization of a randomly dilute ferromagnet has
a singularity of the form

where p(z)-e ""for small z and 4 is nonzero for
T (T, . In contrast, Domb ' has recently pro-
posed that the Griffiths singularity is a much
stronger one, leading to a discontinuity in d M/dH'
at H = 0, whereas the arguments we give suggest
that all derivatives of M(H) are smooth at H= 0 for
P &P, , where P, is the critical concentration for
the formation of an infinitely large cluster. Our
analysis and conclusions are very similar to those

given by Fisher' in his treatment of the cluster
theory of condensation.

II. ANALYTIC PROPERTIES

Bomb's approach, which we follow here, is to
write the magnetization for p &p, as that of an as-
sembly of separate finite clusters,

M (H) = g W„(P)M „(H)

where W„(P) is the probability per site that a clus-
ter of size n is formed and M„(H) is the corre-
sponding magnetization. Initially we will treat the
case kT «t, where 2J is the energy difference
between parallel and antiparallel alignment of a
pair of spine. Then M„(H) depends only on n and

not on the shape of the cluster. For an Ising sys-
tem of spin 2 one has

M„(H) = ,'n tanh(nH/2kT)—

whereas for a Heisenberg system of spin —,
'

M„(H) = —(n+ 1)coth —coth
1 (rt+ 1)H H

2kT

(4)

(6)

Thus, for an Ising system one has

M(H)= —g W„(P)ntanh
1 nH

fl =g

where g(n, s) is the number of cluster configura, —

tions per site having v sites and s bounding-sur-
face sites It is cle.ar that g, g(n, s) is less than
the corresponding quantity for a Bethe lattice (Cay-
ley tree) having the same number of bonds entering

Clearly, the terms in Eq. (6) with n finite are
analytic for H= 0, so it is only the arbitrarily large
clusters which produce the Griffiths' singularity.
To study the nature of the singularity at H = 0 we
only need to know the asymptotic form of W(n) for
large n One ca.n write W„(p) in the form"'s
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a vertex. Thus it seems clear that

(8)

of the singularity isa Eqs. (2) and (11) is appropriate
for both Heisenberg and I-sing models for T & T.

In three dimensions one would expect s in Eq. (7)
to be of order n, producing a factor e " in Eq.fI2l 3

(8) which we drop, since the factor in Eq. (8) gives
correctly the dominant behavior.

In fact, Fisher and Essam'3 give the exact result
for the Bethe lattice as

where (a+ 1) is the number of bonds which meet at
each site. For large n one obtains Eq. (8) with

1-p
A = (1 —o)ln &

—Inpo
1 —0

so that A &0 for pep„where p, = o

Thus the analytic properties of M(H) are deter-
mined by using Eq. (8) in Eq. (6). A convergent
power series for M(H) at H = 0 does not exist, be-
cause M(H) has a branch cut along the imaginary
H axis caused by the poles in tanh(nH/2kT) at
rational values of H/akT. However, an asymptotic
expansion for M(H) at H= 0 can be generated by
expanding tanh(nH/2kT) in powers of H/kT. To
proceed further we replace the sum over n in Eq.
(6) by an integral over n from n= 0 to n=~. This
replacement will not affect the nonanalytic con-
tribution from large n. By suitable changes of
variables one then obtains Eq. (2) with

p(a)=f a(kT)'Q'"(I+V)(I - Q) 'z ',
where Q(z)=e "' r '*', with 2 given in Eq. (10).
This result again shows that all derivatives of M(H)
are finite at H = 0. In the Appendix we show the
error in the analysis of Ref. 11 which leads to a
different result.

A crude analysis of Eq. (6) can be made by rec-
ognizing that ntanh(nH/2kT) is proportional to naH

for nH «A;T and to n for nH»kT. No matter how

small H may be, this crossover behavior creates
an anomalous variation in M(H), thus causing a
singularity. At finite temperatures for sufficiently
large n one will still have M„(H)-n H for n H «kT
and nH «J providing T «T„Thus, for large n

we set

M„(H) n H[Ma(T)/Ma(0)], nH «kT, (12)

where Ma(T) is the spontaneous magnetization of
the infinite system. Since Mo(T) is only nonzero
for k T & J, the condition n H «J is redundant in

Eq. (12). Equation (12) remains valid for the
Heisenberg model, so we suggest that the form

III. RESULTS FOR THE BETHE LATTICE

In this section we present several analytic and

numerical results for the Bethe lattice. While the
Bethe lattice deep have some properties uncharac-
teristic of three-%mansional lattices, the general
trend of the resultl we obtain seems appropriate
for three-dimensi. onk yatems.

Since W„(p) is known exactly, the zero-tempera-
ture value of any order derivative of M(H) at H= 0
can in principle be evaluated in closed form. We
have calculated X aM! d y/d H at H= 0 for the Ising
(I) and Heisenberg (H) systems, using Eqs. (4) and

(5), respectively. We write results as

(13)

(14)

(15)

d2
(kT)'

d a = —
+&p [&n &+ 4 &n &+ 6&n &+ 4 (n&],

(16)

where &n" &= $„W„(p)n". Using Eq. (9) for W„(p)
one finds

(n& =p,
&n'&= 0(1+P)/(1 —o0),
&~'&=0(I+ 3P —3oP' oP')/(I oP)'-—
&n'& = &n'&(I+P)/(I —o p)

+ 3(o+ I)f '(I-P)(I - oP')/(I - ou)' .

(17)

(18)

(19)

(20)

[To obtain these results it is convenient to evaluate
derivatives of K'(x, y) given in Ref. 13.] The val-
ues of j=kT!!and j"—=—- (kT) d y/dH at H= 0 are
shown as a function of P for o+ 1= 6 in Fig. 1.

There one sees the striking divergence in d y/d H
as P-P, . In fact, from Eq. (10) one sees that
A- I p, -pl for p- p„so that &n"'~&/&n"&- I p, -pl a.
We have explicitly verified that &n"&- I p, —pl a" ~ as
p- p, for x» 2. Thus, succeeding even-order de-
rivatives of X diverge increasingly strongly as
p p, . Even for p fixed the zero-field derivatives
for large x can be estimated to obey (d "X,/dH'")/
(d " ag/dHa" a)- x in view of the asymptotic form
&n" &

-~"~!."
These results are illustrated by the numerical

evaluations shown in Figs. 2 and 3. There one sees
that —(kT)'d'gdH [i.e. , the slope of M (H)] is an
order of magnitude larger than kTy [the slope of

M(H)]. Also, the region in which M is nearly a.

linear function of H is very much larger than the
corresponding linear region for d M/dH This ef-.
fect becomes more pronounced as p approaches p, .
Still higher derivatives will be larger and have
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smaller linear regimes. So, if measurements were
taken for H & H0, then for some z depending on the
size of H0 one would find an apparent discontinuity
in d "M/dH" N. onetheless, the true analytic be-
havior is that all derivatives of M(H) are continuous
and the even-order ones vanish as H-0. Also, in
conformity with Egs. (13)-(16)one sees from Figs.
2 and 3 that M and its derivatives are noticeably
smaller for the Heisenberg model than for the Ising
model.

Finally, we conclude this section by giving some
exact analytic results for finite temperatures. The
following discussion will be confined to the para-
magnetic region, i. e. , for'

0. 02

0. 01

0. 3

0. 2

po tanh(J/kT) & 1, (21)

which, for p& p, =o, includes all temperatures.
In Ref. 15 we give the exact result for g(T, H = 0) as

4k'(T, H =0) =P(1+pt)/(1 —pot) (22)

in the units of the present paper, where f = tanh(J/
kT).

We now evaluate d y/dH at H =0 as a function of
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FIG. 2, Zero-temperature values of M(H'), full line,
and M" (0) =——(kT) d2M/dH, broken line, versus H for
the Ising model on a Bethe lattice with 0+1=6 for p=0. 10
and p=0. 14 (p~=0. 2). The scale for M(FI) is on the left;
that for M" N) is on the right.
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FIG. 1. Zero-field and zero-temperature values of the
reduced susceptibility X = kTX, solid line, and X"
—= —(kT) d X//4H~, broken line, for the Ising (I) and Hei-
senberg (H) models as a function of concentration for a
Bethe lattice with a.+1 = 6. Note the difference in scales:
that for X,

" for the Ising model is on the right; that for
the other curves is on the left.
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FIG. 3. As in Fig. 2, but for the Heisenberg model.
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temperature. For H =0 we may write

16(kT) ~
= Q [(v;op,v, ) —(v;v,.)(v,v, )

i jul

—&v;v„)&v,v, ) —&v;v, )&v, v,)], (23)

since all odd-power averages of o's vanish. We
classify the terms on the right-hand side of Eq.
(23) into 11 topologically distinct classes, as shown
in Fig. 4. We use the result for the Bethe lattice
for p =1,

J ~ (vv)=t i (24)

I ~

I ~

~ k
J ~

I ~

I ~
where d;,. is the distance between sites i and j. For
averages of four o's we have similar results. For
terms having the topological structure of diagrams
shown in Figs. 4(d)-4(g) we have, respectively,

~ k

I

k I

(v vivivi) = t &~

jk

(25a)

(25b)

(25c)

(25d)

FIG. 4. Topological structure of the various terms
contributing to d y/dH for H = 0 for the Bethe lattice.
The forks [viz. , in. diagrams (h)-(k)] indicate that the
paths between two or more of the labeled sites overlap
in part.

To evaluate Eq. (23) we combine these results for
the averages at p =1 with a factor of p for each site
in the diagram. The counting of diagrams then
proceeds as usual for a high-temperature expan-
sion. Since we sum all terms in the high-tempera-
ture expansion our results are valid throughout the
paramagnetic region. We find that

g d y Bp t(o'+1) 6p t (o+1) 12p~t (a+'I)v 1 2t
+ 2 + + 2dH 1 —vent 1 —apt 1 —crit 1 —opt 1 —opt

24' t~v(v~ —1) 1 1 —vpt o 1 2''t'v(v —1) 12a a —2 6p t o (v —1)(o —1)
(1 —atilt)'(I —atilt') 3 1 —vpt v —1 2 (1 —atilt)' 1 —vpt' 1 —atilt (1 —vf)t) (1 —vpt2)

(26)

These terms repr esent the contributions of dia-
grams 4(a)-4(k), respectively. Some numerical
evaluations of Eqs. (22) and (26) are shown in Fig.
5. As expected, both kT)t and (kT) d gdH are
monotonic functions of both p and T.

IV. CONCLUSION

gularity at 0 = 0 is probably impossible.
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We conclude that M(H) has a. branch cut along the
imaginary axis with exponentially small weight near
H=O. All derivatives of M(H) are finite at H=O.
Numerically, the higher-order derivatives become
large, particularly near p =p„so that an experi-
mental determination of the exact nature of the sin-

APPENDIX: ANALYSIS OF REF. 11

In Ref. 11 Domb writes a set of equations, Eq. (1)
and (4), equivalent to

kT = P W„(P)n sech nH/kT,
n
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FIG. 5. Zero-field
values of X=kTX, solid
l,ine, and X"= —(kT) d X/
d&, broken ling, for the
Ising model. on a Bethe
l.attice with (0'+1)=6 ver-
sus concentration at
various temperatures.
For the pure {P=1) sys-
tem the transition tem-
perature is kT~ = 4. 9J'.
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which he approximates as

iy (~)
~ e-~&l& I I&&

n (A2)

has a discontinuity for H —0 given by

eM eM 4
BH + BH - (kT) W„(p)n . (A4)

We claim that this approximation is inappropriate
for analyzing the singularity for H-0. To see this,
differentiate Eq. (A2):

8 M—(aT)' =2e(H)g W (P)n'e '"" "-' (As)

where 8(H) =H/!HI. According to Eq. (A3) B~M/BH~

On general grounds we know that the contribution to
the left-hand side of Eq. (A4) from finite-sized
clusters is zero. However, the right-hand side of
Eq. (A4) incorrectly has nonvanishing contributions
from finite-sized clusters. Thus we conclude that
Eq. (A2) does not correctly represent the low-field
singularity contained in Eq. (Al).
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