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A theory is developed for the p-polarized optical properties of a semi-infinite electron gas with a surface that
scatters the electrons din'usely. The electron gas response is described by the Soltzmann equation. An
important ingredient of the theory is the use of a legitimate distribution function for electrons leaving the
surface, one which permits the normal component of the current density to vanish at the surface. It is found
that the optical absorptance below the plasma frequency is an order of magnitude too large if this boundary
condition on the normal component of the current is ignored by simply using the unperturbed distribution
function for electrons leaving the surface. The calculated absorptance is compared for diffusely and specularly
scattering surfaces. Below the plasma frequency the absorptance is higher for diffuse scattering, as is also true
for s polarization, while above the plasma frequency the absorptance is essentially the same for diffuse and
specular scattering. Interesting structure occurs in the vicinity of the plasma frequency.

I. INTRODUCTION

Two of us have been involved for some time now

with the problem of the optical properties of a metal
when the light is incident at an oblique angle. Our
studies have dealt principally with the electron gas,
for which the nonlocal effects attending oblique inci-
dence when the light is p polarized can be under-
stood in detail. These investigations began with an

extension of the work of Reuter and Sondheimerl on
the surface impedance for R semi-infinite electron
gas with specular surface scattering to include
oblique incidence for both s and P polarizations. 3

This work was then generalized to the case of a
slab of arbitrary thickness. To this point in the
development, the theory was based upon the Boltz-
mann equation, with the most significant elements
in the theory being the nonlocal transverse and

longitudinal dielectric functions resulting from the
Boltzmann equation. Recognizing that the major
effects of nonlocality arise from wave vectors so
large that the Boltzmann-type die1ectric functions
cease to be valid, we developed self-consistent-
field dielectric functions, both transverse and lcn-
gitudinal, which included a finite electron life-
time, ' and used these dielectric functions in the

optical theory.
Turning our attention toward diffuse electron

scRtterlng, we g6nex'allzed the dlffus6 scRttex'lng

theory of Reuter and Sondheimer' and Dingle for a
semi-infinite medium to include oblique incidence
for +-polarized incident light. In addition, a theo-
ry of DlDgle for the optlcRl px'opertles of R metRlllc
slab of arbitrary thickness when the surface scat-
tering is diffuse and the light normally incident was
extended to include oblique incidence for & polariza-
tion.

Additional early studies relating to these prob-
lems include those of Collinsso and Silin and Feti
sov, ~' dealing with both specular Rnd diffuse scat-

tering for a semi-infinite electron gas. Sauter"
and Forstmann~s employed R multiple-wave formal-
ism, equivalent to a speeular scattering assump-
tion, to include longitudinal effects in an optical
theory for P-polarized light incident upon a half-
space. This procedure was then used in a study of
the optical properties of a film by Melnyk and Har-
rison. ~ These latter authors also investigated the
question of boundary conditions appropriate within
a nonlocal theory. l~

A, n extension of the nonlocal
theory to include Fermi-liquid effects has been
given by Silin and Fetisov. l6

Conspicuous by its absence in the work on this
problem is a genexally valid theory for the optical
properties when P-polarized light is incident on a
surface for which the electron scattering is diffuse.
Reuter and Sondheimerl suggested a scheme for
generalizing their normal-incidence expression for
the surface impedance to the case of oblique inci-
dence. However, their scheme is invRlid since
they did not allow for the unique physical effects
arising from the longitudinal field which results
when P-polarized light is incident on a metallic
surface. The same is true of the work of Collins. lo

SlllD and Fetisov ' x'ecogDlzed the importance Qf

longitudinal effects but their diffuse scattering
theory is incomplete.

In this paper we present an exact solution for the
surface impedance for P-polarized light incident
upon a semi-infinite electron gas for which the sur-
face electron scattering is diffuse. The solution is
based upon the Boltzmann equation and the results
thus reflect the inherent limitations of a Boltzmann-
equation-based theory.

The nonlocal nature of the present problem re-
sults in electron distribution functions within the
metal which are integrals over the electric fields
existing throughout the metal. The corresponding
Maxwell equations are thus integral (or integro-
differentia1) equations. For P polarization, there
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exist electric field components both perpendicular
and parallel to the surface. Physically this results
in current components both perpendicular and par-
allel to the surface; mathematically it leads to
coupled integro-differential equations. The basic
formulation of the problem leading to these coupled
equations together with a discussion of the nature
of diffuse scattering for the present problem are
presented in Sec. II. The coupled integro-differ-
ential equations are uncoupled in Sec. III, and the
uncoupled equations are solved using the Wiener-
Hopf technique in Sec. IV. Results are presented
and discussed in Sec. V.

II. BASIC FORMULATION

The basic procedure in this section follows close-
ly the development of Ref. 2. We take the metal-
vaeuum surface to be the s = 0 plane, with the semi-
infinite metal on the positive ~ side. The optical
plane of incidence is chosen to be the x-~ plane.
All fields and currents are assumed to have a
space-time dependence

Z(x, y, e, t)=Z(e)e*'""-"",

where 0 is that component of the incident wave
vector parallel to the metal surface. The metal
is treated as a free-electron gas, whose properties
are described by a linearized Boltzmann equation.
We write the one-particle distribution function as

f=f, +f,(v, e)e"" (2. 1)

where fo is the equilibrium distribution (in princi-
ple a Fermi function, but actually a step function
is the usual zero-temperature limit). The theory
includes an elastic scattering or relaxation mecha-
nism, described by a characteristic time 7, but the
relaxation is to a local oscillating distribution dif-
ferent, in general, from the equilibrium distribu-
tion.

The traditional strategy in using the Boltzmann
equation to study nonlocal electromagnetic proper-
ties is first to treat the fields as known functions
of position. The Boltzmann equation is solved
formally in terms of these fields, and expressions
for current density are written from the resulting
distribution function. This apparatus is then used
to construct Maxwell's equations, which must be
solved to obtain the actual fields.

Much of the present work concerns properties of
the kernels appearing in the expressions for cur-
rents. At this stage in the program just outlined,
the fundamental parameter describing the (free)
electrons in the metal, besides the relaxation time

is the Fermi velocity vz. = Pc. The ratio vz/(d,
roughly the distance an electron at the Fermi sur-
face travels during an electromagnetic oscillation,
forms a natural unit of length for this part of the
work. So we shall use coordinates x and z, and

corresponding variables of integration, as dimen-
sionless quantities (distances multipled by &u/v„).
This implies that for an angle of incidence 0, the
tangential component of the incident propagation
vector is

A'= Psin~.

In the integrals describing currents, 7 only occurs
in the combination

&=(~~) '

For P polarization there are x and ~ components
of the electric field E, and the magnetic field H has
only a y component. From Ref. 2, with slight
changes in notation, we have, for f,(v, a), the cor-
rection to the distribution function for an electron
of velocity v,

f&( v, e) =— e " E(v) +— ds e 'rv„E„(s)e»fo
z 0

+s. z,(s)+uG(s(]). (3.2)

Here e is the magnitude of the el,ectron charge and
E the single-electron energy. The quantity ( is
defined by

$ = —i(], +ia)(v/v, ) +i k(v„/v,) .
As already mentioned, allowance has been made for
the possibility that the electron distribution relaxes
to a local distribution different from the equilibrium
distribution. The quantity 6 is a measure of the
difference between these two distributions. '7 The
function E(v) is a (velocity-'dependent) integration
constant. It must be determined so that the func-
tion fj vanishes (the electron distribution approaches
that corresponding to equilibrium) at a sufficiently
great depth in the metal. This requirement defines
E(v) for v, negative For v, .positive (electron flow
away from the surface) f, vanishes automatically
at large s because of damping. But in this domain
E(v) will contain information about electron reflec-
tion at the surface z = 0.

What should be implied by diffuse reflection of
electrons at a surface~ It is not sufficient to say
that electrons are reflected with no "memory" of
the direction of impact. A more precise traditional
statement is that the velocity distribution of elec-
trons leaving the surface is the equilibrium dis-
tribution at the appropriate temperature. But this
statement ignores conservation of the number of
particles, the requirement that as many particles
leave the surface in unit time as strike it. We
choose to define a diffusely reflecting surface as
one in which the velocity distribution of the re-
flected electrons may differ from the equilibrium
distribution by a quantity proportional to a fo/&e and
independent of direction over a hemisphere. Thus,
for v, &0,
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f(v, z=b)=(—)A( '),
where A =F(v) I „,&o is a constant. The usual defini-
tion of diffuse scattering would correspond to A. =0.
Below we shall choose A so that the ~ component
of the current density is zero at the surface. This
important physical requirement cannot be satisfied
if A, =0. It is clear that more complicated forms
for the reflected distr lbutlon function eouM be used.
However„ the above is the simplest choice which is
meaningful physically and manifests the diffuse
scattering concept. '8

The function E(v) for t), & 0 can now be deter-
mined, and the solution to the Boltzmann equation
completed for f,(v, e), the excess of the one-parti-
cle distribution function over the Fermi function,
Thus, for v, & 0,

f, (v, z)= — J ds[ „Z„(s)
Z Z

C(e) = " — —ikE, (e),dE„(e) (2. 6)

D(e) =i'„(e)+ (2. 9)

for the y component of the curl and the divergence,
respectively, of the electric field in the metal.
For P polarization, Faraday's law gives

H(z) =H, (e) = —iP ~C(z) .
The remaining Maxwell equations are

dC(z)
+ P E„(z)=—4miP (u J„(z)

(2. 10)

(2. 11a)

identical, except for notation, with those of Ref. 2.
Their definitions will be repeated and their proper-
ties discussed in Appendix A.

We introduce the notation'

+ v, E,(s) + vG(s) j e~(d (2. 6a)
—ikC(e) + P E,(z) = —4' P (() ' J,(z) . (2. 11b)

and for ez&0,

e'() Sfo ga 1
f,(v, z) =— ' &e '+— ds [v„E„(s)

E( )sK(z —s) + G(s)K(e —s)], (2. 6)

J„{e)[2/{3&@0)]= iAK„,(e) + ds [-E„(s)K„„(z—.s)
0

+iE,(s)K„,(e —s) + iG(s}K„(e—s) J, (2. 7a)

d(z) [Z/(bav) ] =A(S„(z) g ds [id(s)(s„(z—s)

+ E( )sK( —e s) —G(s)K, (e —s)] . (2. Vb)

0'o zs formally the standard low-frequency conduc-
tivity of the metal, expressed in terms of the (free}
electron density ~ or the plasma frequency {d~ as

o, = ne'7/m = (u', ~/47] .
This relation is perhaps more formal or dimen-
sional than physical, since the low-frequency con-
ductivity cannot play a physical role for optical
frequencies.

The kernels appearing in Eqs, (2. 6) and (2. 7) are

sv, d, (s)+va(s)]s '""). (b bb)

Cur rent densities are obtained by multiplying the
distribution function by the electron charge and the
appropriate velocity component, then integrating
over velocities. The quantity G is determined
(self-consistently) by a similar integration over the
distribution function. The basic expressions which
result are

G(z)(szb) = Aii(z) ~ $ ds [(-Z,(s),((,(z —s)

Within the metal, the current densities are given
by expressions (2. 7). Equations (2. 6), (2. 7), and

(2. 11) thus form a set of coupled equations for E„
E, , and G. Along with the boundary condition that
Jz must vanish at the boundary z = 0, these equa-
tions describe completely the variation of the fields
within the metal.

III. UNCOUPLING THE INTEGRAL EQUATIONS

The uncoupling of these equations followed from
the realization that equations for C(e) and D(e) de-
rived from Eqs. (2. 11) are naturally uncoupled. In
addition, the electric fields themselves can be ob-
tained from C and D together with one integration
constant„as will be seen below.

We proceed to calculate the divergence and curl
of the current densities. If we use Eqs. (A15) to
eliminate the derivatives of the kernels that arise,
we find from (2. 7)

dJ,
dlv J= skJ~+

dZ

= —,iav, (1+ '
)(-AK, (z)+ ds [iE,(s)K,(e —s)

—A, ( ))(,(*—s)+ G(s)X(z —sl]) + ba, a(z).

(3. 1)
The integral in this expression is precisely that of
Eq. (2. 6). So

div J= 3&0'o+ ) (3.2)

and, from Eqs. (2. 11),

D = —471${d div J= 3(d (d&7 G, (3.3)

G is just a multiple (vr/3eo) pf the charge density,
and its inclusion in the Boltzmann equation is equiv-
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alent to allowing relaxation to a distribution with a
nonvanishing local charge density.

Now use Eq. (A15b) to eliminate K, from (3.1).
An integration by parts then yields

div J —3~0.,G

= 3i(1+ia)ooG =-,'ooai(1+ia) -AK, (z)+ k ~ E(0) K( z)

+i kE, (s)K,(z —s)

=-,'ao, ~Ak-E„0

dsC sK, z —s
0

(3.7)

+ — ds ikE„(s)+ ' K„(z—s)
1 " . dE, (s)

0 ds

ds G(s)K(z —s) . (3.4)

Thus(curl J), is expressed in terms of an integral
that involves the electric field only through its curl.
So Maxwell's equation for the curl of the electric
field becomes an integro-differential equation that
does not involve the longitudinal part of the field:

i[k(K„„-K,.) + i(1+ia)K„]= iz-'K„„
the final form by Eqs. (A13) and (A14). For con-
venience, we define

K, =(kz)-'K„, . (3.6)

Equations (A15b) and (A15g} can be used to show
that the coefficient of E„in the integrand of (curl J),
is proportional to the derivative of K,. As a result

(curl J) = " ——ikZE(z)
dZ„(z}

=-,aoo iAkK, (z}+ ds E,(s)
dK, (z —s)

The divergence of the current density is expressed
by an integral involving the electric field only
through its divergence. So the divergence of the
field satisfies an integral equation that does not in-
volve the transverse part of the field. A slight
manipulation of Eqs. (3.3) and (3.4) puts this inte-
gral equation in the form

3kD(z) = 3 (tsz/w)z (- kz)E (z) s E,(0)CC(z)

dsD(s)E, (z —s)}sks f dsD(s)CC(z —s)
0

(3.5)

Now we calculate the y component of the curl of
J from Eqs. (2. 7). In the resulting integral expres-
sion, the coefficient of G vanishes by virtue of Eq.
(A15b). The derivative of K„,, which appears in
the coefficient of E, within the integral and in the
coefficient of &, can be eliminated by use of Eq.
(A15e) or (A15f). Then the coefficient of E, within
the integral takes the form

, +ga Cz = —4mi co'curlJ,

=ib E„0—iAk, z + dsC sE, z-s

(3.8)
The constants in this equation are

gz = Pz —k = Pz cosze, (3. Oa)

the square of the s component of the incident wave
vector, and

& = z( p~, /~}'.
The kernel K, relates (curl J), to (curl E), = C.

Properties of E, follow from the relation

K,(z) = —.
' [(I+ia)'F, (z)+F,(z)],

(3. Qb)

(3. 10)

the E functions defined in Eqs. (AB). The asymp-
totic behavior for large argument is

K (z)- i(1+ ia) 3Qz ze o(E' (3. 11)

IV. SOLUTIONS TO THE INTEGRAL EQUATIONS

Equations (3.5) and (3.8) can be solved by the
Wiener-Hopf technique. Since these equations are
valid only for ~ positive, it is convenient here to
define C(z) and D(z) to be zero for z negative.
Consider first Eq. (3.8).

Define a new function M, (z) by

with Q defined by (A5). For small values of z,

K.(z) = E(in(E [Q —i(1+ia)]l zi]+r
—ik (1+ia) [Q + i(1+ia) ])+ O(z) (3.12)

where y, Euler's constant, is equal to 0. 577 ~ ~ .
Equations (3. 5) and (3.8} are the two uncoupled

integral equations that describe the behavior of the
fields within the metal.

0, z)0
M|(z) =

&b g 0 ggkg g + dsD(s)E, (z —s)), z 0
(4. 1)
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Add Eqs. (3.8) and (4. I) and take the two-sided
Laplace transform of. the sum. In terms of the
transform variable P, the result is'0

II1(p) —t1 = it) [E„(0)—id']X, (P)

[ t X.(P) -P'-g'l~(P), (4. 2)

I1= —-== +pC(z)
dC(z)

dz tao

3R,(P) is a function regular in the half-space to the
left of Q. C(z) must fall off for large z as some
power of z times e c' and so 6(p) must be regular
in the half-space to the right of —Q. x,(P) is known
to be regular in the strip —Reg& Rep& Re@. Thus
Eq. (4. 2) is valid in this strip.

The Wiener-Hopf method requires breaking the
coefficient of (:(P) into two factors, each of which
is regular in a right or left haU-plane. For this
purpose, write

if)xo(p) —p —8 = (& —p )u(p)

where N is any number with a positive real part.
For the present it is convenient to think of N as
real and N)Ref. %(p) approaches unity as p be-
comes arbitrarily large in any direction. In addi-
tion, we shall now show that 'u(p) has no roots in a
strip of finite width centered about the imaginary
axis.

There is no question of roots of u(p) for arbi-
trarily large imaginary values of P. For finite
pure-imaginary values of P, the real part of X,(P),
and hence the imaginary part of 'u(P), is negative
and bounded away from zero. Consider X,(p) as p
starts from the value k, goes along the real axis to
the origin, and then goes up or down the imaginary
axis to +i~. Along this entire path P [defined by
Eq. (A3a)] is pure imaginary, say P =ip, where P
is real, starts out at zero along this path, and in-
creases monotonically. ' For small I' and p

X,(p) = —-', i(1+ia) '+O(P),

which has a negative real part as long as a= (co7') '
does not vanish. By differentiating p'X, (p) one can
show that the real part of this function for pure-
imaginary P (real p) is a monotonic decreasing
function of p. Thus, except possibly in the limit
P-i ~ ( p- ~), the imaginary part of 'll(P) is
bounded away from zero, which demonstrates the

existence of a strip of finite width centered on the
imaginary axis in which u(p) has no roots as long
as 9 ls flMte.

In this strip, we write

&(P) = &~(p)/&&(P), (4. 5)

(4. 9)

Previously we asserted that the value of E was im-
material. It is easy to show, by differentiating,
that in fact (N+p)u„(p) (and, consequently, N+ )u
is independent of ¹

Equation (3.5) for the divergence of the field is
treated in a. very similar fashion. Define a new
function Mz(z) by

so that In'u(p), an analytic function, can be writtenz'

inc(p) = —inc~(p) +Inc„(p)

1 """
in%i(q) 1 (

""" In'u(q)
2m', , ; q-P 2m& g )„P—q

'

(4. 6)

where d is a positive quantity limited by the half-
width of the strip. We have thus defined the func-
tion%. „{p)to be regular in the half-plane Rep) —d,
and u~(P) to be regular in the half-plane Rep& d, z~

Now multiply Eq. (4. 2) by Mi( p) /( l)(- p). We find

(&-P) '~.(p)(3R,(P) —h —(P"g')[E,(0) —i»])
=(&+P)& (P)[E,(0) iA&—+('-(P)]. (4. &)

The equality in Eq. (4. (() is valid in the strip of
width 2d about the imaginary axis. But by the usual
Wiener-Hopf argument the left member of (4. 7) is
analytic in a left half-plane, likewise the right
member is analytic in a right half-plane, and the
two half-planes overlap. Thus, the two members
of Eq. (4. 7} define a single function analytic every-
where in the finite P plane.

The precise form of this function can be deter-
mined by inspecting conditions for large values of
Rep. In this limit, 8(p)- C(z =0)/p -=C(0)/p, and

ln'u1((P)- u/P, where u is a constant. So

(&+P)us(p) I E.(0) —i& A'+ &(P)]

= (P+A'+ u) [E„(0)—id']+ C(0),

or, rearranging,

M~{z) =
3 (~,/~)'{z, (0)K,(z) —(Az, (s) + 8 s B(s)z(z —s))+,ds D(s)K(z —s), z& 0.
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Add Eqs. (3.5) and (4. 10) and take the two-sided
Laplace transform of the sum. The result is

3g&(p) = 3(~&/~)'[E.(0)ac.(p) —~x.(p)]

+ I:3( ./ )'&.(p)+ &X(p) —»]&(p). (4. »)
Ã2(P) is a function regular in the half of P spa", e to
the left of Q. $(P) is regular in some right half-
spRce, presumably lD tI18 hRlf-spRce to the right of
—Q. So Eq. (4. 11) is valid in the strip —Re@& Rep
& Re@.

Define a function V'(p) by

2k%(P) = 2?I —3({op/(u)'X„(P)—akX(P) . (4. 12)

f (p) approaches 1 when p is large in magnitude,
and it has no roots on or arbitrarily close to the
imaginary axis for finite a, as is demonstrated in
Appendix B. Thus E(P) can be factored as

[E.(0') -9g2(p)/»]~&( p) —-'(~&/~)'&~»(p)

."«.—(0)~Ii(P) = k(~&/~}'&~as(P)

+-,'«, (o)w„(p)+[a(p)+z, (0)]&,(p). (4. 1V)

Equation (4. 1V) is valid in a strip about the imagi-
nary axis. But each member is regular in a, half-
plane extending in opposite dixections from this
strip. The two members between them define a
single function of p analytic everywhere. This
function must be a constant, and it is ea.sy to see
from the right member of Eq. (4. 1V), evaluated at
large vRlues of P, that the value of the constant is
E,(0), that is,

half-plane to the right of —Q; the 'tut, functions are
regular in the half-plane Rep& d .

Equation (4. 15}can now be written in the Wiener-
Hopf form,

~(p) = &.(p)/&. (p), (4. 13)
k(~,/~)'&~2. (P)+-'«.(0&I (P)

I~(P) E.(0)]&.(P) =E.(0). (4. 18)

in''(p) = . dq +-—- —.—— dq
in''(q) 1 "'" ln v'(q)

27+ d, „q~ g -p 2PZ g ]Io p —Q'

=- »~~(p)+»q'a(p),

where again d is a positive quantity limited by the
distance from the imaginary axis to any roots of
+(p). Tile fllllctloIls Vg(p) aIld +I(p) al'e I'egulal'
in the half-plane Rep & —d and in the half-plane
Rep & d, respectively.

Equation (4. 11) can be rearranged to read

[E.(0) —3if, (P)/2~] ~&(P) = a [3((d,/~)'&X, (P)

+«.(0)at(p)] &.(p)

+[~(P)+E,(0)]~.(P). (4. »)
The left member of Eq. (4. 15) is regul» in the
half-plane Rep & d. But the right member still has
singularities ln the hRlf-plRDes on 6Rch side of the
iQlRglnR1'y axis. To sepRx'ate these singularities)
define

'uII(P) =3'(P) ~i(P)

1 ""
X(q) V'I,(q} 1

dg ——---- — -=—+ —.
2771 gP ) ~ g p 271s

x x(q)f'I, (q) ~ (p) ~ (p)
p -Q'

'So we have, finally,
1

~(() (,-* Ã( 'I (( g {o) ~ 2 ( )g(
&R(p)

' » &&(p)

(4. 19)
FollowlDg some DecessRx'y preliminaries, Eqs.

(4. 9} and (4. 19) will be used to develop an expres-
sion for the surface impedance.

A. Electric fields

From the original integral equations in the elec-
tric field components, Eqs. (2. 11), uncoupled
equations (3.5) and (3.8) were obtained for D, the
divergence, and C, the y component of the curl.
Formal solutions for these quantities were obtained
above. We now discuss two closely related ques-
tions: How may the field components be obtained
from D and C, and to what extent do these compo-
nents satisfy the original equations (2. 11)'?

For the x and ~ components of the electric field
with the spatial dependence

E(x, y, z)=E(z)e"',

Rnd which do not become exponentially large in the
limit of large s, it is easy to show that

E„(z)= Be "'+ — ds [C(e) —iD(e)] e ~""
0

'F2(p) =&,(p)~z.(p)

~.(q)~.(q}
dQ' —- =—+

g'-f oo 0 p 2~~ -tP'-5 ~

00

ds [C(s) + iD(s)] e ""
2 (4. 2Oa)

„at,(q) v'g(q) ~ (p) „~(p)~ Q

The posltlve quantities d RDd d sRtlsfy d & d RDd

& Re@, The ~~ functions Rx'6 x'egulRx' 1D the

8

Z, (e) = iBe-"+-.-i de [C(e) —iD(e)] e-"{'- &

0

+pi ds C s tia s e""-". 4.2'
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B is a constant still to be determined.
It is useful to have expressions for the field com-

ponents written directly in terms of the Laplace
transforms of C and D. Because the fields have
been taken to be zero for negative values of the
position coordinate, the integrals from 0 to z in
(4. 20) may be extended to —~. Thus

@ ( ) B „1'"d ~, e(p) —iu(p)4@i;„k+P

2i ds [I'(s) —iA(s)] e """+,'i—ds[I'(s)
0 g

+ i~(s)] e-'" "= Z(e) ——.i[X(0) —iZ(0)] e "'.
(4. 24b)

So it follows from Fqs. (3.5), (3.8), and (4. 24) that

X,(s) ——.'[X,(O) —iZ, (0)]e-"

=X„(s)——,'[X„(0)—iZ„(0)]e~' (4. 25a)

e(p) + is)(p)
A, -p

and

Z, (e) ——,'i[x, (0) —iz, (0)]e "'

= Z„(e)—-'i[x„(0)—iz„(O)]e-"'. (4. 25b)

z„(0)=B-;[e(k)+iu(k)] (4. 22a)

E (,),B,-a. , 1 '"dp, n. &(p) - i&(p)

, ~(p) +i~(p)
k-p

Equations (4. 20) and (4. 21) are only valid for posi-
tive s.

The results of applying Eqs. (4. 20) or (4.21) for
z= 0+ are

From either of Eqs. (4. 25), we then have

x,(o) + iz, (0) =x„(o)+ iz„(0). (4. 26)

&.(0) = ikP 'C(o) (4. 2V)

This equation can be combined with Eqs. (4. 22),
either to solve for 8, as

To guarantee that the fields of Eqs. (4. 20) are
solutions to Eqs. (2. 11), it is thus sufficient to
choose the integration constant B so that Z, (0)
=Z„(0). At the metal surface, J, must vanish. So
from Eq. (2. 11b)

E,(0) =ijB+2[e(k)+iu(k)]] . (4. 22b) 2B = E„(0)+ kP-'C(0),

I"(z) = —— — —ikz(z)dx(s)
dz

(4. 23a)

h(z) = ikx(z)+ dz(z)
dZ

(4. 23b)

Integration by parts yields the following identities,
suggested by Eqs. (4.20):

ds [I'(s) —ih(s)]e ""—— ds [I"(s)
2 0 2 ~

+id(s)]e ~" "=X(e)—2[X(0) —iz(0)]e ~

(4.24a)

To show to what extent any solution of Eqs. (3. 5)
and (3.8) is a solution of Eqs. (2. 11), and to de-
velop some additional vital relations, we outline a
procedure by which Eqs. (2. 11) might be derived
from Eqs. (3.5) and (3.8). The manipulations of
the kernels, so essential in Sec. III, are all clearly
reversible and therefore irrelevant here. The
problem is one of integration.

Let X,(s) and X„(z)represent, respectively, the
left and right members of Eq. (2. 11a). Similarly
let Z, (e) and Z„(e)represent the corresponding
members of Eq. (2. 11b). These functions are all
defined for non-negative values of z and are bounded
for large s. For each subscript, define

or to express the boundary condition in a form from
which B has been eliminated, as

—E„(0)+ kP ~C(0) = 8 (k) + in(k) . (4. 28b)

Since the surface impedance is proportional to
E,(0)/H, (0), or to E,(0)/C(0), Eq. (4. 28b) is the
essential equation for determining this fundamental
quantity. Inserting into Eq. (4. 28b) the forms of
the Laplace transforms, Eqs. (4. 9) and (4. 19),
gives the relation

1 1 —2a'Vis(k), 3 k+N+u E,(0)
(0+K)u„(k) v' (k) (k+N)'li„(k) C(0)

. 3 ~or 2waR(k) k+N+u A
2 (u v's(k) (k+Ng„(k) C(0)

'

(4.29)

B. J, (x=0}condition

The essential condition that has not been incor-
pox ated up to this point is the requirement that the
normal current density vanishes at the metal-vacuum
surface. This requirement will determine the value
of the distribution-function constant A. that first ap-
peared in Eq. (2. 4), and that still appears in ex-
pression (4. 29).

The normal current density at the surface is ob-
tained by setting e = 0 in Eq. (2. Vb). In the last
term in the integral, eliminate 6 by Eq. (3.3).
The range of integration for this last term may be
extended to —~, because all fields have been taken
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to vanish for negative values of the position coor-
dinate. In the other terms of the integrand of
(2. Vb), use the expressions (4. 21) for the electric
fields. The limits of integration must not be al-

tered in these terms, because of the limited validity
of Eqs. (4. 21). The coefficient of & is obtained
from Eq. (A12f). The r(, suiting expression for
normal current density at the surface is then

J,'(0) = —,'aoo g A +iB[X„,(k) —X„„(k)]+— dp [X„,(-P) —X„„(-P)]~(P) —i~(P)

+
~

"&' (x„,(-()+x„„(-))))-~, —2', J 4 x((')x.(() .

The subscripts + indicate one-sided Laplace transforms which are discussed in Appendix C.
We now choose A so that 4, (0) = 0. B can be eliminated by using (4. 28a), E,(0) eliminated by using (4. 27),

and (.'(P) and X)(P) replaced by the expressions (4. 9) and (4. 19). The equation then resulting from Z, (0) =0 is

0=sf-,' iki, + i[-,'(~,/~)'I, aI, ]jt+E„(0)(-.'i [X„,(k) —X„„(k)]+I,)
~c(0)l(-, ikP ')[X„,(k) -X„,.(k)]+I, +(kjP'){I,—,~~~'r 'I—))I. (4. 31)

In Eq. (4. 31), a new kind of integrals appears:

r a) x,.(-) ) x,.( p), x—...(-()-+x,,( 0))-
(p+N)uz(p) k+p

l (+x+x ( x...(-))-x...(-() x...(-()+x,,(-())
(P+N)u„(P) k+P k-P
( —b~„(u) ( x,.( p) x,.( u) -x...—(-)')+-x,.(-('))

v'~(P) k+P k —P

J „&x (Di x...(-"(') —x...(-)) x,.( pl x,.(-('))-
V's(P ) k +P k —P

yp
~ fR ~

y x p

' dP"-{P}X.(P).&s(P)

(4. 32a)

(4. 32b)

(4. 32d)

(4. 32e)

(4. 32f)

All the integrands of the J integrals are analytic
in the right half-plane except for poles at P = 4
[arising from the terms k-P in the denominators
of I, , I2, I„I4} and branch cuts running to the right
from P =@, and all fall off at least as fast as P 2 for
large values of P. So the integrations along the
imaginary axis may be replaced by residues at P = 0
plus integrations around the branch cut. The con-
tribution to the right-hand side of (4. 31) arising
from the poles at P = k is

» -E„(0)+~C(0) ——+
1 x s

(1+ia)' gq'
3k' (1+ia)'

The one-sided transforms of the kernels are ex-
pressed in Appendix C in'terms of a logarithmic
function I, defined in Eq. (Cl). It is the difference
in value of' this function on the two sides of the cut
(a difference of 2') that prevents the integration
above and below the cut from canceling. Thus the

parts of the I integrals coming from integration
around the branch cuts are

dP . {1+ ia) 1

q (P +N)us(P)

p Q ~ p g5 Q3

(4. 34b}

(4. 34a)

I, = —i(1

gaia)2

j. —p&%'gg P P
&g(P)

'Nag P P

I&
——~(], +ia) dP —1 i,

1 —'a~&~(P) P
Q R P

(1, ) "dP ~ (P) P
o ~z(P)

(4. 34c)

(4. 34d)

(4. 34e)

(4. 34f)

In Eqs. (4. 34), the paths of integration start at the
point P =Q and then proceed outward away from the
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lmRglnRry axis.
Using the results of Appendix C and expression

(4. 33), Eq. (4. 31) can be written ln terms of the
integrals (4. 34) as

~

~ ~

1 3A 1, I, 3 (A)p /

c(o) ' 2 (u
~ —ikI +i ——I -ar

z„(0) . '1 (1+ia)' t' iQ'
C(o) B 3k' & (&+la)')

+ P' 3(1+ia}+ ' 3(u'7 (4. 35)

Equations (4. 35) and (4. 29) can then be solved for
E„(0)/C(0), which is related to the surface imped-
Rnce ~~p vlR

~, = iP [E.(0)/C(0)1. (4. 38)

Alternatively, Eqs. (4. 29) and (4. 31) can be
solved for E„(0)/C(0), with the final expression for
the surface impedance then being

~i«+~&«)Zp= —iP S.Q, S.q.
where

1 —ria'Vpi„(k)

(k+N)ss(k) &„(k)

k+N+u
(k+N)tt (k)'

s =& -n-2~2. ', eS

Qq ——2 —iki2+i(~Q 2I4 —I~),

Q~ = gi[x„,(k) —x„„(k)]pip,

(4. 38a)

(4. 38b)

(4. 38c)

(4. 38d)

(4. 38e)

~=(~p) '.
The reflectance B~ is then given by

~p —COSO

Z&+ cosG

and the absorptance A.~ by

V. RESULTS AND MSCUSSION

A. Dielectric functions

(4. 39t )

(4. 40)

(4.41)

If the surface impedance and optical properties
of an electron gas with a specularly scattexing sur-
face are calculated using the Boltzmann equation,
it is found that the dynamical response of the elec-

QB = gikp 2[X„,(k) —X„„(k)]+I,+ kp ~(I~ —gQyIq),

(4. 38f)
with

(4. 39a)

trons ts entirely described by tg( q, (d) and E((q', co),
the transverse and longitudinal dielectric functions
of the bulk system. For the special case of s po-
larization, where the components of the electric
field and current density normal to the surface are
zero, the expression for the surface impedance in-
volves only the transverse dielectric function, The
absorptance in the nonlocal specular scattering
theory is larger than that in a local theory, where
one uses a dielectric function dependent only on the
frequency, e(&o) =lim Oe, (q, a) =lim, 06,(q, ru). At
low frequencies (&u~ 10 2&~), the additional absorp-
tance, RppeRl lng Rs the Rnoxnalous skin effect, oc-
curs for both s and P polarization, and arises from
the q dependence of e, (q, &u). For v & a&~ there is
additional absorptance for P-polarized light; it
arises from the excitation of bulk plasmons within
the metal, and is associated in the theoxy with the
presence of the longitudinal dielectric function
e, (q, ~). Also associated with the presence of e&

are absorptance contributions from single-particle
excitations when v p 10 '~~.

Fol diffuse scRtterlng, ' ' the suxfRce impedance
for s-polarized light involves only the transverse
dielectric function. Using the dimensionless fre-
quency f1 of Eq. (4. 39a) and a dimensionless wave
vector Q =qc/u&~, where q is the magnitude of the
usual wave vector with dimension (length) ', the
surface impedance can be written

oo Q3 1

dQ, ln 1 —=[&,(Q, &) —sin'&]

(5. 1)

Here Q, is the z component of the wave vector Q, 8

is the angle of incidence, and e, (Q, 0) is the trans-
verse dielectric function.

It will be shown that both the transverse dielec-
tric function and a function essentially equivalent
to the longitudinal dielectric function appear in the
present diffuse scattering theory for P polarization.
However, the theoxy also contains electron-gas
response functions that are different from the usual
dielectric functions; in this xespect the theory is
more complicated than either the P-polarized
specular scattering theory or the s-polarized dif-
fuse scattering theory. This occurs because of the

vital role of the destruction of translational invari-
ance in the direction normal to the surface for P
polarization and diffuse scattering. For s polariza-
tion, this destruction of translational invariance.
does not eliminate the validity of the ordinary wave-
vector concept since the current is directed paral-
lel to the surface, a direction for which transla-
tional invariance is maintained. This, together
with the fact that the incident fields induce no

charge, means that the optical properties for s
polarization can be completely described by a, (q, e),
the transverse dielectric constant. For specular
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scattering and P polarization, the destruction of
translational invariance is effectively circumvented
by the field symmetries associated with the specu-
lar scattering condition.

The transverse dielectric function can be iden-
tified by going to normal ineidenee, as will be dis-
cussed in Appendix D, for in this limit the theories
for P and s polarization become identical. One
finds that the transverse dielectric function is con-
tained in the transformed kernel

X,{P)= ——'[(1, +ia) 7 (P) yP (P)], (5. 2)

where 6'~(P) and 6'2(P) are given in Eqs. (A4a) and
(A4b). The dimensionless Laplace-transform vari-
able P is related to q„the z component of the wave
vector, by the equation P =iq, vz/(d; here the factor
i appears because one is converting from the I.a-
piece-transform variable to a Fourier-transform
variable, and «)z/(u, the unit of length in the theory,
is xequired so that P is dimensionless. Converting
q, to the dimensionless wave-vector component Q,
by the relation q, =Q, (d~/c, we find that p =&pQ, /&.
Similarly the tangential component of the wave vec-
tor is 0=Paine=PQ, /&, and Q, the magnitude of
the wave vector, is given by P =(P —k~)'+ =i'/0
If we write a=((d7) ~=y/&, where y=(u&~7) ~, and
introduce the quantities

5'= P(~ fn)-~, (5. 3)

we find that

1 —
&2I12 X.(p) =&((Q, tl),

«~(Q ")= I+i [(~ Q)'&(ll+»)] '841+(~ Q)']I +& Q1
(5. 6}

is the nonlocal transverse dielectric function for an
infin1te medium, as dex'1ved froQl the BoltzQlann
equation [see Ref. 2, Eq. (2. 46)].

The function f'(P), defined in Eq. (4. 12), is es-
sentially the longitudinal dielectric function. With
the aid of Eqs. (4. 6a) and (4. 6b), Eq. (4. 12) be-
eoDles

&(P)=1+2 I12 &2(P) '&5'g(P)- (5. 7)

Making substitutions similar to those used in ar-
riving at Eq. (5. 5), we find

I- 1 1 y
(0 y iy)3 (O'Q)3 2i 2 O'Q(& fy)+

(5. 8)
Equation (5. 8) can be compared with the longitudinal
dielectric function «' (Q, 0}, obtained from the
Boltzmann equation with the ordinary relaxation-

time approximation, in which the electron distribu-
tion function relaxes to the unperturbed distribution
function;

Equation (5. 8) differs slightly from Eq. (5. 9), and
it is also different from the correct longitudinal
dielectric function «, (Q, &) obtained by using a
scattering texm in the Holtzmann equation that al-
lows the electron distribution function to relax to
the local state of charge inbalance. [An expression
for «,(Q, &) is givenby Eq. (2. 47) of Ref. 2. ] How-
ever, aLL of these functions become equal when the
relaxation time becomes infinite or y-0:

lim &(p) = lim«„(Q, 0) = lim«, (Q, &) .
1~0 0 0

{5.1O)

Since, within the present theory, the relaxation
of the distribution function is treated correctly by
including the term G(s) in Eq. (2. 2) and the follow-
ing equations, it is interesting that the correct
longitudinal dielectric function «, (Q, 0) does not ap-
pear fox' a nonzero value of y. It turns out that the
correct longitudinal dielectric function can be
written

f(P)
«((Q, fl) =

1 i ~(p), (5. 11)

wherex(p) is defined in Eq. (A6a); however, the
particular combination of functions on. the right-
hand side of Eq. (5. 11) does not appear in the pres-
ent theory. The expression &„(p)/[1 —2&&,„(p)],
first appearing in Eq. (4. 19) for the divergence of
the electric field, is a longitudinal response func-
tion that resembles, but is not the same as, Eq.
(5. 11).

This situation is perhaps les's surprising if one
recognizes that the wave vector is a questionable
concept in the diffuse scattering theory. With a
wave vector specified, the distinction between
transverse and longitudinal fields is immediate.
When the wave vector cannot be identified, this dis-
tinction must be sought through the effects of di-
vergence and curl operations, a considerably less
transpaxent procedure. That the longitudinal and
transverse effects could be mixed here in a. non-
simple manner does not seem unrealistic.

B. Results

Using this diffuse scattering theory, the absorp-
tance A~ was calculated as a function of frequency
0 = ~/(d~ for P-polarized light incident at an angle
8= 75'. The Fermi velocity chosen, P=vz/c
=2. 8355&& l0 3, is representative of sodium. In
order to show nonlocal contributions to the absorp-
tance clearly, a small damping factor, y= j.0 3, was
used.
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I IG. l. Absorptance as a function of frequency 9 = ~/~&
for p-polarized light incident at 75 . Solid line: diffuse
scattering; dot-dashed line: specular scattering; dashed
line: local theory, The calculations are for a free-elec-
tron gas representing sodium, with a damping factor
y=lp ~,

The theory involves a large number of integra-
tions along a path C at the distance d to the left of
the imaginary axis of the complex P plane, and also
Rlollg the imaginary axis itself. All functions Rre
calculated at several hundred points along the
imaginary axis Rnd the integrations are performed
using Weddell's rule. A function to be integrated
along C is first extrapolated from the points on the
imaginary axis to corresponding points on the path
of integration. For accuracy, the spacing between

points is decreased where the integrands vary rap-
idly; this occurs near the logarithmic branch points
p = +Q and also near the zeros of &(p), which move

close to the imaginary axis when» 1.
Figure 1 shows the absorptance for P polarization

obtained with the diffuse scattering theory, the
specular scattering theory of Ref. 2, Rnd the local
theory. At low frequencies there is no essential
difference between P and s polarization (see Ap-

pendix D); in fact, the surface impedance for dif-
fuse scattering is the same for the two polariza-
tions, the difference in absorptance arising solely
from the different relations between the surface
impedance Rnd the absorptance, '

As the frequency increases toward the plasma
frequency the p-polarized absorptance decreases
for both the nonlocal and local theories, instead of
remaining nearly constant as in the case of s po-
larization (see Fig. 7 of Ref. 8). In the frequency
range ~ & 1.1, the absorptance for diffuse scatter-
ing exceeds that for specular scattering by about
1&&10 4. This difference is so small that it cannot
be shown easily on the scale of Fig. 1; the diffuse
and specular scattering results therefore appear
as R single solid line.

A rapid change in absorptance, not shown clearly

OxIO

-OXIO4
i y I IO ~

I
~ I

:I
-8xlo I

0.90 I.OO I.O5

Q

pIG. 2. Absorptance difference M =.A& -A&~ as a func-
tion of frequency Q=~/~&, with four values of the damping
factor; p=lp"~, 3xlp"~, lp, and Qx lp . The dotted
and dot-dashed portions of the curves for y= lp 3 and

3x lp indicate regions where the results shown may be
somewhat inaccurate (see text).

I

095 I.IO

in Fig. 1, occurs near 0= 1. The behavior near
~=1 is shown in more detail in Fig. 2, where the
absorptanee difference &A. =A~ —A~~"' is plotted as
a function of in the range 0. 9~ 0» 1.1, with four
values of y: y=10 3, 3&10 3, 10, Rnd 3~10~. As
~ increases toward ~=1, 6A. at first slowly de-
creases, but very near 0= 1 there is a sudden drop
of ~A, followed by an increase to ~A= 1.5&10 4 at
~= l.2. For still higher values of ~, ~A. decreases
gradually to about 1&&10 . It is evident from Fig.
2 that the change of 6A. near ~ = 1 becomes less
sharp Rs y increases. For ~ slightly larger than

&A. becomes negative; in fact, the diffuse ab-
sorptance A~ even drops below the local Rbsorptance
Ap

' for the two smallest values of y. Unfortunate-
ly an accurate calculation is extremely difficult
near ~ = 1 if y is small, so the size of this drop of
&A for ~~1 is uncertain for the smallest values of
y. The curves are shown as a, dotted line (for
y = 8X 10 ') and a dot-dashed line (for y = 10 ') where
the calculation may be inaccurate.

It is interesting that the absorptance at frequen-
cies ~ ~1.02 is so nearly equal for specular and

diffuse scattering. In both cases, the rise above
the local absorptance, A -A. '"" and A'~"'-A'"'
is caused largely by the excitation of bulk plasmons.
In the specular scattering theory this excess ab-
sorptance can be traced mathematically to the ap-
pearance of eI(Q, &) in the denominator of an ex-
pression which is integrated over Q, to give the
surface impedance. The Q, values determined by
the solution of eI(Q, &) = 0 move close to the path of
integration when 0 &1, giving the additional con-
tribution to the surface impedance and the absorp-
fance. In the diffuse scattering theory the excess
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absorptance arises from the zeros of 1'(P), which
is essentially equal to e,(Q, fl). As noted above,
these zeros are close to the path of integration if
~ &1, giving a contribution to the integral

(5. 12)

and eventually to the surface impedance and the
absorptance. A detailed mathematical comparison
between the two cases is hard to make because of
the distinctly different fashion in which the longi-
tudinal effects appear within the two theories.

The fact that the diffuse and specular P-polariza-
tion theories give such different results for «1
and nearly identical results for ~ &1 suggests
strongly that when the bulk plasmon is sharply de-
fined, the excitation of plasmons, which is the
dominant nonlocal-absorption mechanism for 0 &1,
is but little affected by the details of the individual-
electron scattering events, not a surprising result
in view of the many-electron character of the plas-
mon. %hen, on the other hand, the dominant lon-
gitudinal excitations are single particle in character
and spread over a wide range of wave vectors, as
they are for & 1, the individual-electron scatter-
ing behavior is important and diffuse scattering„
providing an additional scattering process, enhances
the absorptance associated with the single-particle
excitations. In the frequency range 0 & 1.02, the
slight excess of the diffuse scattering absorptance
over the specular scattering absorptance can be at-
tributed to the residual single-particle excitations.

The anomalous behavior of the absorptance very
near ~ =1, as shown in Fig. 2, is not completely
understood. For ~ just above 1, the optically ex-
cited bulk plasmon has a small wave-vector com-
ponent normal to the surface, comparable in mag-
nitude to the wave vector associated with the domi-
nant transverse effects. It is reasonable, then,
that cancellation effects could occur between the
transverse (local) and longitudinal (bulk-plasmon)
contributions when evaluating the quadratic products
which yield the absorptance. At higher frequencies
the plasmon wave vector becomes larger, the cor-
responding wavelength becomes much smaller than
the penetration depth of the transverse currents,
and such cancellation is no longer possible. This
point of view is also suggested by the fact that the
anomaly extends downward in frequency to about
0= 1-y and the plasmon half-width is roughly y.

This argument should be viewed with caution
since, as presented, it would also be applicable to
the case of specular scattering, where the anomaly
does not occur, As noted above, however, longitu-
dinal and transverse effects are much less readily
identifiable in the diffuse scattering theory and the
mixing of the two in this case may well account for
the anomalous behavior. This point is now being

investigated in connection with photoemission studies
for which the details of the spatial distribution of
the fields are needed. 7

If one uses the longitudinal dielectric function as
obtained from the Boltzmann equation, the plasmon
is a well-defined excitation for all &1; that is,
there is no Landau damping. The plasmon frequen-
cy for large q is asymptotic to the line ~ =qn~,
which is the low-q edge of the single-particle exci-
tation region. Thus, there is no opportunity for the
single-particle contributions to dominate the lon-
gitudinal effects for high frequencies, where the
plasmon is Landau damped, as does occur when the
self-consistent-field (SCF) (Lindhard) longitudinal
dielectric function is used. If this could happen,
it is likely that the diffuse and specular surface
impedances, while essentially equal for ~ &1, would
be quite different for higher frequencies, where the
plasmon is Landau damped. This point cannot be
checked with the present Boltzmann-equation-based
theory but is probably not of particular consequence
within the purely optical realm. In connection with
recent suggestions concerning nonlocal effects in
photoemission, 7 it could be very important.

The role of the constant A. , which is defined in
Eq. (2. 4) and is adjusted so that the normal com-
ponent of the current density at the surface is zero,
was investigated by repeating the calculation of the
absorptance with A =0. Using Eq. (4.29) and set-
ting A = 0, we find that the surface impedance is

g(&=0) fpg /g (5. 13)

where 3, and 3, are defined in Eqs. (4. 38a) and
(4. 38b).

A further instructional simplification of the theory
was made by neglecting all longitudinal effects.
This was done by taking A = 0 and also setting equal
to zero the second term in S„which contains the
longitudinal response function ER(k). The surface
impedance then becomes

g(.r)
k+N+u ' (5. 14)

Using

u=
27ri

dq in+(q), (5. 15)

together with Eqs. (4.4) and (5.5), introducing the
variables 0 and Q, and letting d- 0 and N- 0, we
find

(2') —miQ

w& sin8+ fo"dQ, in)1 —(fl jQ2)[c,(Q, 0) —sin~8]j '

(5. 16)
If A«1, the first term in the denominator can be
neglected, and Z~ ' becomes identical to the sur-
face impedance for s polarization, Eq. (5.1).

In Table I the absorptance obtained from the ap-
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TABLE I. Absorptance for P-polarized light incident .

at 8 = 75', for selected values of the frequency. The ab-
sorptance values A&, A&+, and A& are obtained, re-
spectively, from the correct surface impedance g& and
the modified forms Z&~ and Z& ). The absorptance
A& is found from the surface impedance Z
= [&(0)—sin 8] 2/e(0), with the local dielectric function
& (0) =1 —[Q(Q+iy)]; A&'~' is the absorptance with
specular scattering. The Fermi velocity P = vz/c
=2.8355xlp and the damping factor y = (cu&v) =10 s.

0 A A Ol~o) A (T) A (loc) A (spec)
P P P

0 01 1 54x10 2 1.52x10 &. 51x10 7.68xl0 3 8. 28 10
0. 1 1.42 x10" 7.48x10 1.17x 10" 6. 88 x10 7.14 10"

0. 8 2.33x10 ', 14x10 1.28x10 1, 32x10 1.38x10
1.2 2. 34x10 3.27x10" 6. 30x10 9, 31 x10" 2.20x10
1.5 2. 61 x10 2. 66x10 4. 24x10 ' 8.21x10 4 2. 54x10

proximate expressions for the surface impedance,
' and ~~ ', is compared with the correct ab-

sorptance. The local absorptance A~"" and the

absorptance with specular scattering, A~""), are
also given, The Fermi velocity and the angle of
incidence are the same as used previously. A

similar comparison of the surface-impedance
values is shown in Table II.

The absorptance A~ ' is much too large for
«1, but is nearly correct for»1. The errone-
ous values of A~

' and Z~
' at low frequencies

show the importance of the condition that the normal

component of the current density must vanish at the

surface. It is evident that Z~ ' and A~~' approach
the correct values S~ and A~ at low frequencies,
where the longitudinal effects vanish. At the higher

frequencies, however, this approximation fails
completely: The absorptance A~ ' drops below the

local absorptance A~"'", and at 0 = 1.5 the imagi-

nary part of A~~' even has the wrong sign. The ap-

proximation A = 0, which fails at low frequencies,
is somewhat better when &1. However, the sur-
face impedance Z~

' still differs significantly from

Z~, even though the absorptances A~
= ' and A~ are

nearly the same. A comparison of the diffuse and

local results shows that the imaginary parts of the

surface impedances Z~ and Z~"" are almost equal.
The additional absorptance for diffuse scattering,
as compared with the local absorptance, is due es-
sentially to an increase in the resistive part of the
surface impedance.
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APPENDIX A: PROPERTIES OF THE KERNELS

The kernels appearing in Eqs. (2. 6) and (2. 7)
are a set of closely related functions. Because
their properties and the relations between them

are so critical in uncoupling the integral equations,
their properties are derived in some detail in this
section. 28

Defining relations

The kernels are defined in Ref. 2 (with different
names) in terms of integrals over an angle 8. ' We

have found it convenient to introduce as an alterna-
tive variable of integration x= sec0. With

y =a(~3 l)»'~ ~~,
(Ala.)

K(z)= J dxx 'e" "*~"~'z (y)
1

The other kernels, along with the names given them

TABLE II. Surface impedance for p-polarized light incident at 0 =75', for selected

values of the frequency. Z& is the correct surface impedance for diffuse scattering,
whereas g&+* and Z&~ are simplified forms defined by Eqs. (5.13) and {5.14), g&

oc)

is the local surface impedance as defined in the caption. for Table I, and Z&"~" is the

surface impedance with specular scattering. The Fermi velocity and y are given in the

caption for Table I,

0, 01 1.Op4x10 s

—1.008 xlp 2i

g Q*O)

1.070x 10 '
—8. 546 xlp

g (&)

9, 867 x 10
—1.001 x 10

g (1oc)
P

4. 995x 1Q
—1, 001 x ].0-2z

g (8QSC)

5. 391x10"
—9.952xlp" q

0.1

0, 8

1.2

1.006 x 10-S
—1,007xlp ~g

1,073x 10 2

-2, 166 i

1.538 x 10-2

+2. 592 i

9.780x lp 2

—1, 896xlp 2g

1.284
-4„516xlp i

4. 611xlp s

+1.179 ~

8, 583 x 10"4
—9.123x 10

3, 401x10 4

—4. 569 x 10 i

2. 378xlp 4

—5.688x 10 1~

5. 147x 10 4 5. 337xlp '
—1.010x 10" i —1.QOS x 10 1q

6. 129 x10 s 6. 358 x 10
—2. 174i —2, 166 i

6, 105 x 10" 1,441 x 10
+2. 592 i +2. 592 i

1.5 3.251x 10 '
+1.106 i

l.303x 10 '
+6, 631 xlp 'i

1.915x10 4

—6.328 x 10"iz
1.p24x

+1.106 i
lp ' 3.175x lp '

+1.105 i
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in Ref. 2, are

ye (z)=ye (e)= J dxx '(x —()' ye" "*~"~'d'(y)
1

(A lb)

K, (z) =K(z) = —sgn(z) dxx ' e" ""' do(y),
1

(A lc)

these three functions are

0t(p) =P 'L,

6'z(P) =P '(L —2iP/(1+ ia)],

(ASb)

(A4a)

(A4b)

ye,„(z)=(("(z)=f dxx '(x' —()e" "*~"de'(y),
1

(A ld)

K„,(z) =K'(z) = sgn(z) dxx '(xz —I)'/z
1

( i aux ld-i d y

( y) (Ale)

K„(z)=K(z) = dxx-'e"-') i'id, (y).
1

(Alf)

ye(z)= f dyy(y +k'z') 'e"J(y), (A2a)

dy y( yz + kzzz) '/' e"J0( y), (A2b)

K,(z) = —kz dy y(y'+ lPz') '"e"~0(y), (A2c)

dy y'( yz+ lPzz) ' e"Jt (y), (A2d)

( )=yezfdkyzy'(y' ~ kzz)'e'dt(y),
0

(A2e)

~p is the Bessel function of zero order; a prime in-
dicates differentiation with respect to the argument.

A closely related representation, particularly
useful for small values of I & i, is obtained by using
as the variable of integration y, the argument of the
Bessel function. The argument of the exponential
becomes

ik-l(i + ia)( y2 d k 2z 2) 1/2

so the kernels can be written

6'3(P) =P ~[L —2iP/(I +ia) —2(iP)~/2(1 gaia)3].
(A4c)

The choice of phase of I' is irrelevant, so long as
one does not change in midformula. The functions
F„(p)are all analytic at p = + k and throughout the
region —1—Rep —1. Their only singularities are
logarithmic branch points at P = + Q, where

Q = [lP (I, + ia)']'/' (A5)

is a complex number in the fourth quadrant. The
branch lines extend to infinity away from the imag-
inary axis. As P approaches infinity, 6',(P) van-
ishes as P ' and 6'z(P) and 6', (P) vanish as P z. L
is defined to be zero where I' is zero.

In terms of the functions 0„(P),the transforms
of the kernels are

X(p) = 6'g(p),

X„(p)= i(i+ia)k6'z(p),

X,(P) = - i(1+ ia)P r, (P), (A6c)

X..(P) = —~z(i+ ia)'k'6', (P) —2[(i +ia)'+ /P]&z(P)

—~26'g(p), (A6d)

X..(p) = —-'kp[2(i+ a)'0 (p)+& (p)l, (A6e)

and

X„(p)= ——', (1+ia) k 03(p) —[(1+ia)z + —', lP]Gz(p) .
(A6f)

Gf course, the original functions of a can be re-
covered from the Laplace transforms by the in-
verse transformation

t Co

E(z) = (2)ri) ' dp e '6'(p) .
-j e)

(A 7)

K„(z)= lPzz dy y(y'+ k'z') ' e"do(y) .

The kernels K, and K„areodd functions of their
arguments; the other four kernels are even func-
tions.

Laplace transforms and another integral representation

The well-known two-sided Laplace transforms of
the kernels are simply expressible in terms of
three related functions. Using script letters to
denote Laplace transforms, a transform variable
P, and the quantities

p (p2 kz)1/2

Pg(z) = dp I e (A8a)

d (z)= f dyy' 'e ""
~ Q

In applying this process to the kernels, or prefera-
bly to the functions F„,a particularly simple form
is obtained for z & 0 (z ( 0) by deforming the contour
of integration around the left (right) branch cut.
The difference in the value of I- on the two sides of
the cut contributes a factor 2ni. The resulting in-
verse Laplace transforms of the „functions are
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P, (e)= t d( P 'e "" (ASc) E,(z) = dq (qz —k z )
ii e ',

Ql& t

In these expressions, the phase of P is no longer
arbitrary. Considered as a function of P, I' has
branch cuts beginning at the points P =+ 0 and ex-
tending outward indefinitely in a direction away
from the imaginary axis. Along the real axis be-
tween the branch points, I' is given the value
—i(k p )t~z, so that in the fourth (luadrant ReP is
positive. Paths of integration in expressions like
those of E(ls. (AB) are to be understood as extend-
ing away from the imaginary axis from Q, which
is always in the fourth quadrant.

The kernels may also be written in the form of
E(ls. (AS). We find

which we can rewrite as

P, (s)= f de(e' —k'ee) '" —f de(e' —S's') '"
Q)zI 9 t& I

&&(1 —e ')+ dq(q' —k'z') '"e '.
The first of these integrals is elementary. For
z = 0, the sum of the remaining integrals is the
negative of Euler's constanty(=0. 577 ~ ~ ~ ).

Ei(«) =-»4[Q - i(1+ia)]l «I] -y+O(z). (Al»)

The remaining I' functions are finite at I@I=0. We
have

K(e) = f dPP'-'e

K„(z)= i(l + ia)k dp P ' e p('(,
Q

K,( )=e(1 (a)spn(e) f dPPP 'e

(A9a) dF2 z
cfz

= —i(l + ia) ' sgn(z) + O(z lnz),

E, (z) = k ' [i(l + ia) '
Q —1]+O(z),

dE, z)
dz

= —,i(1+ia) 'sgn(z)+O(«),

(Al lb)

(A 1lc)

(Alld)

K,„(s)= l f dp ((31 e()ake' p'

+ [(1+ia)' i k']P '+P '] e '"', (A9d)

E~(z) = ——,
' ik (1, +ia) Q

—z k 4[i(1+ia) ~Q —1]+O(z) . (Al le)

K„(a)='Sean(e) f dPP[1(1+as) P P ]e ei'i

(A9e)

K„(z)= —— dp(3(1+ia)'k'P '+[2(1+ia)'
2 Q

+ k&]P-3 $
e-Plzl (A9f)

Limiting behavior of the kernels

(A10b)

(A10c)

(A10d)

(A10e)K,.(z)- i(1 gaia) 'kQz-'e o('),

For sufficiently large values of I~ I, the entire
contribution to the integrals in (A9) arises from the

immediate neighborhood of the lower limit. The

asymptotic behavior of the kernels is thus

K(z) - i(1+ia)-'I z
I

-'e-&(", (A10a)

K„(z)-(1+ia)'kI zI 'e o(z)

K,(z)-(1+ca) «Q« 'e ol'l

K„„(z)-—i(1 +ia)-'k'I z
I

'e-"l,

The E functions, even functions of their argument
z, have absolute values which are monotonic de-
creasing functions of z . E~(z) is logarithmically
infinite at the origin, and the other two functions
are finite at the origin with discontinuous first
derivatives.

The behavior of the kernels for small arguments
is as follows:

K(z) = —in&« [Q —i(1+ia)]I «I [—y+O(z), (A12a)

K„(z)= —k ~[i(1+ia) yQ]+O(z), (A12b)

K, (z) = —sgn(z) + O(z lnz), (A12c)

K„„(z)= z 1n (z [Q —i(1+ ia) ] I
z

I j—y + O(z), (A12d)

K„,(z) = K~kz 1nI zI+o(z), (A12e)

K,z(z) = —,'+O(z). (A12f)

Relations between kernels

Equations (AB) express the four even kernels as
linear combinations of the three I" functions. The

latter can be eliminated to show that

K„(z)- —i(1 + ia) 'Q'
I
z

I

' e
2(K„—K„„)=K+ i(l, +ia)k 'K„. (A13)

(A10f)

The behavior of the kernels for small values of
I «I can be obtained from Eblis. (A2) or (A9). The

value of F,(z) for small I zI is found most easily
using q= l~ IP as a variable of integration. Thus,
from (ASa),

Bessel' s differential equation provides another
relation between the kernels as described by Eq.
(Al) or (A2):

K„(z)—K„,(z) = K(z) + (kz)-'K„,(z) . (A14)

Important in uncoupling the integral equations are
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the derivatives of the kernels. These derivatives
can be written in terms of other kernels and the
Dirac & function as

dK(z)
dZ

= —i{1+ia)K, (s) —2z ~K„(z),

where it is to be understood that 0& t& m.

Conditions for the vanishing of the real and imag-
inary parts of 1'(P} are, respectively,

3((d&/(d) st 3((d~/&d) 8

dK„(s)
dz

dK, (s) = —i(1+ia)K(z) —kK„(z)—25 (z),

dK„„(z)=s 'K„(z)+kK„,(z),

(A15b)

(A15c)

(A15d)

(
3(&u~/&u)2 as 3(~~/&u)at

q 2q 2q

These equations can be divided to yield

s t .

2q g QS '

(B5)

dK„(z)= i(1 + ia)K„(z)+ kK„„(z)

= z 'K„,(s)+kK„(z),

(A15e) The last equation gives as a necessary condition
for a root of t(p) a.lo'ng the imaginary axis that

(B7)

dK„(s)= —i(l, + ia)K, (s) + kK„,(z) .

The solution given to Eq. (3.5) depends on the
fact that v'(p), defined in Eq. (4. 12), had no roots
along the imaginary axis. A demonstration of this
fact follows,

From Eqs. {4.12), (A4), and (A6),

3 Q3 . . l 2$ QL
&(p}=l———t i(1+is)x I, — . P ——.

2 &o P (1+ia)
(Bl)

Along the imaginary axis (and along the real axis
for Ip I

& k) let P = iq. Replacing q by —q does not
affect the value of f'(p), so in this section consider
q as positive. From (A3b), we have

i=i.(I-",")
= ——,ln, , +itan, ), (B2)

(1+q}'+a' . , 2 aq
1 —q +u 1 —q +

which we now write as

I, = —s+jt, (B3)

Of these equations, (a} follows directly from (A2),
(b) from (A6), and (c), (e), and {g) from (Al).
Equations (A13) and (A14) together with the other
of Eqs. (A15) were used to obtain (d) and (f).

Finally, by differentiating E2(z), a relation is ob-
tained involving the exponential function explicitly:

dE (s) =sgn(z) dpe ""—(P ')
dZ q dP

= —i(1+i&) 'sgn(~) e o')+zE, (s),
which is equivalent to

—i(1+ia)zK(z) =K,(z) y sgn(z) e o" .

APPENMX 8: ROOTS OF 7'(p)

On the other hand, q may be determined as a
function of s and t from the above definition of s
Rnd the expression fol slnt

20q
{f(1-q)'+ 'l{1+q)'+ '1)'" '

The solutloQ to this pRll' of equations ls

coshs —cost
Slnt (B8)

as is probably most simply verified by direct sub-
Stitution.

But Eqs. (BV) and (B8) are incompatible. To see
this, assume the equivalence of (BV) and (B8). Then

s sint
coshs = — + —slnt+ cost . (BQ)

But

1+p s ~ coshs,

10~ coshs —g —&s2

S S1Qt t
2

—1 + —sint+ cost —1 .

sin«1 And in the domain 0& t
& m, yt sint- cost- 1 is a monotonic decreasing
function whose maximum value is 0. Thus the
right-hand expression above is in fact negative in
general, a contradiction that proves the suspected
1QcompRtlblllty,

There is no incompatibility if s= t=0. But this
can occur only if q is zero or infinite. The former
is not a point on the imaginary axis. And for the
latter, the value of &(P} is not 0, but 1.

ln the limit that a- 0, t is either 0 or m. The
latter is incompatible with (B9) and the former
corresponds to the case s —t=0 noted in the previ-
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ous paragraph. Thus the case a- 0 is in no sense
special.

APPENDIX C: ONE-SIDED LAPLACE TRANSFORMS OF THE
KERNELS

It will be no surprise that these transforms turn
out to be very similar in structure to the two-sided
transforms, but somewhat more complicated. They
are all based on the function

1+i a+P p+I' ip 1+ia + I'

divided by odd powers of I'. I-, has a branch point
at P = —Q but not at P = Q. The one-sided transform
ofK, orE, , is

X.(P) =&I(P) =& 'I .. (C2a)

In the other one-sided transforms, there are sub-
traction terms whose function may be thought of as
removing spurious singularities at P = k (P =0) with-
out introducing any other singularities, even at ~.
We introduce the functions

A S~QS —S~Q2
E,(0) S&Q& y SBQ~

We shall show that as 8- 0,

(Dl)

impedance for P polarization approaches the surface
impedance for s polarization, given by E(l. (5. 1)
with 8 =0. Although this limit is necessary physi-
cally, it is not immediately obvious how it arises
from the final expression (4. 37} for the surface
impedance, and it is difficult to achieve numerical-
ly. In fact, showing that the correct result is ob-
tained as ~-0 was an important test of the numeri-
cal calculation.

The other limit is the low-frequency limit, which
is very complicated mathematically. We have
shown numerically that at low fre(luencies (QS y),
the surface impedance approaches the approxima-
tion &~ ', given by E(l. (5. 14), a fact that has al-
ready been noted in the discussion of Table I.

We now examine the limit 8- 0 or O'= Psin8- 0.
One can solve E(ls. (4. 29) and (4. 32) for the ratio
A/E, (0), giving

or

SIQ3 — gQ2 0

A/E. (0)- 0.

(D2a)

I'",(P)=P 'I"2(P)+ SPs (1, )3

p' (1+ia)' (C2c)

(1+ia)~ iQ'

X„„(p)= —~(1+ia) kpES(p) —2 ApE&(p)

(I

gaia)

iQ
222 (1 '2)2 ) '

(CSc)

(C3d)

In terms of these I' functions, the one-sided
transforms of the other kernels are

X,.(2( =((1+ )2F,(2 I
— „1'— . )',( i(1+ia) iQ

(CSa)

x.,(p) = —i(1+ia}p&,(p), (C3b)

x,„,(p) = ——,'(1+ia)'O'E,'(p) —k[(l + ia)'+ 0'] &2(p)

(1 + ia) iQ
(p) -p —

2pk l-l

S
limZ~ = —iPlim~=limZ~ ',
8~0 k~0 S2 0~0

(D3)

the second equality arising because the second term
in S, goes to zero as 0-0. Therefore we finally
have, from Eqs. (5. 1), (5. 16), and (DS),

limZ&=limZ, .
0 8 0

(D4)

In order to establish E(I. (D2a), we note that it
can be rewritten as

N+u= limbi[x„,(0) —X„„(0)]+I&]/I,, (D5)

where Egs. (4. 36) have been used with k-0. It
can be shown that

This limit is expected physically; since j,-0 for
~-0, the constant A. , which adjusts the distribu-
tion function for electrons leaving the surface in
order to make j, I, 0=0, must also go to zero. With
the aid of E(l. (D2b), E(l. (4. 37) becomes

x,(p) = —~(1+ia)2k2E,'(p) —2 [2(1+ia) + 0 ]E,(p}

(1 + ia)2 iQS,—:2-... 1,„,). (CSe)

APPENDIX D: LIMITING CASES

In this appendix two limiting cases are discussed.
In the limit as 8-0, it is shown that the surface

limx„„(k)= 0;
0

the integrals I, and I~ are then of the form
$ (20 2k

S((p}„a 2 dp,
»$ (e k-p

where

X.„(-p)
4v (p+N)~ (p) '

(D6)

(D7)

(Da}
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P +Ã.+v
S)()")=4., (p, ~)„(p)--,(}3'...(-') ).

Letting P =";x in Eq. (D7), we have

limI, = 2k lim S,(ix) „z z dx
k~Q 0~Q

(D9)

(D10)

2 z () ¹l„(0)

lim~2= —lim ~~ —1. 3'„,0 .i . N+u
2 ~ Q N&~ 0

(D14)

so that

= 2zi lim S,(tx)5(x) dx
P~Q oo

= 2vi limS, (0),

(D11)

(D12)

Equation (D5) can then be verified immediately by
using Eqs. (D6), (D13), and (D14).

Care is needed in the numerical calculation for
small angles because of the function k/(k -P ) in
the I, integrals; this function approaches z5(x) or
)Ti5(P) as k-0.

*Prepared for the Energy Research and Development
Administration under contract No. Vf-7405-4ng-82.
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P=ip, as above, and S=lnI (1+q)/(1 —q) I, cannot occur
along the imaginary axis in the P plane. This demonstra-
tion can be made without difficulty.

~3%'e adopt the convention of writing denominators in in-
tegrals like those in Eq. (4.6) so that their real parts
are always positive.

24In. general, we will denote by R or L subscripts func-
tions of p regular, respectively, in a right or left
half-plan. e.

2~The Laplace transforms of the fields are all understood
to be one-sided transforms.

6For s polarization the absorptance is As=1-R„with
Rs= I (Zs os8 1)/gscos~+1) I .

~K. L. Kliewer, Phys. Rev. Lett. 33 900 (1974).
For information on an integral representation based on
modified Bessel functions, see J. M. Keller, U. S. AEC
report IS-2194 (unpublished).

2~This 0 should not be confused with the incident angle.


