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Phase transitions in quasi-one-dimensional magnetic structures: Quantum effects
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Semiclassical spin-wave theory leads to a low-temperature (k~ 7&J) static correlation function for a one-

dimensional Heisenberg antiferromagnet having the approximate form (S„(0)S„(r))-'. r "e "'~, where ((T) is

the classical correlation length and X = 2(mS) (S is the spin quantum number) is the .quantum correction. This

leads to a three-dimensional Neel temperature for exchange-coupled chains (with interchain exchange Jj.),
T&cc (Jj /J)"( ".The magnetic field dependence of the quantum exponent X is shown to lead to an important

field dependence for T&.

There has been considerable recent interest in
physical systems %'ith chalnlike structures whlchl
may be considered as approximately one-dimension-
al and thus may serve as realizations for one-di-
mensional theoretical models, ~ Weak coupling be-
tween'the chains, which is generally present in
such systems usually results in the occurrence of
a three-dimensional phase transition at sufficiently
low temperatures. There exist a number of mag-
netic systems of this type~ which provide systematic
data which may be compared with theory. We have
developed an approximate method for the determin-
ation of the three-dimensional (3-D) ordering tem-
perature in weakly coupled chain systems, Our
method involves two steps: (i) for isolated chains
we determine the relevant one-dimensional sus-
ceptibility (uniform for a ferromagnet and staggered
for an antiferromagnet); (ii) the weak interchain
interactions are then treated in a molecular-field
approximation to generate the 3-D phase transition.
This procedure has already been carried out for
some systems, i. e. , the S = —,

' Ising model ' and
the classical Heisenberg chain where the 1-D
problem is exactly solvable. Both of these cases,
however, are classical in the sense that all terms
in the exchange Hamiltonian commute with one
another. From the experimental viewpoint, quan-
tum effects appear to play a role because the clas-
sical Heisenberg chain results agree well for sys-
tems with large spins but much more poorly for
spin-~ systems. The purpose of this work is to
investigate the effect of quantum fluctuation on 7„.
We also discuss the magnetic field dependence T„
and make a speculation on the corresponding specif-
ic-heat anomaly.

The Hamiltonian for an array of weakly coupled
antiferromagnetic chains has the form

~(~) = &s.(&) s.(~)&, (3)

where x is measured in units of the interspin sep-
aration along the chain; then the staggered sus-
ceptibility iss

X=(k T) fo (-()'G(r)dw.

In the classical limit treated by Fisher and Nakamura~

C(r)-=', S(S+1)e ""(-1-)";s»1, (5)

where the correlation length $ is

$ = 2J'S(8+1)/htsT .
This leads to a staggered susceptibility X = s(hs)T) s

xt'S(S+ 1). Substituting this into E(l. (2) leads to
the following expression for T&-.

=2 1/~

(h, T„/Z) = S(S+1) 2

For antiferromagnets, this theory omits the im-
portant quantum-mechanical "zero-point motion"

H= 2J' Q Stt ~ St,t, s+ 2Z, Q Sts S,, t,s,
&sj&

where J»J~&0. Within the framework of the ap-
proximate theory outlined above where the inter-
chain coupling is treated as a mean field, the 3-D
Noel temperature T& is given by

2«s X(T)e) = 1,
where X is the staggered susceptibility of an iso-
lated chain and z is the number of nearest neighbor
chains.

In order to calculate the one-dimensional sus-
ceptibility, we consider the static correlation
function,
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which ultimately destroys the long range ordered
Weel state even at absolute zero. While we do not
have an exact treatment of the quantum-spin prob-
lem, a reasonable semiclassical approximation
should be given by relatively standard spin wave
theory. In the vicinity of T„(«J'/ks), the correla-
tion length $» 1 and thus for wave vectors such
that kg» 1, the chains appear ordered and G(r)
(for r & g) could be calculated from spin-wave theory
based on an ordered ground state. This is essen-
tially the approach followed by Villain in his "har-
monic approximation" which results in

G(~) =--', (-I)"S(S+I)r "e "", (8)

where $ is the classical correlation length (Eq. 6)
and X is the quantum correction. A possible un-
justified extrapolation of Villain's results to the
isotropic Heisenberg case yields X= (wS) ~. A
straightforward spin-wave calculation of the trans-
verse correlation functions and including their ef-
fect on the longitudinal correlation function yields
X=2(wS) ~. What we wish to emphasize is that X=O
in the classical (S-~) limit with an 0(S ) correc-
tion for large S. This form correctly predicts the
absence of long-range order at T = O'K for finite
S. There exist several limits of this type of spin-
wave approximation which provide some basis for
analyzing the reliability of the results: (i) the clas-
sical limit, S-~, is faithfully reproduced; (ii) the
classical X —Y model correlation function is
given correctly; (iii) the S=-,' X-I'model" at T=0
is predicted~ to have the form (Eq. 8) with $ =~
and X= v 2/m = 0. 45 while there exists an exact re-
sult with A. =O. 5; (iv) Extrapolating these results
to spin —,

' yields X= (2/w) or (4/m), while Luther
and Peschel~ recently found X= 1, which is also
consistent with an analysis by Richards of the
numerical results of Bonner and Fisher. ~'

Combining Eq. (8) with Eqs. (2) and (4), we ob-
tain the quantum corrected form for T„
(k T„)/J = 4S(8+ 1)[( Jz/3J') I (1 —A.)]~~' ', (9)
where I'(x) is the gamma function. Comparing Eq.
(7) and Eq. (9), we see that for zJ, /3J-10 ~, $=-2
(boldly extrapolating the semiclassical result to
the extreme quantum limit) we predict T,„(quantum),
T~(classical)-10 ', i.e. , a strong further reduction
of T,~ arising from quantum fluctuations. The ap-
plication of an external uniform field in our ap-
proximation has the striking effect of altering the
exponent A.. The field-dependent correlation func-
tion may easily be calculated with this method by

utilizing the spin-wave modes in a flopped (canted)
antiferromagnet. " Tp lowest order in the exter-
nal field H, we find

X(If}=- X(I -Ak'); ((e) =- $(I+Bk'),

where k= g p, sH/4ZS and A and 8 are constants of
order unity. In the classical limit (X-0), this es-
sentially agrees with the recent calculations of the
classical staggered susceptibility by Blume et al. '
The strongest field effect on T~ arises from the re-
duction in X which is effectively a suppression of the
quantum fluctuations leading to a very unusual in-
crease in T„. For zJ, /3J-IO~, S=-,', and k- —'„
this leads to T„(k)/T~(0)-2-3 which is semiquan-
titatively in agreement with the results of Azevedo
et al. ~ in a-his(N-methylsalicylaldiminato)-Cu
(c'-CuNSal).

The nature of the specific heat anomaly at T„ in
these highly anisotropic antiferromagnets is not
yet clear-neither from the experimental nor theo-
retical points of view. If we speculate on a second-
order phase transition, then with the additional re-
quirement of the isolated chain nonlinear staggered
susceptibility our mean-field approximation gene-
rates the specific heat discontinuity at T„. Using
a scaling argument to determine the nonlinear
susceptibility from the linear X, we find a modified
specific heat jump

&C(quantum)
( /2)z

b, C(classical)

which is approximately 0.45 for S=- —,'; this change
is in the right direction to improve the agreement
between theory and experiment. ' This reduction in
4C could be associated with the removal of more
entropy in short-range correlations as T~ is sup-
pressed by quantum fluctuations. Thus while the
actual form will differ from the mean-field pre-
diction, we expect that the amplitude of the anomaly
at T,& will be reduced by quantum fluctuations.

We have demonstrated that the strong modifica-
tion of the static spin-spin correlation function by
quantum-mechanical zero-point fluctuations in a
quasi-one-dimensional antiferromagnet dramatically
alters the three dimensional ordering temperature.
In future publications we plan to present details of
the ealeulations together with the inclusion of an-
isotropy field effects.
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