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Scaled equations of state for fluids and magnets are studied near the critical point, with particular emphasis
on specific-heat predictions. The importance of fitting both the exponent and the critical amplitudes is
emphasized. Previous proposals, such as the Missoni, Levelt Sengers, and Green (MLSG) and “linear-model”
equations are examined, and the corresponding amplitude ratio A/ A’ calculated as a function of the
parameters. The linear model is found to be inapplicable to Heisenberg-like systems in which the exponent a
is negative, and A4/ A’ > 1. Specific-heat data on Xe, CO,, Ni, and EuO are compared to predictions based
on the MLSG and linear-model equations, with parameters previously determined using pressure, volume, and
temperature (PVT) and magnetization, field, and temperature (MHT) data. There is a small but probably
significant discrepancy for the fluids, and a large deviation in the magnetic case. A “modified MLSG”
equation is proposed, with an additional parameter, by means of which both PVT (MHT) and specific-heat
data may be fitted. Using this equation, an estimate is made for the effect of small fields on rounding the
specifc-heat singularity in magnetic systems. In EuO it is found that a field as small as the earth’s field has a

perceptible effect on the specific heat rounding near T.

I. INTRODUCTION

A great deal of effort has been directed in recent
years toward analyses of thermodynamic data on
magnets and fluids near the critical point, in
terms of scaled equations of state.!™ For the most
part, the data involved pressure, volume, and
temperature (PVT) or magnetization, field, and
temperature (MH T) measurements, and the gen-
eral conclusion drawn from that work' ™ was that
simple equations with a small number of param-
eters gave a satisfactory fit over the whole thermo-
dynamic plane. The purpose of the present paper
is to bring the results of these analyses to bear on
specific-heat data, and in this way to provide a
sensitive test of the previously proposed equations
of state. Our general conclusion will be that spe-
cific-heat information is sufficient to rule out
many proposals which have been claimed to be
consistent with existing PVT or MHT data. In par-
ticular, the “linear-model”?® equation of state
shows large deviations for magnetic systems, and
smaller, but possibly significant ones, for fluids.
The equation originally proposed by Missoni,
Levelt Sengers, and Green (MLSG equation),’
which has more flexibility, can be made to fit
specific-heat data on fluids and magnets, but with
parameter values which may be rather far from
the “best-fit” values obtained from PVT and MHT
measurements. We show, however, that a simple
modification of the MLSG equation, which involves
an extra parameter, leads to an improved fit for
both fluids and magnets.

The task of determining the equation of state of
a substance near the critical point can be ap-
proached from two points of view. The first and
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more fundamental one attempts to find the true
asymptotic behavior, which is presumably iden-
tical for all members of a universality class.® In
this approach it is important to take into account
all relevant theoretical information, and to mod-
ify the analysis whenever theoretical advances
occur. For example, it is known that the true
equation of state satisfies certain stringent ana-
lyticity requirements, and these preclude the use
of many simple scaling expressions, for arbitrary
values of the exponents.” Another theoretical in-
sight which must be brought to bear on the analysis
is the strong evidence®!! that there exist non-
analytic corrections to the leading power laws
which characterize the critical singularities, even
in the simplest systems (e.g., the Ising model).
These singular correction terms must be included
in a rigorous formulation, and the consequent in-
crease in unknown parameters makes such an
analysis extremely difficult.

In view of these difficulties, it is reasonable to
adopt a second, more empirical point of view, and
to search for an equation of state which will fit
the best existing experimental data to within their
statisitical accuracy, without necessarily satis-
fying all known theoretical conditions. This ap-
proach has led to the development of a number of
empirical proposals''® which contain only a small
number of parameters, and satisfy the scaling and
homogeneity relations” which are expected to hold
for the exact equations. The virtue of such em-~
pirical equations of state is their relative math-
ematical simplicity, and their widespread applic~
ability, with parameters which do not change sig-
nificantly from one substance to the next. Such a
numerically accurate representation of a vast

1947



1948 M. BARMATZ, P. C. HOHENBERG, AND A. KORNBLIT 12

amount of data is extremely useful in practice,
and has for example been applied to a calculation
of gravity corrections in a fluid near the critical
point.”?™* Similarly it can be used to predict the
specific heat of a ferromagnet in finite field, which
is one of the motivations for the present work.

As experimental and theoretical techniques im-
prove, the two approaches outlined above should
begin to merge, but there are at present many
open questions left, which prevent a straightfor-
ward application of the theory to an analysis of
experiment. Perhaps the most important difficulty
is the apparent discrepancy between the critical
exponents of fluids and of the Ising model, which
has recently been reemphasized by Levelt Sen-
gers.® Although we believe that the discrepancy
may still be resolved by an increase in the errors
in both the theory and the experimental analysis,
we must recognize that the difference in expon-
ents is as large as that between the various uni-
versality classes (Ising, X-Y, Heisenberg) in three
dimensions. As a result we cannot, at this stage,
apply our theoretical knowledge of the Ising equa-
tion of states* ' to real fluids with great confi-
dence.

In the present paper we adopt primarily the
empirical point of view, with a shift of emphasis
to the specific heat. We compare existing spe-
cific-heat data to equations of state whose param-
eters were previously determined. Emphasis is
placed, in the analysis, on the distinction between
“universal” quantities (such as the exponent a or
the critical ratio A/A’) and nonuniversal ones,
such as the amplitude A itself. The former quan-
tities are more important from a theoretical
standpoint,’® but the latter are also predicted by the
analysis, and their correctness is an important
test of thermodynamic consistency. In practice,
the universal and nonuniversal parameters are
strongly correlated in the empirical fits,* so that
the two types of quantities cannot be treated on
entirely different footing. Nevertheless, we be-
lieve that it is inadvisable to adjust an exponent,
for example, in order to obtain a better fit to an
amplitude, which is not universal.

In our opinion, the ideal strategy for finding the
correct equation of state would proceed in the
following manner: First, the critical exponents
and amplitudes are determined by analyzing data
along selected thermodynamic paths (the critical
isochore, the coexistence curve, etc.), with T,
and p, treated as adjustable parameters (consis-
tent between different sets of data), and the scal-
ing relations imposed on the exponents. (These
constraints may already be impossible to satisfy
without singular correction terms.) Then the uni-
versal part of the equation of state is obtained by

fitting to critical ratios (see Sec. II) which are
supposed to be universal.® By this procedure the
complete equation of state is specified, and it may
be tested by comparing to data along other paths.
If the fit is deemed unsatisfactory within the sta-
tistical accuracy of the analysis, then it must be
concluded that the original assumptions concern-
ing the critical exponents and correction terms
were incorrect, and these must be modified. Al-
ternatively, the equation of state might be at fault,
and additional universal parameters must be intro-
duced. Clearly, such an analysis is only mean-
ingful if a large amount of reliable experimental
information is available, and in practice a less
complete procedure must be followed.

We have found that neither the linear model®
nor the MLSG equations® yields a completely
satisfactory fit to existing specific-heat data along
the critical isochore and coexistence curve of
fluids and Heisenberg-like magnetic systems (Xe,
CO,, EuO, Ni), the discrepancy being much more
significant in the magnetic case. On the other
hand, a simple modification of the MLSG equation,
which contains one additional universal parameter,
is sufficient to fit the specific heat in these sys-
tems, within the accuracy of the measurements.

In Sec. II the “scaling””* ' and “parametric”'®
representations for the equation of state are re-
viewed, and universal variables introduced. Sec-
tion III discusses the specific heat, both at zero
field (p=p,), where the amplitudes A and A’ are
calculated, and at finite field. The magnitude of
the “rounding” effect due to small fields (e.g., the
earth’s field) is estimated for various systems.
Specific equations of state are considered, such as
the linear model and MLSG equation, and it is
shown that they predict values for A/A’ which in
general differ from the best experimental and
theoretical estimates. A “modified MLSG” equa-
tion is introduced, with an additional parameter,
which may be used to fit the desired value of A/A’.
In Sec. IV a number of specific systems are con-
sidered, such as CO,, Xe, EuO, Ni, FeF,,
RbMnF,, the “He A point, and the Ising model.
Data on the specific heat of these systems are
compared with values calculated on the basis of
the various approximate equations of state. For
Ni and EuO the specific heat is calculated at finite
field, and compared with experimental data. Sev-
eral detailed calculations are summarized in the
Appendixes,

II. UNIVERSAL AND NONUNIVERSAL QUANTITIES

Near an ordinary critical point the equation of
state is described in terms of two independent
variables, for example the temperature T and the
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density p for a fluid or the magnetization M for a
magnet. This is usually written as

= wp, T) (2.1a)
or
H=H(M, T), (2.1b)

where u is the chemical potential and H the mag-
netic field. (The analogy between fluids and mag-
nets is well known” and we shall use both notations
interchangeably.) According to the scaling hypoth-
esis,'”"” when one is sufficiently close to the crit-
ical point this function of two variables may be ex-
pressed in terms of critical exponents and a func-
tion of one variable,

1= w(pe, T) = Ap=28p| Ap|°*h(x) , (2.2a)

H=M|M|°"h(x), (2.2b)
where

x=t|Ap| Tt/ B=t|M|M/B (2.3)

Ap=p-p, , (2.4)

t=(T-TJ)/T, . (2.5)

(We are using the standard notation,” which is de-
fined more precisely in Appendix A.) The function
h(x) must satisfy a certain number of conditions’
in order to ensure analyticity of u(p, T) and H(M, T)
in the one-phase region.

The hypothesis of universality® states that all
systems possessing critical points are divided up
into equivalence classes, within which the critical
exponents have specified values. These classes

are determined by general features of the Hamil-
tonian, such as symmetry and dimensionality. It
is expected,®’ '® moreover, that in addition to the
critical exponents, the function (x) will also be
universal (i.e., invariant within each equivalence
class), for a suitable choice of scale factors for
pand u (Mand H). This means that one may de-
fine nonuniversal constants x, and %, for each sys-
tem, such that the function

h(%) =R(x/x,) =h 3 h(x) (2.8)

is the same for all systems within a universality
class. In pracitce, it is convenient to choose ¥,
and %z, such that

h(%=-1)=0, 2.7
R(%=0)=1. (2.8)

We shall henceforth refer to % and % as “universal
variables.” The universality of 2(%) of course
implies the universality of the critical exponents,
but there are also conditions on the critical am-
plitudes. In particular, certain ratios of ampli-
tudes along the different paths in the thermody-

namic plane, which are independent of the scale
factors %, and %,, must also be universal. From
an experimental point of view, the most important
ones are the critical ratios'® I'/T’, A/A’, and
DIB%~, where I, I/, A, A’, D, and B are the
usual amplitudes for the susceptibility, specific
heat (above and below T, on the critical isochore),
critical isotherm, and coexistence curve (see Ap-
pendix A). .

Usually, the function %(¥) is determined from
experiment by fitting a few parameters, e.g.,
two critical exponents and a shape parameter such
as b® or E, (see Sec. III). It is then a nontrivial
check of the correctness of the assumed equation
of state and exponent choices to verify that the
ratios I'/T’, A/A’, and DIB°~* obtained from
h(%) agree with experiment. The representation
of the equation of state in terms of %(x) will be
referred to as the “scaling representation.””
There also exists a “parametric representation,”!®
defined in Appendix E, in which there are other
scaling constants corresponding to x, and %, (they
are denoted by % and a). It is clear from the for-
mulas of Appendix E that the critical ratios are
independent of these scaling constants.

In order to determine the scale factors x, and %,
it is sufficient to measure two critical amplitudes,
for example B and I', Eqs. (Al) and (A2). The
scale factors are then given in terms of %(%), B,
and I', by

x0=B"1/B R (2.9)
hy=T7B7Y/Plim [V/h(%)) . (2.10)
¥—> 0

Similar formulas exist in the parametric repre-
sentation (see Appendix E). Once x,, %, and /(%)
are known, the leading singularities in all thermo-
dynamic quantities are fully specified. In partic-
ular, the amplitudes and exponents for the specific
heat may be calculated and compared with experi-
ment. In practice, the scale of the amplitudes A
and A’ obtained from %(x) may not agree perfectly
with experiment, even if’(x)[or 7&(1‘)] yields the cor-
rect experimental value of the ratio A/A’. The
correctness of A or A’ separately is an important
check on the thermodynamic consistency of the
equation of state. Indeed, an incorrect scale fac-
tor for the specific heat is an indication either that
the assumed form for A(%) is inadequate, or that
the exponents and amplitudes obtaine” from a fit
to the experimental data are inconsisteut. Such a
situation may arise when singular correction terms
play an important role near the critical point, if
these are not adequately taken into account.
Heisenbevg and X-Y systems. It has long been
suspected,®® and has recently been confirmed by
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a renormalization-group calculation,?* that the
susceptibility diverges along the coexistence curve
for T<T,, in Heisenberg and X-Y models. This
feature is not present in any of the explicit equa-
tions of state considered in this paper. In terms
of the scaling representation (2.2), we may still
define universal variables according to (2.~7) and
(2.8), but it is expected that near ¥=-1, k(%) will
have the form

R(R) ~(1+x), x=(=1)* (2.11)

for Heisenberg and X-Y systems. The exponent
v is greater than unity, and is estimated?®’ to be
equal to 2/(d-2), i.e., v=2 in three dimensions.
In the parametric representation we would have
[see Eq. (E1)]

H~(1- 6y, @~1". (2.12)

The range of % or 6% values over which Eqs. (2.11)
and (2.12) are valid is not known, but it is ex-
pected®! to be small. It may be shown from the
expression (C11) for the specific heat given in
Appendix C, that the nonanalytic behavior of (%)
does not contribute any singularity in Cy(t,H) as
H~0 for T<T,. Thus the precise form of (%)
near ¥=-1 is probably not very important for the
specific heat. (In particular, numerical calcula-
tions using the regular functions to be discussed
in Sec. IV do not reveal large contributions to A’
from ¥=-1.)

Experiments on Heisenberg-like systems
and numerical simulations® have thus far failed
to reveal the expected divergence in the suscepti-
bility, which suggests that Eq. (2.11) is only valid
very near the coexistence curve, and estimates
based on the € expansion support this view.?! On
the other hand, it is interesting to note that the
Heisenberg equation of state proposed by Milo§evié
and Stanley®® has v =%, which is smaller than the
value v=2 of Ref. 21, but does lead to a divergent
susceptibility for T<T,. For real systems there
are probably more-fundamental reasons why the
divergence has not been observed, having to do
with domains and dipolar interactions. Indeed, it
is precisely for T<T, and H-0 that dipolar inter-
actions become most important in real magnets,
and these tend to cut off the divergence. In fact,
it may well be that the equations of state used in
this paper, with Heisenberg exponents and a non
singular susceptibility for T<T,, are a better
representation of real ferromagnets than that of a
pure Heisenberg model. Thus, since there is no
experimental evidence for a singular equation of
state near the coexistence curve below T, it is
consistent, from an empirical point of view, to fit
to regular functions.??*?® On a more fundamental
level, we would of course like to clarify the rela-
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tionship between real materials and Heisenberg

or X-Y models, but this problem, like the problem
of the discrepancy between Ising and fluid expo-
nents,® is outside the scope of the present work. In
practice, we expect the critical ratio I'/I” to be
most subject to uncertainty, since it vanishes in
the pure-Heisenberg or X-Y case, so we shall not
attach any particular significance to our predictions
for this quantity.

III. AMPLITUDE RATIO 4/A’ AND THE FIELD .,
DEPENDENCE OF THE SPECIFIC HEAT

A. Theoretical predictions for A/A’

Let us first review what is known theoretically
about the amplitude ratio A/A’. In his original
work on the scaling hypothesis, Widom'” considered
the limit o -0, and proved that scaling implies
A=A’ in that case. More recently, Brezin ef al.?”
have calculated the amplitude ratio for an n-vector
model using the € expansion (e=d -4), and found

—j—,=2°‘%(1+e)+0(€2). (3.1)
This expression may also be rewritten in a form
which emphasizes the behavior for o—0, namely,

A_,_ an+8) [1+<n2+4n+28>€]

A7 2¢ 2(n +8)?
+aln2 +0(€) , (3.2)
since'®2®
[ (4=-n) (n+2)%(n+28)
a_<2(n+8)> €_< 4(n +8)? >€2+O(€3) )
(3.3)

In order to obtain an estimate for three dimen-
sions, one must extrapolate Eqs. (3.1) and (3.2) to
€=1. The most straightforward way is to expand
the factor 2% in Eq. (3.1) and only keep the linear
term in ¢, i.e.,

A/A"=gn{1+€[1+3(In2) (n-4)/(n+8)]} .
(3.1
The results are shown in Table I, for different
values of #.

Alternatively, one can use Eq. (3.2) to determine
the parameter

C=a"(1-A/A"), (3.4)

which experimentally seems to be a smooth func-
tion of a (see below). In particular, for the log-
arithmic case a—~0, @ goes to a finite limit” which
is equal to

®=AC/A , (3.5)
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where the specific heat is written as
t>0 (3.6a)

(3.6b)

C=-Aln|t],

C=-Aln|t|+AC, t<0.

The regularity of @ for widely different systems
was first pointed out by Voronel’ ef al.,?®?® on the
basis of an analysis of experiments in terms of
logarithmic singularities. From Eq. (3.2) we find

G’:(-@;—g > ':1 +<%;4f—;)—3—8 > e] -~ 1n2 +0(€?) .
(3.7

This form for @ is designed to yield a reasonable
extrapolation to the range €x1> @. Values of @
obtained from Eq. (3.7) for €=1 and various z are
also shown in Table I. Needless to say, these
methods of extrapolation involve large uncertain-
ties, but their mutual consistency, and the agree-
ment with experimental values to be discussed
below, lend some support to our procedure.

The only system for which A/A’ has been ob-
tained from series expansions is the Ising model,®°
where even the scaling result @ =a’ was not ob-
tained unambiguously. Nevertheless, by imposing
the symmetry relation @=@’, Gaunt and Domb®°
found a ratio

A/A'=0.75 (3.8)

which does not agree with the value obtained from
the € expansion in Table I. The value of ®[Eq.
(3.4)] for this case,®® with =3, is ® =2, which
is again rather far from our expectations based
on the € expansion (Table I) and experiment (see
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below). We believe the value in Eq. (3.8) to be
incorrect, as a result of the inaccuracy of the low-
temperature series. We shall show in what fol-
lows that the Ising value is likely to be A/A’ ~0.5,
but a more accurate determination is highly de-
sirable.

B. Experimental results

Ahlers,' and Ahlers and Kornblit® have recently
discussed the trends in experimental values of
A/A" and a for different systems. They found that
the amplitude ratio could be determined with rela-
tively high precision from the data, provided ade-
quate attention was paid to the form of corrections
to the leading powers. Let us write the specific
heat as

C=(A/a)t~%(1 +Dt*) 4+ B,, t>0 (3.92)

C=(A/a)(=t)"*[1+D(=t)']+ B}, t<0., (3.9b)

The existence of a singular correction term such
as in Eqs. (3.9a) and (3.9b) was first demonstrated
experimentally by Greywall and Ahlers!® for the
superfluid density of *He. It is expected theo-
retically®*® that in the case of the specific heat,
B,=B, and that x=x'=0.5+0.2. Indeed, a value
B,+# By would correspond to a correction exponent
% =x"=0a, which is much smaller than expected.
For a<0, in fact, one must have B, =8, since a
discontinuity at T, corresponds to @ =0, which
would dominate a negative @. In analyzing experi-
mental data one frequently uses the simplified ex-
pressions

C=(A/a)t~%+B, t>0 (3.9¢)

TABLE L - Theoretical estimates of «:, A/A’, ®, and Q.

System n o A/A’ @ Q Method Reference
Ising 1 0.082 0.53% 4.72¢ 0 € expansion 28
X-Y 2 -0.022 1.03® 5.30¢ 0 € expansion 28
Heisenberg 3 -0.102 1.52b>  5.92¢ ¢ € expansion 28
Ising S=4 1 0.125 0.75 2 7.3 Series 30
X-Y (S=w) 2 -0.02+0.03 LX) . oo Series d
Heisenberg (S =) 3 -0.14+0.06 Series e
Heisenberg (S =) 3 -0.09 see ces ce Series f
Ising S=3 1 0.125 0.51 3.9 0 Eq. of state g
Heisenberg S =1 3 -0.198 2.64 8.3 0 Eq. of state 32
Heisenberg S = 3 -0.13 1.46 3.5 0 Eq. of state 32

2From Eq. (3.1’) with e=1.
Y From Eq. (3.1) with e =1.
¢ From Eq. (3.4) with e=1.

dM. Ferer e al., Phys. Rev. B 8, 5205 (1973).
¢M. Ferer ¢ al., Phys. Rev. B 4. 3954 (1971).

fD. 8. Ritchie and M. E. Fisher, Phys. Rev. B 5, 2668 (1971).

& Reference 15 and this work.
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C=(A/a) =ty *+B,, <0 (3.9d)

since the correction terms are difficult to deter-
mine. In general, one may define the parameter

Q= A" (B, - By), (3.10)

which is a measure of the “jump” in specific heat
at the transition. According to the previous dis-
cussion, the parameter @ should be identically
zero, unless one is dealing with a logarithmic
singularity (@ =0), in which case @ is just equal
to the parameter ® [Eq. (3.5)]. (In mean-field
theory we have B+ Bj, but A =A’=0.) For a#0,
we expect the leading singularity to be reflected
in the value of @ [Eq. (3.4), and a fit which in-
cludes a finite value of @ has the singularity shared
between the leading term and the jump, so that the
exponent ¢ is not meaningful.

A summary of selected experimental results on
a, A/A', ®, and Q is presented in Table II. Gen-
erally speaking, it is seen that in those cases
where Q is either zero or small, the values of @,
A/A’, and @ are quite consistent with theoretical

P. C. HOHENBERG, AND A. KORNBLIT 12

expectations (cf. Table I), and in particular @
varies relatively little from system to system.
On the other hand, the most irregular values of
@ are associated with large values of @, which
we believe to be incorrect. We shall thus prefer
those analyses which impose the condition @ =0,
when it is statistically allowed by the data. (We
shall see an example in Sec, IV, in the analysis
of CO,, when this does not seem to be the case.)
Having imposed this condition, we find rather good
agreement between experiment and theory for
A/A" and ®, and it is thus reasonable to test an
equation of state by its ability to fit the experi-
mental A /A’,

C. Calculation using the “linear model”

Let us now investigate the prediction of the linear
model for the ratio A/A’. In particular, we wish
to see how this ratio depends on the other (uni-
versal) parameters in the model,2‘® namely, the
critical exponents and b2, We shall let the expo-

TABLE II. Experimental estimates of a, A/A’, ®, @, D, D', andx. C=(A/a)t (1 +Dt*)
+By, >0, ®=a"'(1-A/A"), C=(A"/a)(=t)@[1+D’(=1)*] +B}, ¢ <0, Q =A~(B, -Bj}).

System n o A/A’ @ D? D'? x [ Reference
COo, 1 0.125  0.53 3.7 0 0 R 36
CO, 1 0.095  0.54 4.9 0 0 . 0 This work
Xe 1 0.125  0.63 2.9 0 0 -0.8 35
Xe 1 0.11 0.44 5.1 0 0 0 This work
Ar 1 0.12 0.52 4.0 0 0 -0.5 b
Ethane 1 0.12 0.54 3.8 0 0 0.6 b
3He 1 0.105 0.44 5.3 0 0 0 c
Methanol-

cyclohexane 1 0.125 0.48 4.2 0 0 -1.2 d
FeF, 1 0.16 0.53 2.9 0 0 ... -38 43
FeF, 1 0135 0.49 3.8 0 0 0 e
4He A point 2 -0.015  1.06 4.2 —0.04 0.01 0.5 0 f
EuO (Jt] <0.02) 3% -0.026 2.0 40 0 0 R — 't 44
EuO (|¢]>0.02) 3% —0.09 1.0 0 0 0 -2.9 44
EuO 38 —0.044 1.22 5.0 0 0 0 40
EuO 38 _-0.1 1.51 53 —0.2 -0.1 0.6 0 40
Fe 3 —0.12 1.04 0.3 0 0 cv -15 h
Fe 3 -0.103  1.41 3.9 0 0 . 0 31
Ni 3 -0.10 1.14 1.4 0 0 1.4 39
Ni 3 -0.089  1.26 3.0 0 0 -0.6 h
Ni 3 —0.091  1.40 4.4 0 0 0 31
RbMnT, 3 -0.135  1.46 3.4 0 0 0 31

3 The value zero for this parameter, when it occurs, was imposed in the fit.

b A. V. Voronel, V. G. Gorbunova, V. A. Smirnov, N. G. Shmakov, and V. V. Shchekochikhina,
Zh. Eksp. Teor. Fiz. 63, 964 (1972) [Sov. Phys.—JETP 36, 505 (1973)].

¢G. R. Brown and H. Meyer, Phys. Rev. A 6, 364 (1972).

dM. A. Anisimov, A. V. Voronel, and T. M. Ovodova, Zh. Eksp. Teor. Fiz, 61, 1092

(1971) [Sov. Phys.—JETP 34, 583 (1972)].

¢ Reanalysis of specific-heat data of M. B. Salamon and A. I. Kushima [AIP Conf. Proc. 5,

1269 (1971)].
fG. Ahlers (private communication).
£ Dipolar effects expected.

hF, L. Lederman, M. B. Salamon, and L. W. Shacklette, Phys. Rev. B 4, 2981 (1974).
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nents range over the values expected for Ising,
X-Y, and Heisenberg systems (-0.15< @<0.15).

As mentioned in Sec. II, the fact that the linear
model yields a finite susceptibility on the coexis-
tence curve should not in itself exclude its ap-
plicability to X-Y or Heisenberg-like systems,

so long as a numerically accurate fit can be made
to PVT or MHT data. In fact, even for Ising sys-
tems it has been argued convincingly by Gaunt and
Domb?® that the linear model is not correct in two
and three dimensions, and it fails in order €2 in
the € expansion.'® Nonetheless, for proper choices
of the parameter b2, the equation of state can be
fit reasonably well by the linear model, for both
Ising and Heisenberg systems,!® as well as for real
fluids and magnets,*'5'222% gnd it is reasonable to
ask whether the specific heat will also agree.

The results for A/A’, calculated from Eqs. (E18)
and (E19), as a function of @, B, and 6% are shown
in Figs. 1-3. It is seen in Fig. 2, for example,
that for f=0.355 it is only in the vicinity of @=0.08
that there is any value of 62 for which A /A’ can be
made to agree with the expected values (solid
points), obtained from Tables I and II. The impor-
tant feature of the linear model revealed in Figs.

1 and 2 is an apparently spurious minimum (or

25 T T Rl ——
| a=-014 B=038
|
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|
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|
|
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FIG. 1. Amplitude ratio A/A’ for the specific heat as
a function of the linear-model parameter #. The curves
correspond to representative values of the critical
exponents « and g for the following systems: dotted
lines, fluids; solid line, Ising; dashed line, X-Y; and
dash-dot line, Heisenberg. For each set of exponents,
the ratio A/A’ reaches a maximum or minimum value
as b? is varied.
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maximum) value that A/A’ can attain for given val-
ues of the exponents, as b? is varied. In Fig. 3,
we show similar curves using the Ising value
8=0,3125, This low 8 leads to a larger region,
0.07s @=<0.12, for possible agreement between the
linear-model A/A’ and its expected value for Ising-
like systems. However, such a low 3 value ap-
pears not to be warranted by experiments in flu-
ids.3'®®™ For the Heisenberg case, the necessary
adjustment in the exponent 8 is far beyond the
allowable range of uncertainty. Indeed, to obtain
A/A'=1.5 in the linear model for a@~-0.14 one
would need $<0,28, Although this result could be
interpreted merely to confirm the inapplicability
of the linear model to the Heisenberg system, we
interpret it to indicate a basic flaw in this equa-
tion, even for use as a purely empirical tool. The
linear model has a built-in restriction on A /A’
which is very likely to be spurious, and which
limits the flexibility of the equations. It happens
that A/A’ can be made to fit'* the experimental
A/A'=0.5 on Ising systems of fluids, for @=0.08
and 8=0.355, or for ®=0,11 and 8=0.3125 (Figs.

2 and 3), but if the values @=0.125,3=0.355 (for
fluids*) or @=0,125, 3=0,3125 (for the Ising mod-
el'®) are chosen, then we find A/A'<0.4, and

25 T T T
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FIG. 2. Amplitude ratio A/A’ as a function of a for the
linear model. Experimentally determined A/A’ ratios
are also plotted, with error bars, for the systems CO,
(=1, @ =0.095), ‘He A point (=2, @ =0.015), and
RbMnF; (2 =3, a=-~0.135); see Table II. For a<0, a
minimum ratio A/A’ is attained for 52~ 1.8.
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A/A'<0,51, respectively (see Fig. 1). In any case,
we do not believe that the critical exponents should
be treated as adjustable parameters to take care
of discrepancies in A/A’, For Heisenberg and
X-Y systems, which have negative @,'' Fig, 1
shows that A/A’ has a minimum when b? varies,
and one would have to choose extremely unrealistic
values of S to fit the observed A /A,

D. Calculations using the MLSG equation

Formulas for the specific heat in terms of the
scaling representation have been obtained by Grif-
fiths,” and are reproduced in Appendix C. It should
be noted that whereas Griffiths restricted his dis-
cussion to @=>0, the generalization to ®<0 may be
made quite simply by replacing Eq. (22) of Grif-
fiths, which reads

h h, x
i} A
“(")-B(E:"—a *1ea

~aleft= [ ay 51 () = by 31,

(3.11)
by the equation
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FIG. 3. Amplitude ratio A/A’ as a function of « for
the linear model, for $=0.3125. This value of g leads
to an improved agreement with the experimental ratios.

h hx  hyx®
a(x)=B<2_°a Tt e

- xlxl"“fxdy |91 %73[n() = hy = kY~ hzyzl).

(8.12)

It is easy to show that expressions (3.11) and (3.12)
are equivalent for @>0, but Eq. (3.12) removes
the divergence which occurs in (3.11) at ¥ =0 for
a<0, [We shall not consider the logarithmic case
(a'=0) explicitly.] The formulas for the specific
heat are given in Appendix C, Egs. (C9)-(C13).

A rather simple explicit form for #(x) which has
been widely used is the “MLSG equation,”! which
is written in the form

2B (y=1)28
n(x)=E KXo\l L g (XX
1 X ) 2 x ’

(] 0

(3.13)

»

or in “universal variables,” in the form

h(%) = (1 +£,) TV28(1 421 + £,(1 +X )PPV -0/8,
(3.14)

It is seen that the only parameters in Eq. (3.14)
are two critical exponents (8 and @=2-28-7),
and £,. The integration necessary to obtain A

and A’ from Eq. (3.14) was performed numerically,
for given values of @, B, and £,. Details are
given in Appendix D. The results are shown in
Figs. 4 and 5, where it is seen that the values of
A /A’ obtained span a much broader range than in
the linear model. Thus for reasonable values of

a and $ a value of £, can be found to fit the experi-
mental value of A/A’. Of course it is not clear

25 ; : : .

\
MLSG EQUATION

\
@=-044 P=038\
20 \ -

o 1 1 | ) 1

01 10 10

FIG. 4. Amplitude ratio A/A’ as a function of the
parameter E, in the MLSG equation. The sets of ex-
ponents « and B represent typical values for the differ-
ent universality classes.
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a priori that the same value of £, will also fit
/T or DI‘BB"I, and the agreement between these
quantities constitutes a nontrivial test of the valid-
ity of the equation of state.

E. “Modified MLSG” equation

As we shall see below, the MLSG equation does
not fit specific-heat data on all available systems,
and it is useful to search for alternate forms.
Since we must resort to numerical techniques to
calculate the specific heat with the MLSG equa-
tion, it is relatively simple to generalize the mod-
el, in order to gain additional flexibility in fitting
the experimentally determined critical ratios.

We have investigated the following “modified
MLSG” equation, which required only minimal
changes in the existing computer programs, but
contained an additional parameter, e,:
;L(E)E §! +e2)"7'”/2593(1 +X)
X[1 +,(1 +X)28e5](y=1/2bey, . (3.15)

[The parameter e, plays the same role as E, in
Eq. (3.14), but we have changed the notation since
e, will differ from E, for e,#1.] As a result of

2.5 T T T T T
MLSG EQUATION
B=0.355
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FIG. 5. Amplitude ratio A/A’ as a function of @ for
the MLSG equation with 8 =0.355. The experimental
A/A' ratios are the same as in Fig. 2. A value of the
parameter E, may be found to fit the experimental A/A’
in each of these systems.

the introduction of e,, the analytic behavior of
h(%) for large % is modified, and becomes

R(R) LT &Y 47,7728 f §EY L e ee (3.16)
F 1 2% el

whereas the correct behavior is [see Eq. (C4)
R(E) =) Tigsy X772, (3.17)
n=o

Thus, although the leading power of X is indepen-
dent of e,, the second term in Eq. (3.16) is incor-
rect for e,#1, whereas in the MLSG equation
(e;=1) only the third and following terms are
wrong. It is clear, however, that this error pri-
marily affects the analytic properties of higher
derivatives of the free energy, which are less
accessible to experiment than the specific heat.
The effect of ¢, on A/A’ is illustrated in Fig. 6,
from which the additional flexibility in fitting ex-
perimental data is apparent, since e, may still
be varied. It must be noted, however, that not
all pairs of values of e, and e; will lead to sensible
results; for instance, for some values of e, the
coefficients A or A’ turn out to be negative. We
have not made a systematic study of the allowable
range of parameters, since we do not ascribe any
particular theoretical significance to this modified
MLSG equation., In practice, one can attempt to
determine e, and e, by fitting to A/A’ and I/T"'
(with fixed exponents), and then see whether the
ratio DI'B%-1 agrees with experiment.

For illustrative purposes we show, in Fig. 7, the
functions (%) and 2" (%), for the MLSG and modi-
fied MLSG equations (MMLSG), which have the
same critical exponents and the same value of

25 T T T ‘ T T
MODIFIED MLSG i
e,=03 \
20- \.\a=-o.14 B=038

A/A

04 10 10

€3

FIG. 6. Amplitude ratio A/A’ as a function of the
parameter ez in the modified MLSG equation, for typical
values of the exponents, and a fixed value of ¢,. e3=1
corresponds to the MLSG equation, with E, =e,.
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T/T’, It is seen that the function 2(%) is almost
indistinguishable for the two cases, whereas A" (%)
differs, and leads to the amplitude ratios (A /A’
=0.52 and (A /A")\sc =0.54 in this case.

)M LSG

F. Field-dependent specific heat

Having fixed the parameters of the equation of
state, the singular part of the specific heat is
fully determined in the (o, T') or (M, T) plane. The
relevant equations are given in Appendixes C, D,
and E. Note that to go from the expression in
universal variables, C(¢, ), to one in the usual
dimensionless units, C(t, H), the field # must be

N T

=== MLSG
—— MODIFIED MLSG

T
(a)

Q15] l

010]

0.05

X

FIG. 7. Comparison of MLSG equation and modified
MLSG equation. The exponents and critical ratio I'/I”
have been fixed to the values « =0.095, §=0.3475,
T'/I” =4.05 for both equations. The universal parameters
are E,=0.2534 (MLSG) and e,=0.4605, e3=0.6869
(modified MLSG). Note that (%) is almost identical in
both cases, but deviations appear in the second derivative

7 (®).

multiplied by the scale factor H,=H/A =x; ®°h,,
and the specific heat must be multiplied by C,
=C/C~ =hox§"2. Once the scale factors x, and %,
have been determined from the measured values
of B and T via Eqs. (2.9) and (2.10), the specific
heat can be expressed in dimensionless or dimen-
sioned units, and compared with experiment. In
zero field, once the universal parameters @ and
A /A" agree with experiment, there is only one
relevant parameter left to fit, say the amplitude
A -A’. In finite field the full equation of state may
be tested. For example, the specific heat along
the critical isotherm behaves as

C(t=0,H)=A H */8% (3.18)

and both the exponent and the amplitude can be
compared with experiment.

As an illustration of the effect of fields on the
specific heat, we have plotted the difference
Cy, t)~Cy(0,t) vs t for various values of H in
Fig. 8, using the modified MLSG equation with
parameters appropriate to Ni (see Sec. IV). Since
we have expressed the results in universal units,
we expect them to apply semiquantitatively to
other ferromagnets, if the appropriate scale fac-
tors Hy, Hy, C,, and Cy are used [see Eqgs. (B2),
(B4), (B9), and (B10). A general feature which is
apparent from Fig. 8 is that for each value of the
field there is a characteristic temperature to(I?)
at which the field effects become appreciable, and
from the scaling properties we may write

50

»
E
E]
4
123
o |
w |
2 i
5 1
=3 Ni
< MODIFIED MLSG
0
= - Fi=4xi10®
";:t E= 4x10®
© — Hi=axi0*

. . .

4 102 107!

1073
[t| (REDUCED TEMPERATURE)

FIG. 8. Specific-heat difference C,(H,t) —Cy(0, t) vs
reduced temperature for various values of the reduced
field H according to the modified MLSG equation. The
parameters chosen are appropriate to Ni (¢ =-0.091,
B=0.378, e,=2,361, e3=0.541), but similar curves are
expected for other materials since universal units are
used. For t>0, Cy(H,t) -é,, (0, t) has a positive maxi-
mum at a reduced temperature which increases with in-
creasing A. For ¢ <0, the specific-heat difference is
always negative.
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t,(H)=HY??, (3.19)

For the example treated in Fig. 8, we have, for
instance, ¢,=7x10"* for A=4X10"® (corresponding
to H=90 Oe), which locates the maximum of the
dotted curve, The temperature £, (H) at which field
effects first appear is roughly one order of magni-
tude higher, i.e., £, =107,

IV. FITS TO SPECIFIC SYSTEMS

In this section we report the results of our at-
tempts to fit various equations of state to specific-
heat data on a number of systems. The equations
we use are determined from PVT or MHT data,
but these data sometimes allow a rather large
variation in the parameters. From the discus-
sion of Sec. III, it should be clear that the addi-
tional requirement that the specific heat should
also fit narrows down the set of permissible equa-
tions, and serves to define the parameters of the
“successful” equations to a considerable degree.
It should be stated at the outset that the concrete
results of our work are not to be taken as a claim
for a correct equation of state, consistent with
specific-heat data. We have not undertaken any
careful study of the correlations between the
errors in determining various parameters, such
as was carried out in Refs. 4 and 5, for PVT data
on fluids. On the other hand, some of the incon-
sistencies we point to are of a gross nature, and
they may thus be demonstrated by a relatively
crude analysis. A disagreement between PV T and
specific-heat fits to the linear model in *He had
been noted earlier by Huang and Ho.®

A. Ising and Heisenberg models

The equation of state for the three-dimensional
Ising model was obtained from a series analysis
by Gaunt and Domb.'® The results were fitted to
both the MLSG equation and the linear model (LM),
with parameters

£,=0,3242 (4.1)
and
b2=1.,5, (4.2)

respectively, and with exponents @=0,125 and
B8=0.3125, The ensuing values for the critical
ratios are as follows:

MLSG:

A/A'=0.51, ®=3.90, I/I'=5,02, DIB®1-1 1756;

4.3)

LM:
A/A'=0.50, ®=4.03, I/T'=5,44, DIB%®'-178.
4.4)

The last two ratios are to be compared with the
direct series estimates'®

I/T'=5.07, DIB®'=1,756, (4.5)

Alternatively, we may determine the parameters
e, and e, for the modified MLSG equation by fitting
to the values of I/T’ and DT'B®"! in (4.5), which
yields

,=0.3045, e,=1.0336, (4.6)
and also
A/A'=0.,506, 4.7

Using the scale variables's x,=0.270, ¢, =E,
=0.308, valid for the bcc lattice, we then find

A =0.138, (4.8)

These results may be contrasted with the direct
series estimated for a tetrahedral lattice,*

A/A=0.75, 4.9)
A=0.15, (4.10)

Comparing (4.10) with (4.8) we conclude that the
high-temperature series for the specific heat are
rather reliable, since A is not expected to vary
significantly between different three-dimensional
lattices. On the other hand, we interpret the dis-
crepancy between the A /A’ values in (4.9) and (4.7)
as evidence against the low-temperature series.
Moreover, the finite value of @ [Eq. (3.10)] ob-
tained in the series analysis (see Table I) is con-
sistent with the equation of state derived in Ref.
15, which has no singular correction terms.

The preceding discussion illustrates the useful-
ness of empirical fits to the equation of state, if
these have a simple closed form and possess
enough free parameters to represent the data
adequately. In particular, we conclude that for
the Ising model the MLSG equation already rep-
resents the series results to within their probable
errors, and the modified MLSG equation is not
necessary. With either equation, it is very simple
to obtain A and A, and thus to test the specific-
heat series. Similarly, it might be useful to fit
the results of the € expansion'® to a closed-form
expression. An analysis of the Ising equation of
state in terms of improved parametric represen-
tations has recently been carried out by Tarko
and Fisher,'® but no estimates were made of the
specific heat.

A recent fit of the Ising equation of Ref. 15 by
Krasnow and Stanley® leads to a ratio A/A’=3.15,
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which disagrees significantly with our answer,
and is clearly incorrect. In fact, Krasnow and
Stanley calculate the specific heat C,, which in
general differs from Cy on the coexistence curve.
The authors assert®? that this difference vanishes
because (%)~ (% +1)? for £~ -1, with ¢>1, which
is correct in the Heisenberg model [cf. Eq. (2.11)],
but incorrect in the Ising case. Their value of

q =1.076 (Table I of Ref. 32) should be replaced by
g =1, which is almost certainly also consistent
with the data. Then C, differs from C,, and the
value quoted in their Table II refers to C,, while
Cy leads to the ratio given in Eq. (4.7) above.

In the Heisenberg case C,=C, on the coexistence
curve, and the ratio found by Krasnow and Stanley
for S=»,A/A’=1.46, is in remarkably good agree-
ment with the experimental value for RbMnF,
given in Table II, A/A'=1.46, The ratio A/A’
should be independent of spin, and we consider the
S =3 value in Ref. 32, A/A’=2.64, to be less re-
liable.

B. Xenon and CO,

Thermodynamic PVT data on Xe and CO, have
been analyzed with great care by Levelt Sengers
et al.* and fitted to both the MLSG and linear-
model equations of state. For CO, White and
Maccabee* have also carried out a linear-model
analysis. With the parameters thus determined,
we may calculate the specific heat according to
the formulas of Appendices C, D, and E. The
results are shown in Tables III and IV for the
linear model and MLSG equations of state, respec-
tively. The specific-heat data of Ref. 35 for Xe
and Ref. 36 for CO, are shown in Figs. 9 and 10,
along with the predictions of the linear-model
and MLSG equations, using parameters obtained
from Tables II and IV. In comparing theory and
experiment we have used Eqgs. (3.9¢) and (3.9d),
and have adjusted the values of B, and T, with
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A, A’, and « fixed at their MLSG values, to obtain
the best fit. It is seen that the fit for Xe is satis-
factory, but the deviations in CO, are probably
outside the experimental errors. Similar plots for
the other parameter sets appropriate to Xe and
CO, given in Tables III and IV yield comparable,
though in general poorer results, which we attrib-
ute to errors in the values of @ and A/A’ obtained
from the linear-model and MLSG equations.

The fits to the specific-heat data obtained in
Refs. 35 and 36 possess a jump @ [Eq. (3.10)]
which is inconsistent with the equations of state
we are considering. We have therefore reanalyzed
the data in order to obtain a fit with a pure power
law and a smooth background [Egs. (3.9¢c) and
(3.9d)]. For Xe and CO,, the data used in the fit
covered essentially the same temperature range
as the previous analyses.’®'3¢ The results are
given in Table V, and show a rather large change
in A/A’ for Xe. It must also be stated that impo-
sition of the constraint Q =0 (B,= B}) considerably
worsens the fit to the data for CO,, and we do not
understand this behavior. In particular we do not
know whether it is associated with a systematic
experimental error or whether, on the contrary,
it is an intrinsic property which requires theo-
retical interpretation. In any case, the o and
A/A’ values we quote for CO, should be treated
with caution, since they result from imposing the
constraint B,= Bj, which is not statistically al-
lowed by the data.

Despite these uncertainties, we shall illustrate
the use of the modified MLSG equation by attempt-
ing to find parameters for this equation which fit
both the PVT data and the specific heat. The pro-
cedure we adopt is the following: The parameters
B8, B, o, and A/A’ are fixed at their experimental
values, determined by least-squares fits to ex-
perimental data (see Table V). The ensuing value
of y, determined by scaling, is not the best-fit
value, so that we cannot use the experimental

TABLE III. Universal and scaling parameters from analyses of the linear model.

ACF€
System a B a k b2 A/A" /T’ DIrB%! (Imole'K™!) (Imole”!K™!) Reference
COy~ 0.104 0.3486 28.02 1.828 1.80 0.427 4.60 1.60 5.017 132.9 4
@62 0.104 0.3486 21.84 1.413 1.382° 0.476 4.16 1.53 6.086 131.9 4
CO, 0.106 0.347 23.0 1.3 1.3 0.469 4.23 1.54 6.901 153.1 34
Xe 0.089 0.350 17.68 1.315 1.407 0.536 4.18 1.55 5.068 91.19 4
Ni —-0.109 0.378 0.92 1.36 1.809 2.048 3.86 1.72 1.375 13.7 38
EuO -0.0093 0.368 2.6892 1.08 1.598 1.067 3.98 1.62 2.630 18.83 22
EuO -0.0598 0.385 2.327% 1.27 2.00 1.575 3.70 1.60 2.071 19.13 23

2 See footnote 37.
b “Restricted” linear-model value,
CAC=C(t ==1073) = C(t =107%),
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TABLE IV. Universal and scaling parameters for the MILSG equation from the analysis of Levelt Sengers e al.

(Ref. 4).
A ac?
System a B % E, E, A/4A’  1/T DrB%!  (Imole™'K™!) (Jmole !K™)
CO, 0.104 0.3486  0.1419 2,178  0.2534  0.445  4.24 1.58 5.605 137.8
Xe 0.065  0.350 0.186 2.728  0.3507 0.651  4.06 1.57 6.879 88.85

AAC=C(t==10"%) = C(t =107%).

value of the amplitude I'. Instead, we choose the
T which best fits the compressibility data with y
held fixed. Having determined the exponents

and the scales [see Table V] one might wish to
determine e, and e, [Eq. (3.14)] by fitting to /I’
and DI'B®~1, and then test the quality of the fit

to A and A’, In practice, however, the errors

in the experimental knowledge of I’/T’ and DT'B®™!
are rather large, and we have chosen to determine
e, and ¢, by fitting to A and A’ (or A/A’ and

A - A’) calculated using the formulas of Appendix
D. The resulting values of I'/T’ and DT'B%™,
shown in Table VI, are consistent with the experi-
mental values, within rather large uncertainties.
With the introduction of the additional parameter
e;, we have thus been able to obtain a perfect fit
to the specific heat in the reduced-temperature
interval | ¢ ,,.|< || <|tmw | (see the solid line in
Figs. 9 and 10), using an equation of state which

™ T T ™ T T
xe

==~ LINEAR MODEL _|
— MODIFIED MLSG

1501

t<0
tumax

cyl(d mole™! k')

0 1 n L 1 n n
1074 10°° 102

It| (REDUCED TEMPERATURE)

FIG. 9. Comparison of the linear model and modified
MLSG fits to the Xe specific-heat measurements of
Edwards et al. (Ref. 35). The linear-model parameters
a,A/A’, and A are those of Levelt Sengers et al.

(Ref. 4 and Table IIT). Holding these parameters fixed,

a least-squares fit of the data to Egs. (3.9c) and (3.9d),
for [t | <lt|<lt .|, yielded the values T, =289.72 K

and B;=-59.83. The reduced temperatures in the figure
are relative to this value of T,. The solid line repre-
sents the result of the modified MLSG equation, whose
parameters were determined by fitting to these data in
the interval |t | <|t]<]¢

max"

is consistent with PVT data, at least at the pres-
ently available level of accuracy.

Returning to the MLSG equation, we note that
for Xe, the exponent a predicted* from scaling
has the low value 0.065, and this is certainly not
the best value. The fact that the “best exponents”
determined from different sets of data may not
satisfy scaling, presents a fundamental difficulty,
which cannot be cured by the introduction of an
additional universal parameter in the equation of
state. Rather, it seems to be an indication that
singular correction terms are needed. The anal-
ogous situation occurred in our analysis, de-
scribed above, where 8 and o were fixed from the
data, and y then was found to deviate somewhat
from its best value.* The introduction of singular
correction terms is a rather complicated pro-
cedure, since these involve a new scaling func-
tion® and new unknown exponents,® so that in order
to carry out the analysis in practice, a great
deal of theoretical input will be necessary.

In concluding this section we may say that more

. ' . r . v r
L 02
300 -~ MLSG .
— MODIFIED
MLSG
=~ tmax
¥ 200
o -
= 2
£
=2
S 100f eSSV t>0 -
t
tmax
1 L L 1 n 1 1
1074 103 102

|t! (REDUCED TEMPERATURE)

FIG. 10. Comparison of the MLSG and modified MLSG
fits to the CO, specific-heat data of Lipa et al. (Ref. 36).
As in Fig. 9, the data were fitted to the MLSG equation
with A/A’, a, and A fixed from Ref. 4 (see Table IV),
to obtain 7. =303.95 K and By=-33.97. The modified
MLSG equation (solid line) is adjusted to fit the data in
the interval £, | <|t|< [ty |- Note that the data are
plotted relative to the 7', obtained above from the MLSG
analysis.
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TABLE VI. Universal and scaling parameters for the modified MLSG equation.

obtained from Table V.)

1961

(The experimental numbers are

A aAc?
System a B % ) ey e A/A’ T/T' DTB%®! (Imole”'K™!) (Jmole™!K™)
CO, 0.0949 0.3475 0.1448 2.173  0.3458 1.0120 0.538 3.95 1.50 7.226 126.17
Xe 0.1105 0.355 0.2067 1.963 0.550 0.3654 0.440 4.26 2.05 3.755 92.77
Ni -0.0908 0.378  0.3940 0.1023 2.361 0.5142 1.40 1.26 1.36 1.933 11.30
EuO0  -0.0445 0.368 0.5813 1.294 1.046 0.7160 1.22 2.65 1.48 3.941 21.98

AAC=C(t==10"3) = C(t =1073).

accurate experimental data on the critical expo-
nents and amplitudes of fluids are needed before
the details of the equation of state are clarified.

C. Ferromagnets EuO and Ni

Data on the equation of state of magnetic systems

have not been analyzed with as much care as for
fluids, but a number of specific equations have
been proposed in the literature.?:?*72* We have
chosen to study EuO and Ni since both specific-
heat and MHT data are available on these systems.
One important motivation for our work is the
desire to estimate the effect of small magnetic
fields (e.g., the earth’s field) on the specific-heat
singularity. For this purpose it is important

to have a numerically accurate equation of state
rather than one which satisfies all the known
analyticity requirements.

The linear-model parameters have previously
been determined®” for??' 2 EuO and 3% Ni and it is
straightforward to calculate A/A’ and A- A’ from
Eqs. (E18) and (E19). The results for EuO and Ni,
shown in Table III, are quite different from the
best values of A and A’, and the ensuing specific
heat will disagree strongly with the experimental
data (see below). This comparison demonstrates
quite clearly the inapplicability of the linear model
for representing the specific heat. In fact, as
shown in Sec. III, there is no way to obtain the
experimental A/A’ of Ni (~1.4) shown in Table II,
in the linear model with realistic exponent values.
The MLSG equation can be made to fit A/A’, with

a proper choice of E, (see Fig. 5), but there re-
mains a large discrepancy in the absolute value
of A~ A’, which shows that an inconsistency re-
mains.

We have therefore undertaken to fit the data with
the modified MLSG equation. The input param-
eters for our analysis were 8, B, o, and A/A’
taken from experiment. The amplitude I" was
again found by a fit with y fixed at its value deter-
mined by scaling. The ensuing parameters, shown
in Table V, determine the scale parameters x,
and E, =¢,. The universal parameters e, and e,
could then be found by fitting to A/A’ and DT'B® !
(as mentioned earlier I'/I" is probably rather
difficult to interpret in these systems). Since
the uncertainties in DT'B%~! are rather large, we
have instead obtained e, and e, by fitting to the
experimental A/A’ and A - A’, thus obtaining the
specific heat exactly, within the temperature
range of the fit. The ensuing values of DI'B%-!
and I'/T’ (Table VI) are rather different from
those obtained from the linear model in Table III
but agree more closely with series estimates for
the Heisenberg model®® (DI'B®~'=1.23 for S=w,
DrB®-1=1.54 for S=3, I'/T'=0 for both cases).
Direct experimental determinations of DI'B®~!
and T'/T' are not available at present, but would
of course be desirable.

We have summarized the numerical data on
scales and normalizations for CO,, Xe, Ni, and
EuO in Table VII. An interesting conclusion which
may be drawn from this table is that the scale

TABLE VII. Normalizations and scales.
Cy Hy My Py Ky
System Cp? (Imole™'K™) H,? (Oe) My? (emumole™!) py? (gem™) py?  (cmPsec”?)
Co,  94.27 2.29° 1.96  0.466° 48,17 1.58x10°P
Xe 52.27 2.40b 1.75  1.11° 29.87 5.25x107P
Ni 2.0513 RC¢ 1.443 1.52x10"9 1,42 3.44x10%¢
EuO 5.965 R¢ 4,886 1.52x10°¢ 1,22  3.80x10%¢

2 Parameters obtained from Table VI.
b Reference 14.
¢ Gas constant R =8.3167 J mole™! K1,
dReference 24.
€ Reference 23.
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of fields HyH, [see Egs. (B2) and (B9)] is an order
of magnitude larger for Ni than for EuO. Thus,
since the universal parameters are comparable
in the two substances, a given magnetic field
(e.g., the earth’s field) will have roughly 10
times more effect in EuO than in Ni.

In Fig. 11, we show the prediction of the linear
model® for the specific heat of Ni, and compare
it to the measurements of Connelly et al.3® As in
the case of the fluids, the values of B, and T,
were determined from a least-squares fit to
Egs. (3.9¢) and (3.9d) using the Ho parameters®®
(see Table III). The data and curves are plotted
relative to Ho’s adjusted T, which is far below
the modified MLSG transition temperature, de-
termined by fitting to the specific-heat data.

(This leads to the unusual shape of the experi-
mental and modified MLSG curves for £>0.) It

is clear from Fig. 11 that the linear-model fit is

in very poor agreement with experiment, especial-
ly for t>0. This disagreement is to be expected
since the linear model does not provide the correct
experimental A/A’.

Having determined a set of parameters to fit
both the MHT data and a zero-field specific heat
for Eu0,?'22:%% and Ni,?*'%® we may calculate the
field-dependent specific heat. We find that even
a small magnetic field leads to a significant
rounding in the specific heat near the transition,

T T T T

Ni
40+ oobe --- LINEAR MODEL T

A —— MODIFIED MLSG
MIN

Culv molet k™)

20 " n I L L L 1 n
1074 1072 102 10!

It| (REDUCED TEMPERATURE)

FIG. 11. Comparison of the linear-model prediction
for the specific heat Cy of Ni with the measurements of

C. HOHENBERG, AND A. KORNBLIT 12

as can be seen for Ni in Fig. 12. The modified
MLSG equation has been adjusted to fit the specific
heat at “zero field” in the temperature region

|tz 1072, and the extrapolated zero-field behavior
in the rounded region (| {|<1073) is shown by the
dashed curve in Fig. 12. An effective field of

only H =2.5 Oe is sufficient to reduce the specific-
heat maximum to its experimental value, and to
approximate the shape of the curve reasonably
well in the inner region. It is also interesting to
note that a significant fraction of the measured
specific-heat increase due to the phase transition
is situated in the rounded region, at least above
T,.

The calculated field-dependent specific heat in
larger magnetic fields is presented in Fig. 13 for
Ni, along with experimental data from Ref. 39.

As mentioned above, there is a rather significant
deviation between the zero-field curves for T
close to T,. At finite field, the agreement is only
semiquantitative even for | ¢|>107%, and it appears
to improve with increasing field. A more careful
comparison between experiment and theory is
needed before a definitive conclusion can be
drawn. In particular, the field # which enters

the equation of state is only equal to the applied
field H, when demagnetizing effects can be neglect-
ed. There is some indication that this is a rea-
sonable assumption in the experiments of Ref. 39,
since the field dependence of C is correctly pre-
dicted by our theory for T<T, (e.g., T =630 K),
taking H to be the applied field. (Demagnetizing

a2 ! 4

Cylv mole-t k™)

" 1 L 1
629 630 631 632 633 634
T(K)

Connelly et al. (Ref. 39) in zero applied field. The linear-
model parameters of Ho (Ref. 38) were used to determine
a,A/A’, and A (see Table II). A least-squares fit of

the data to Egs. (3.9¢) and (3.9d) with o, 4, and A’

fixed, gave T, =630.90 K, B;=40.39. The solid curve is
the prediction of the modified MLSG equation, whose
parameters were obtained by fitting to the data in the
range |t | <|t|<|t;.|. The reduced temperatures are
relative to the linear-model T,, whichdiffers from the
T, used in the modified MLSG analysis.

‘FIG. 12. Specific heat of Ni as a function of tempera-
ture near the Curie point. The data are those of Connelly
et al. (Ref. 39). The temperature region shown by the
arrows was excluded from the zero-field analysis (see
Table V). The dashed curve is the ideal zero-field
behavior obtained from the modified MLSG equation.

An effective internal field of H=2.5 Oe and a shift of
0.02 K in 7', (solid line) yield a reasonable fit to the
specific-heat measurements near T,.
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effects should become important when the mag-
netization is appreciable, i.e., for low tempera-
tures.) A careful discussion of the influence of
demagnetizing effects on the specific heat has
been given by Griffiths,*! and his theory could be
combined with our equation of state to calculate
the specific heat as a function of H, for well-
defined sample shapes.

The data in Fig. 13 had previously been com-
pared to theoretical equations of state,®:32 put
only in scaled form, i.e., [C4(H,t) - C4(0, t)]H*/B®
vs tH™1/8%, We have reproduced such a compari-
son in Fig. 14, except that we have used universal
units; i.e., we have plotted [C ,(H,t) - C ,0,t)JH*/8¢
vs tH™'/B%, It is seen that a scaled plot is rather
insensitive, since the linear model apparently
fits the data quite well, even though the zero-field
prediction is very inaccurate (Fig. 11). In fact
the linear-model prediction for the difference
Cyu(t,H) - Cp4(t,0) agrees reasonably well with the
modified MLSG calculation shown in Fig. 8.

Since Fig. 14 is in universal units it should
apply roughly to EuO also. However, data do not
exist with finite applied field, so we only show
in Fig. 15 our zero-field result from the modified
MLSG equation, along with the data of Ref. 40.

In an attempt to understand the rounding of the
data near T,, we have also calculated the specific
heat in the presence of the earth’s field

(H=0.3 Oe). The results shown in Fig. 15 display
a non-negligible field effect at |¢| <1073, However,
it is quite evident from the shape of the data very
near T, that other contributions, such as inhomo-
geneities or imperfections, must also play a role

1 T TT T T L
40 00Ce

&

C,y(y mole! k)
&

——— CONNELLY et al.
- —-—- MODIFIED ML SG —

o
D

| | 1
630 631 632 633 634
T(K)

FIG. 13. Specific heat of Ni in a magnetic field as a
function of temperature. The solid curves correspond to
the measurements of Connelly et al. (Ref. 39). The
dashed curves are the predictions of the modified MLSG
equation. Agreement between theory and experiment
improves as the field is increased. Note that demag-
netization corrections have been neglected in this com-
parison.

25 0e

g v
N 02 & 6€00e 0 2 T
& o 120 Oe o7 =2
= oif ©° 2400e / o y
- /
e
oF 0 v '
AL Ni
= -04- T\ | - LNEAR MoDEL )
~ £
& -02h T<Tc 3| — MODIFIED MLSG
1 1 1 1
-2 -1 0 1 2

Li-/ee

FIG. 14. Scaled specific heat in finite magnetic field,
using universal units. The data are the same as in
Fig. 13. The dashed and solid curves correspond to the
predictions of the linear model (Ho parameters, Ref. 38)
and modified MLSG equations of state, respectively.
(See Tables III and V.)

in the specific-heat rounding, for the sample
used in Ref. 40.

D. Antiferromagnets and liquid helium

In the case of antiferromagnets or of the *He
A transition, the field conjugate to the order pa-
rameter is not physically accessible, so that
experimental data are confined to the critical
isochore and coexistence curve. In order to find
an approximate equation of state, we have used
the MLSG equation, with y obtained from theo-
ry,?%2% and o and A/A’ from experiment,!!42
This information is sufficient to determine the
equation of state in universal units, since there
is only one free parameter, E,, which is fitted
to A/A’. The results for RobMnF,, FeF,, and

Cylv mole! K™

1 1 1 I
103 102 10"

It| (REDUCED TEMPERATURE)

.
10%

FIG. 15. Specific heat of EuO vs reduced temperature.
The data are those of Kornblit and Ahlers (Ref. 40). The
solid curve represents the expected specific heat in the
earth’s magnetic field (H= 0.3 Oe) using the modified
MLSG equation and neglecting demagnetizing effects. The
dashed curve is the zero-field prediction. The modified
MLSG analysis was carried out for data in the tempera-
ture range between |t | and |¢...|.
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“He are presented in Table VIII. With the linear
model, no value of b* can be found to fit the ex-
perimental A/A’, unless the exponents are dras-
tically changed (see Sec. III).

V. CONCLUSIONS

Let us conclude by summarizing the principal
results of the present work.

(i) A general scheme is discussed for deter-
mining the equation of state of a substance near
the critical point, by fitting to experimental data.
The distinction between “universal” and “nonuni-
versal” parameters is emphasized, and the
utility of fitting amplitude ratios to determine
universal parameters is pointed out. Special
emphasis is placed on the specific heat along the
critical isochore (or in zero field). For this quan-
tity a body of reliable data exists, which may be
understood reasonably well in terms of universality
classes.

(ii) The amplitude ratio A/A’ for the specific-
heat singularity above and below T, is calculated
using previously proposed scaled equations of
state. The MLSG equation can be made to fit
experimental and theoretical values of A/A’ for
both Ising-like and Heisenberg-like systems, by
adjusting a single parameter E,, using reasonable
exponent values. The ensuing values of other
amplitude ratios are then in rough agreement
with experiment. Using the linear-model equation
of state, similar agreement can be found for
Ising-like systems, but only for a very restricted
range of exponent values, which may not yield
the ‘“best fit” to experimental data. For Heisen-
berg-like systems, the linear model cannot be
made consistent with the expected range of A/A’
values (1.2~ 1.6), without choosing unrealistic
values for the exponents (3<0.3).

(iii) Specific-heat data on Xe and CO, are
analyzed, and compared to the predictions of the
MLSG and linear-model equations, with parame-
ters determined by Levelt Sengers et al.,* and
White and Maccabee.3* The linear-model analysis

of Levelt Sengers et al.* gives the best fit for Xe,
but still shows a small discrepancy (~5%) for

t>0. In CO,, there is a slightly larger discrepancy
(= 10%) between the data and the predictions of

both the linear-model and MLSG equations.

(iv) A similar analysis is carried out for Ni
and EuO, using the linear-model parameters of
Ho,3® Menyuk,?* and Hgg and Johansson.?® The
discrepancy between experiment and theory at
zero magnetic field is large (= 50%) and demon-
strates the inadequacy of this equation for Ni
and EuQ. This discrepancy was not apparent in
previous comparisons,®® since these considered
the specific heat difference between zero field
and finite field, and there the effect is much less
pronounced.

(v) A “modified MLSG” equation is proposed,
containing an additional parameter which may be
determined by a fit to the specific heat on the
critical isochore. We have determined parame-
ters for this equation by fitting specific-heat
data in Xe, CO,, EuO, and Ni over a restricted
temperature range. This equation can also be
made consistent with PVT measurements on Xe
and CO, and MHT measurements on Ni and EuO.
It must be remarked, however, that in our work,
unlike Ref. 4, no complete statistical analysis has
been made with the modified MLSG equation, to
find the best parameter values consistent with all
the data.

(vi) Using the modified MLSG equation in the
magnetic case, the specific heat is calculated at
finite magnetic fields, and compared to the data
of Connelly et al.?® with only semiquantitative
agreement.

(vii) The influence of the earth’s magnetic field
on the specific heat is estimated, and shown to
be negligible for Ni, but significant for EuO in the
range | {| <1073, Unfortunately, presently available
measurements?®'** show other rounding mechan-
isms in this range. Data® in the rounded region
very near T, are also compared to calculated
values in finite fields. It is found that a field of
2.5 Oe for Ni accounts for the shape of the spe-

TABLE VIII. Universal parameters of MLSG equation for FeF,. ‘He A point, and RbMnF;.

System a B E, A/A r/r’ prBé-t
FeF, 0.135% 0.3395° 0.544 0.4932 348 1.33
‘He X point -0.015¢ 0.368° 1.045 1,065 ¢ 2.67 1.29
RbMnF, ~0.135 ¢ 0.384° 2.69 1.46¢ 1.62 1.16

3Reanalysis of specific-heat data of M. B. Salamon and A. I. Kushima [AIP Conf. Proc. 5,

1269 (1971)] with the constraint @ =0.
b From ¢ expansion, Ref. 28, with e =1,
¢ Reference 11. .

dReference 31 (reanalysis of original data in Ref. 42).
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cific-heat singularity in a semiquantitative way.
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APPENDIX A: CRITICAL EXPONENTS AND AMPLITUDES

We use the conventional notation” for exponents and amplitudes:

M=Ap=B(-1)®, t<0, p=p,, H=0

x=Tt™", t>0, p=p,, H=0

x=T"(-t)""", t<0, p=p,, H=0
Cy=Cy=Cy=(A/a)t™*+Cy, t>0, p=p,, H=0
Cy=Cy=(A"/a)(-t)"" +C}, t<0, p=p,, H=0
H=DM|M|%-', t=0,

Au=DAp| ap| 8-, t=0,

t=(T -T,)/T,,

Ap:p"pc'

According to scaling’”*? we have an equation of
state of the form

Ap=5p| Ap| 67 h(x), (A9a)
H=M|M|°n(x), (A9Db)
x=t|apl "B =y M| V8, (A10)

The scaling assumption (A9) implies'*” exponent
relations

2-a=B(0+1)=28+y, (A11)

Y=y, (A12)

a=a'. (A13)
We shall moreover assume

B,=Bj{, (A14)

where B,=Cgy(t=0) and Bi=Cy(t=0).

APPENDIX B: DIMENSIONLESS AND SCALED UNITS

All quantities are expressed in terms of dimen-
sionless units.

For fluids, the density is in units of py =p,, the
chemical potential in units of uy=P,/p,, the spe-
cific heat (per unit mass) in units of P,/T.p,. In
order to obtain the specific heat per mole one
multiplies the dimensionless specific heat by

Cy=(P.w/T.p,)x10"" Jmole K", (B1)

where w is the molecular weight. We shall use
the same notation for the dimensionless and di-

(A1)
(A2)
(A3)
(A4)
(A5)
(A6a)
(A6Db)
(A7)
(A8)

r
mensioned quantities. In Ref. 4 the dimensionless
quantities are denoted by a star [e.g., Ap*
=(p = p.)/pele

For magnets, we measure the field H in units
0f37

Hy =kyT,/SgU s, (B2)

(where S is the spin, g the g factor, and i the
Bohr magneton), and the magnetization (per mole)
in units of

MNzNSgIJ‘B’ (BS)

where N is Avogadro’s number. Then the specific
heat (per mole) turns out to be in units of

clr}lag=(HNMN/Tc)X10_7 =R, (B4)

R being the gas constant in J mole™!K™},
To go from the dimensionless variables H, M,

11, Ap, Ay, and C, to the :‘universal variables”
H, M, t=t, Ap, Afi, and C, we must scale x by
Xg=B"V8, (B5)
and i (x) by
ho=h (x =0), (B6)
i.e.,
R(%) = h(x/x,) =h3'h(x). (B7)

Then M amd Ap are scaled by
Po=My=x7°, (B8)
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H and A u. are scaled by

Ho=Hy=hyx3?°, (B9)
and the specific heat is scaled by
Co=hoxd 2, (B10)

The scale factors are related to the critical
amplitudes by the relations

B=x;%, (B11)
D=h,, (B12)
I'=lim x"h(x) = 3k’ lim Th(%), (B13)
I =BxY (= x,) = Bhg 'xh' (= 1). (B14)

From Egs. (B11)-(B14) it is seen that I'/T” and
DT'B%"! are indeed independent of the scale factors
x, and i,. Table VII lists the scale factors and
normalization constants we use for the modified
MLSG analysis of CO,, Xe, Ni, and EuO.

APPENDIX C: THERMODYNAMIC FUNCTIONS
IN THE SCALING REPRESENTATION
The functions x(x) and #(%) have a power-series
expansion’ about x =0,

) =3 b, (1)
n=0
i®) =3, (c2)

(%)= D Ty X7, (C3)
n=0

(X)) =) Tlaa X2 (C4)
n=9

The free energy is given by (in magnetic notation)
A(M, T) =Ag(M, T)+ [M|**1a(x), (C5)
with
—xa’(x) +(2 - a)alx) = Bh(x). (C6)

The solution of this equation, analytic near x=0,
is”

(cn

As mentioned in Sec. III, this expression is equiv-
alent to Eq. (22) of Griffiths” for a >0, and it is
the correct generalization to the case oo <0. The
function Az(M, T) is assumed for simplicity to be
an analytic function of 7, and independent of M,

although in a more accurate treatment®® it would
also contain singular correction terms. The ther-
modynamic functions may now be written as

X7t = M 6h(x) - B ixh! (x)], (C8)
Cu=Cp = IM|~*"%a"(x)
=Cq = [M["B[x72(1 = a)(2 - & )a(x)
- x3(1 = a)Bh(x) = x~' R (x)], (C9)

Cu=Cy + M|~ /[’ () P[6h(x) = B~ 1x"(x)] " (C10)
=Cp — M **[x72(1 = @)(2 - a)a(x) - x~2(1 = a)Bh(x)
=27 B’ (x) = [ () PLOR(x) = B~ k" (0)]7},
(C11)
where Cp =~ T9%A;/6T2, For fluids C, corresponds
to Cy and Cy to C,. In deriving Egs. (C9-C11) we
have dropped a factor (1 +¢) multiplying |[M|~ %8,
and included the correction term ¢ |M|~%/# in the
background term Cs. From Egs. (C10) and (C7)

we may calculate the coefficients A and A’ defined
in Eqs. (A4) and (A5). The results are

A=Ba(l —a)(2 - a)]; wdyy“‘s[h(y) = ho=hyy ~ hyy?],

(C12)
h n h
- — — - -
A Ba(l — a)(2 — ) <-—°——2 — ———1—1 -~ —Za

+ oy lyl“[hm—ho—hly—h2y2]>. (C13)

We do not use the expressions in Table II of Ref. 7,
since they apply only for o >0. Equations (C12)
and (C13) clearly also hold using “universal vari-
ables” %(%), with coefficients %, [see Eq. (C2)].
From Eq. (C10) we may easily find the specific-
heat coefficient along the critical isotherm [see Eq.
(3.18)],

Ay=2Ba" h, + (hy0)™ e, (C14)

APPENDIX D: MLSG AND MODIFIED MLSG EQUATIONS

Let us define the function

h(x)=e1<—x7+0--x&>[1+e2 <xT+OxQ)qu, (D1)

h(%) = (1+e,) (% +1)[1 +e,(1 + 217, (D2)
The MLSG equation corresponds to

e,=E, (D3)

e,=E,, (D4)

p=(r=1)/28, (D5)

q=28, (D6)

and the modified MLSG equation is defined with
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e, e, and
p=(y=1)/2Be,, (D7)
q=2Pe,. (D8)

For both equations, the quantities necessary to
calculate the specific heat (which we shall express
in universal variables) are k,=1, h,, h,, h'(%),
R"(%), h,, and x,. From Eq. (D2) we find

() =(1+e,) 1 +e,(1 +2) "Y1 +e,(1 +pg)(1 +7)],

(D9)

R"(%)=(1+e,) Pe, pall +e,(1 +%)]P~2(1 +x)*"?
X[1+q+e,(1 +%)%(pg +1)], (D10)
hy=(1+e,)" 1 +e,(1 +pg)], (D11)
hy=%e,pq(1+e,)" 1 +q +e,(1 +pg)), (D12)
ho=e,(1+e,). (D13)

The integrations in Egs. (C12) and (C13) were
performed numerically, with the portion near
y =0 integrated analytically using the expansion
(C2), because of the singular nature of the inte-
grand,

APPENDIX E: PARAMETRIC REPRESENTATION
AND THE “LINEAR MODEL”

In the parametric representation we define the
variables » and 0 by the relations

H=ao(1 - g?)y 8% (E1)

t=(1-0%26%)r. (E2)
Then the equation of state has the form

M=K(8)7rE, (E3)

General expressions for the thermodynamic func-
tions have been given by Schofield,!® but they are
not simple unless K(#) has a simple form, We
shall discuss the linear model®

K(6) =Fko. " (E4)

Corresponding to the universal variables % and %,
we may choose the scale of H and M such that

<Cdl_lf3{>e=o=1 (E5)

and

<f%4>e=o=1. (E6)

This means that we use H=H/a=H/H,, and
M=M/k =M/M,. Since in the parametric represen-
tation the universal variables are linearly related
to the usual dimensionless variables, it is very
simple to pass from one set to the other, and we

shall not write down the formulas explicitly.

For the linear model the free energy may be
obtained analytically® and an algebraic expression
written down for the specific heat.* For com-
pleteness, we reproduce the main formulas of
Ref. 14 below: The singular part of the free
energy is

As=f(6)r*"¢, (ET)
F(0)=fo + £,6° + £,6°, (E8)
fo=(ak/26*)6 —3 =526 — 1)][(6 +1)(a~1)a)™},
(E9)
fo==(ak/26*)[B(6 - 3) = b*a(1 - 2B)][ e = 1)),
(E10)
fa=—5ak(l -2B)a". (E11)
The spe‘cific heat is given by
Cy=Cg=cn(0)7r™°, (E12)

i =( rati=s)

(1-a)(1-36%)(8, +5,6°) - 2866%5,(1 - 92)>
< 1 +(202456 — 3 ~b2)9? - b3(2806 — 3)6* ’

(E13)
5,=B(6 —3) = b%a(6 - 1), (E14)
5,=(a—1)(6 - 3)pb%, (E15)
Cy—Cop=cn(8)r™?, (E16)

( ak > <(1 - a)s,+(1 —a-23)§292>
nl®) =\ = ) 1-0%(1 - 2B)¢

(E17)
where Cjy is a background term which we here

take to be a smooth function of £, The amplitudes
are

A=ac,(6=0), (E18)

A’ =ac,(6=1)(1 -b2), (E19)
The inverse susceptibility is

x"t=(a/k)X(6)7, (E20)

x(6)=1= [3 +f2_(22-(12fs_52)]6(;29:b294(3 =260) (py)
whence

/T =2(b% - 1)'7[1 - 5%(1 - 2B)]7", (E22)

Finally it may be easily seen that

DIB%~1=p®-3(p2 - 1)-7, (E23)
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