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Specific-heat measurements for the Heisenberg magnets RbMnF;, Fe, Ni, and EuO near their magnetic-phase-
transition temperatures T, are reanalyzed. We use the theoretically predicted constraints that the specific-heat
exponents a and o’ above and below T, be equal to each other and that C, be continuous at T,. When these
constraints result in systematic deviations of the data from the fitting function, we assume that the deviations
are caused by sample inhomogeneities. For those cases we discard as much of data near T, as is necessary to
obtain a statistically satisfactory fit. An analysis in terms of a pure power law yields values for the amplitude
ratio A/ A’ which cover a considerably smaller range than some previous analyses by others had indicated.
However, there remain significant, systematic trends in A/ 4’ and in a which can be correlated with the
relative strength of the dipolar contribution to the interaction. These trends are inconsistent with estimates of
these parameters based on renormalization-group theory. We consider the possibility that the inconsistency is
caused by crossover effects associated with the presence of both isotropic short-range and dipolar interactions.
These effects may result in effective values for a and 4/ A4’ which are not representative of either of the pure
systems. We attempt to take crossover behavior into consideration by fitting the data to a function which, in
addition to the leading singularity, includes a confluent singularity. With this function, a fairly wide range for
the value of the leading exponent is allowed by the data for each material. We choose a = —0.14. This value is
based on measurements and a pure-power-law fit for the short-range-force system RbMnF;, but theoretical
estimates indicate that the leading exponent is numerically very similar for the dipolar case. The resulting
amplitude ratios for the dipolar materials EuO and Ni are equal to each other within their uncertainties. They
differ significantly from the value characteristic of short-range-force systems as represented by RbMnF;. This
difference agrees with renormalization-group estimates for the difference between the values of 4/ 4’ for the
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two cases.

I. INTRODUCTION

Critical exponents, and certain other dimension-
less parameters which describe the singularities in
various properties near critical points, have been
predicted to be universal in the sense that they de-
pend only upon a small number of very general
symmetry properties of the system. ! This predic-
tion was fully supported, and the universality class-
es were defined in more detail, by the recently de-
veloped renormalization-group theory of critical
phenomena.? A particular consequence of these
theories is that isotropic antiferromagnets should
exhibit the same critical behavior as isotropic fer-
romagnets, provided that isotropic short-range
forces dominate the interactions for both types of
systems. However, dipolar forces, which may be-
come important for some ferromagnets but are neg-
ligible for antiferromagnets, are expected to modi-
fy the critical behavior.®* The objectives of the
present paper are, on the one hand, to determine
whether there exists any experimental evidence for
this modification and, on the other, to examine
whether the available data can be explained solely
in terms of these two universality classes. We
shall restrict the present discussion to systems
with spin dimensionality # (number of degrees of
freedom of the order parameter) equal to 3.

Contrary to the prediction of universality, it was
stated by Lederman, Salamon, and Shacklette® (LSS)
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that pertinent experimentally determined parame-
ters for the specific heat C, indicate that ferro-
magnets belong to one universality class, and differ
significantly and systematically in their behavior
from that of antiferromagnets. This difference be-
tween ferromagnets and antiferromagnets was as-
serted to exist even in the absence of dipolar
forces. We have reexamined the experimental data
which led to this statement, and have arrived at a
different conclusion. Our fit of the measurements
to a pure power law also yields apparently nonuni-
versal amplitude ratios and exponents, although the
range over which particularly the amplitude ratios
vary is considerably smaller than that claimed by
LSS. We believe that our analysis of the measure-
ments yields parameters which are consistent with
the predictions of universality when the existence
of crossover effects due to dipolar forces is taken
into account by including singular contributions of
higher order than the leading power-law singularity
in the data analysis.

The wider range of values covered by the param-
eters of LSS is in part attributable to the fact that
certain predictions of scaling®'” and renormaliza-
tion-group theory, 2 which are in some sense more
general than the specific values of critical-point
parameters, were not utilized in the data analysis
of LLSS. Specifically, they did not impose the con-
tinuity constraint which we shall discuss below. We
believe that the predicted relations between criti-
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cal-point parameters should be imposed as con-
straints in the analysis when the determination of
the “best” values of the exponents or amplitude ra-
tios is the object. Only these “best” values should
then be used to examine the universality of different
critical points within a given symmetry class. In
this paper we report on new analyses of already
existing experimental results for C, which utilize
the pertinent constraints predicted by theory.

None of our new exponents differ very much from
those of the original authors, * *'% but some of the
amplitude ratios have changed considerably. Al-
though our amplitude ratios for all materials are
much closer to each other than earlier estimates
had indicated, the differences, both in the exponents
and in the amplitude ratios, are still larger than
any reasonable error estimates which result from
pure-power-law fits. However, these differences
do not necessarily indicate a breakdown of univer-
sality. They are sufficiently small that instead
they can be interpreted as evidence for crossover
effects associated with the existence of dipolar in-
teractions particularly in the ferromagnets with low
transition temperatures. These effects can be
represented by singular higher-order contributions
to C, which were neglected in a pure-power-law
analysis. With the large range for the amplitude
ratio reported by LSS® such an interpretation would
have been difficult to accept. When higher-order
singular contributions were included in our least-
squares fit, all statistical errors became sufficient-
ly large to permit universal values of either the ex-
ponents or the amplitude ratios. Theoretical esti-
mates indicate that the leading exponent remains
numerically very similar to the short-range-force
value even in the presence of dipolar forces. Since
we do not have an experimental value of ¢ for a pure
dipolar system, we therefore fixed the leading ex-
ponents for all materials at the value correspond-
ing to our best experimental estimate for the pure
Heisenberg-like systems with short-range forces.
We then found a significant difference in the ampli-
tude ratios for dipolar and short-range-force sys-
tems which is consistent with an estimate based on
renormalization-group theory for the change in the
amplitude ratio due to dipolar forces.

II. ANALYSIS

The details of our least-squares method have
been discussed adequately before, 112 but we would
like to examine some more general aspects of the
analysis of specific-heat data pertinent to critical
points in this section.

Although elsewhere!! we have already expressed
certain other reservations about the method of anal-
ysis used by LSS, 5 we believe that an additional
serious shortcoming of this method is that it per-
mits C, to be discontinuous at 7,. Therefore, we
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would like to discuss the continuity constraint in
some detail here. In order to extract the param-
eters which describe C, in the limit as ¢=7/T,-1
vanishes, the experimental data must be fitted to
a function of the type

C,=/a)|t|*[1+g(®)]+B+Et 1)

for T> T,, and to the same function with primed co-
efficients for T'<T,. Here we will always impose
the constraint E =E’ so that the term E? represents
the temperature dependent part of a regular con-
tribution. The function g(¢) vanishes as |#| goes to
zero. When a <0, C, is finite at T, and has its
maximum value, equal to B, at T,. For that case
it is easy to see that C, must be continuous, i.e.,

B=B'; (2)

for a discontinuity in C, at T, corresponds to an ex-
ponent of zero and would therefore have to be re-
garded as the leading singularity. Even when o >0,
Eq. (2) is expected tobe valid, but its validity is not
as obvious and follows only from more detailed cal-
culations based upon renormalization-group theory.
From this theory, the exponent of the first correc-
tion term to the asymptotically dominant contribu-
tion has been calculated by two independent tech-
niques. #!®'14 It is clear from these calculations
that corrections to the leading power-law singulari-
ty vanish at 7,. For a positive leading exponent,
a value of B different from B’ corresponds to a
singular higher-order contribution which remains
nonzero even at 7,. Equation (2) is therefore ex-
pected to be valid also for o> 0. It is of course
possible that a discontinuity at 7', does indeed rep-
resent the leading singularity of C, for a particular
type of system. This is the behavior predicted by
the Landau theory of phase transitions, and corre-
sponds to @ =0. In three-dimensional materials,
this case is closely approximated by Ising systems
with dipolar interactions; and for that case a fit of
C, to a power law will lead to B< B’.'® However,
if it is found on the basis of experimental data that
Eq. (2)is notsatisfied for a particular case, it must
also be concluded that the leading exponent is zero.
In addition to the constraint Eq. (2), itis predicted
by scaling®” that the exponents ¢ and o’ are equal
to each other. Therefore, the constraint

a=a' (3)

also should be imposed in order to obtain the best
values for the parameters.

The data should of course first be fitted to Eq. (1)
with all parameters, including o, o', B, and B/,
independently least-squares adjusted in order to
determine whether the statistical errors permit the
use of Egs. (2) and (3) as constraints. When the dif-
ferences between the resulting values of ¢ and o’
or B and B’ are considerably larger than the sum
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of the corresponding standard errors, then the im-
position of Egs. (2) or (3) as constraints does not ap-
pear justified. In that case, it is necessary to de-
cide whether the difficulty is attributable to a de-
parture from theoretical predictions, or whether it
is due to experimental factors. Whereas it is usu-
ally not possible to make this choice on purely ob-
jective grounds, we have assumed for the data un-
der consideration here that the problem, when
present, is due to sample inhomogeneities which
cause “rounding” of the specific heat near T,. We
have attempted to overcome this shortcoming by
omitting data very near T, from the analysis. Data
analyses based on a pure power law, equivalent to
Eq. (1) with g(f) =0 even for |#| >0, usually yielded
results for o and o’ which permitted Eq. (3) to be
used as a constraint even when data over a fairly
wide range of ¢ were included. However, in some
cases Eq. (2)was not consistent with the data unless
the range of f was severely restricted. We there-
fore imposed Eq. (3)as aconstraint inall the analy-
ses which we will present in detail in this paper,
and we will discuss the applicability of Eq. (2) for
each individual material in Sec. III.

II. RESULTS
A. Pure-power-law analysis
1. Nickel

In the first row of Table I we quote the parame-
ters which were obtained for nickel by Connelly
et al.® from their own data. Before the analysis
they subtracted a regular contribution from C, in
an attempt to obtain a singular remainder charac-
teristic of the magnetic degrees of freedom. We
have not adopted this procedure in our analysis,
and have discussed these corrections for the so-
called “lattice specific heat” in detail in Sec. IVA
of Ref. 12. However, both approaches should yield
similar values for the amplitude ratios and expo-
nents. Obviously, B, B’, and E will be changed by
subtracting a regular term. It is evident that the
results of Connelly ef al. imply that C, is discon-
tinuous at T,, contrary to the prediction Eq. (2).
Their exponent is of about the right size for Heisen-
berg systems (see, for instance, Fig. 28 of Ref.
16), but their amplitude ratio is rather low. The
low value of A/A’ becomes more apparent when one
considers the universal parameter

®=(1-A/A"/a . )

It is known from experiment!® and theory'” that @ is
only mildly dependent even upon such relevant prop-
erties of the system as the spin dimensionality.
The results quoted by Connelly et al. yield ®=1.4,
whereas the most reliable measurements for other
systems yield @ = 4 (see Fig. 28 of Ref. 16).

The data of Connelly ef al. also have been ana-

TABLE I, Comparison of the parameters obtained for several Heisenberg magnets. The resulting units of the specific heat are J mole™ K1,

Range

RMSD

BI

A/AY

1.136

T, (K)

631, 58

logy, I 1

x=

Material Ref,

15,67+0,03

47,82

13.49+0,03
46,73

1,416+0,005

1.46

-0,10+0.03

-38,2=%x=<-1,6
-3.5x=-1,0
-3.5=x=-1,0
-3.0=x=-1,0
-3.0=x=-1,0

g2
10

Ni

0, 0302
0.0186
0.0137
0.0155

13,0

1.264+0,03

—0,089+0,002
-0,095+0,.002
—0,095+0,002
—0,091+0, 002

631, 52

12,10+0,25
13.74+0,22
14,83+0.17

47.45+0,18

45,43+0,24
46.04+0,29

1,541 +0,017
1.461+0,018
1.385+0, 006

7.242
8.362+0,202

1.189+0,013
1.310+0,021
1.396+0, 010

631,581 +0, 006

46.94+0,28

47.02+0,27

631,479+0, 017

631,415+0,010

1041, 32

1.036+0,015 84,59 95, 56 100,0 0.431
0.929+0, 03

-0.120+0, 01

-3.8=sx=-1,3
-3.8=x=-1,3
-3.,8=x=-1,3

10

Fe

0, 0722
0,248

97.07+3.62
158.42+8.6

91,78 +0.78

77.22+0,.85

-0,140+0, 004
—-0,103+0,011

1041,48+0,01

95,21+3,9

5.628+0,23

1,406 +£0, 05

1041.25+0,03

0, 0340
0,0761
0, 0806

103.7+5.9 27.54+0,8

3.222+0,02
4,496 +0, 066

1.22+0,03
4,265+0,024

—-0,044+0, 004

—0,142 +0, 002
-0,135+0,0002 1,462+0,.010

69,372+0, 005

-2,3=x=-1,3

EuO
RbMnF,

76,640, 96

98.87 +0,26

97,78 +0,43

1,402 +0,018

83.082+0, 001

-3.,6=x=-1,2
-3.,6=x=-1,2

9

79.09+0, 60

99,21 0,26

83,0787 0, 0005

¥The data were converted to magnetic specific heat,
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lyzed by LSS, ® who used their own method of analy-
sis which we have discussed in Sec. IV B2 of Ref.
11. These authors used the total specific heat, and
obtained the parameters given in the second row of
Table I. Our analysis with the same set of data
yielded the parameters in the third row. We note
that the root-mean-square deviation (RMSD) from
the function with the parameters of LSS is a factor
of 1.7 larger than the RMSD obtained with our own
least-squares-adjusted parameters, indicating that
the fit of LSS is far from being a best fit in the
least-squares sense. From our analysis it appears
that C, is discontinuous at T,, and our B~ B’ has
very nearly the same value as that indicated by the
parameters of Connelly ef al. We find ® =2. 0,
which is still rather low.

In order to overcome the problem of an apparent-
ly discontinuous C,, we discarded measurement
which were near T, on the assumption that these
results might be influenced by sample imperfec-
tions. As more and more data near T, were elim-
inated, B and B’ became more nearly equal to each
other and A/A’ increased. We show the results for
|1 = 10 in the fourth row of Table I. We obtain
® =3. 3, which is much closer to the expected range
of values. The uncertainties and values of B and B’
now reasonably permit the constraint Eq. (2), and
when the specific heat was assumed continuous, the
values quoted in the fifth row of the table were ob-
tained as the best estimates for Ni. The best value
of the exponent is not significantly different from
that of Connelly e? al., but the amplitude ratio has
changed quite a lot. We now have ® =4, 35, which
is in good agreement with values obtained for many
other materials. 16

2. Iron

The parameters reported by LSS’ for iron are
given in the sixth row of Table I. They indicate
that C, is discontinuous and that @ has the unlikely
value 0.3. We analyzed the same data, using our
method, and obtained the parameters in the seventh
row. Our fit yields a RMSD which is a factor of
6.0 smaller than that obtained by LSS. Our analy-
sis implies a discontinuous C,, and our parameters
yield the very unlikely result ® <0,

The data for iron are not as precise and plentiful
as those for nickel, and discarding much of the data
near T, would have left us with very little experi-
mental information., We therefore first retained
all data with |#] = 10-%*® and imposed the continuity
constraint Eq. (2), although Eq. (2) is not really per-
mitted as a constraint by the random errors in the
data. This approach yielded the parameters in the
eighth row of Table I, We found an exponent very
similar to that for nickel, and obtained the very
reasonable value ® =3, 9 from the amplitude ratio.
It is difficult to guess at systematic errors in the
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parameters, however, although some feeling for
their uncertainties can be obtained from their varia-
tion when data near T, are discarded. We found
that discarding all data with |¢| < 10-23 yielded
A/A’=1.3, a=a'=-0.10, and ®=3,1+ 1.3. These
results are consistent with those in row 8 of Table
1.

3. Europium oxide

The results of detailed analyses of our specific-
heat measurements for EuO have been reported in
a separate recent publication,!! There they have
also been compared with the results and the analy-
.sis obtained by Salamon!® who claimed to have ob-
served a crossover from isotropic short-range-
force behavior to behavior characteristic of sys-
tems with appreciable dipolar interactions, We
found no evidence for such a crossover in our or
Salamon’s data, and refer the interested reader to
Sec. V A of Ref, 11 for a detailed discussion of this
problem, A power-law analysis of our data sug-
gested that sample inhomogeneities were apprecia-
ble, and a continuous C, was obtained only when
all data with |#| £ 0.005 were discarded. The pa-
rameters obtained from our measurements over
the range 0,005=<|¢| = 0.07, with Eq. (2) as a con-
straint, are given in the ninth row of Table I. We
found that the exponent differed considerably from
those for Fe and Ni, and the result ®=5,0+0. 3,
although not very much out of line, seems somewhat
higher than the values for most materials,

4. RbMnF,

The results of detailed analyses of our specific-
heat measurements for the isotropic antiferromag-
net RbMnF; have been published elsewhere, 2 We
quote in row 10 of Table I the values of the param-
eters which were obtained when data rather near
the transition were included in the fit, These re-
sults permit a continuous C,. Row 11 of Table I
contains the parameters which were obtained when
Eq. (2) was used as a constraint. For this material
we find an exponent which is consistent with theo-
retical estimates for Heisenberg systems, 1%2° a]-
though it differs somewhat from the result for iron
and nickel, The amplitude ratio also is reasonable.
The result ® = 3, 4, although a little low compared
to results for some other materials, !¢ cannot really
be regarded as seriously out of line,

5. S

ry and ¢ 12 ison

In Table I the last row for each material repre-
sents our best estimate of the parameters which
correspond to a pure-power-law analysis of the
specific-heat data, The exponents and amplitude
ratios cover ranges which exceed the statistical
errors by a wide margin, and they do not appear to
fall into one or two groups or universality classes,
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TABLE II, Parameters based on a pure-power-law
analysis with the assumption of a continuous C, and the
existence of a regular contribution which is linear in ¢,
and with the constraint o« = &/, over the range 0,005
=|t| =0,07, The quoted errors are standard errors
and do not include possible systematic uncertainties,

Material a=n' A/A’ ®

EuO —-0,044 £ 0,004 1,22+0,03 5,02+0,29
Ni —-0,089+0,004 1.38+0,02 4,30+0,22
Fe —-0,096 +0, 023 1.30+0,08 3.,1+1,3
RanF3 —-0,137+0,004 1,46+0,02 3.38+0,16

One can argue that the parameters in Table I are
effective parameters which do not represent the
limiting behavior of C, as [¢| vanishes because the
contribution g () to Eq. (1) has beenneglected in the
analysis. Although g(¢) contains nonuniversal pa-
rameters, one might have conjectured that g ()
should be of about the same size for different ma-
terials provided |t} is similar, The pure-power-
law fits represented in Table I cover various ranges
of ¢ however, and the variation in the resulting pa-
rameters could be due to range-dependent contribu-
tions from g(¢). In order to obtain sets of pure-
power-law parameters which can be compared with
each other more readily, we therefore fitted the
data for each substance over the very restricted
range 0,005=< |¢| =0,07. Over this range, data
which are presumably not influenced by sample in-
homogeneities are available for each material, The
results for o and A/A’ are given in Table II. We
would like to base our further discussion on these
parameters and the associated statistical errors,
although the errors are of course larger than they
would be if a wider range of |¢| were used. It can
be seen that using identical ranges of ¢ for all ma-
terials did not greatly alter the parameters, and
yielded values which are far from universal. Uni-
versality can therefore pertain to these substances
only if contributions from g(f) are appreciable at
least for some of the substances, and vary consid-
erably in size for different materials,

As an attempt towards finding an explanation for
the variation of A/A’ and @, we considered the pos-
sible influence of dipolar forces on the critical be-
havior®* in somewhat more detail, For systems
with dipolar contributions to the interaction, it has
been shown by Fisher and Aharony?® that the criti-
cal-point parameters which describe the behavior
of the system as |#]| vanishes are different from
those characteristic of isotropic short-range-
force (SR) systems. Dipolar forces are negligible
for antiferromagnets, ® and therefore we might ex~
pect to measure the specific heat parameters char-
acteristic of SR systems in the case of RoMnFs;.
Dipolar forces are expected to dominate for iso-
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tropic ferromagnets with low transition tempera-
tures, % but as yet we have no very quantitative mea-
surements for such a material. The ferromagnet
EuO occupies an intermediate position®'* where di-
polar interactions are appreciable, but where pure-
ly dipolar behavior would be observed only rather
near the transition. In this case we expect to de-
duce from a pure-power-law fit effective values for
A/A’ and @ which are not representative of either
of the pure systems. The values of these effective
parameters will reflect the extent to which the
crossover from SR behavior towards dipolar be-
havior has progressed upon approaching 7, through
the experimentally accessible range of |{|. Both
Ni and Fe are ferromagnets with much higher tran-
sition temperatures than EuO, and therefore one
would expect the dipolar contribution to the inter-
actions to be relatively less important and the crit-
ical-point parameters to be nearer those for the
SR system.

In Fig. 1 we arranged the four sets of parameters
from Table II in order of decreasing dipolar con-
tribution, as judged for the ferromagnets by their
transition temperatures and with the antiferromag-
net on the extreme right, but we have not felt it
warranted at this point to attach a quantitative scale

to the separation between successive entries. With-
0.0 T T T T
‘6
"
“-0.1 .
1 | 1 1
1.5 — ' r
< !
<
1.0 ] Il 1 Il
5.0 T T T
-]
=
< 40} 4
<
1
T 30 ' '
" EuO Ni Fe RbMnF 3
ORDER OF DECREASING
DIPOLAR CONTRIBUTION
FIG. 1, Parameters obtained from a fit to a pure
power law, The four materials are arranged in order of

decreasing dipolar contribution to the interaction, No
quantitative value should be attached to the spacing be-
tween successive material. The solid lines are drawn
only to emphasize the monotonic trend of the data, and
have no further significance,
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in the statistical errors indicated in the figure, it
is apparent that there exists a smooth trend for «,
A/A', and ®. This observation tends to support the
concept of effective parameters which reflect the
extent of crossover from one type of behavior to an-

other. Figure 1 suggests that the SR systems with
n=3 have

asp=-0.14, (5a)

(A/A") g =1.46 , (5b)
and

Pr=3.4. (5¢)

It is extremely difficult, however, to estimate the
parameters for the pure dipolar case from the data
in Fig. 1. The assumption of a monotonic varia-
tion of the effective parameters with the strength
of the dipolar interaction leads to

ap>-0.04, (6a)

(A/AN<1.22, (6b)
and

P,>5.0. (6¢c)

We do not regard the monotonicity assumption as
reliable, however. Theoretical estimates of effec-
tive exponents and amplitude ratios as a function of
the relative strength of the dipolar interaction could
provide a most useful guidance for the interpretation
of the experimental data represented in Fig. 1. The
SR results given by Eq. (5) are consistent with those
obtained by high-temperature series expansions
which have yielded @ =~-0.14+ 0. 06!° and ¢ =~ 0. 09
+0. 03,2 and with an expansion in 4-d (d is the di-
mensionality of the system) based on renormaliza-
tion-group theory? which yielded o = - 0. 135 and
A/A'=1.36.2" However, the dipolar parameters
given by Eq. (6) disagree rather severely with re-
normalization-group estimates from an expansion
in 4d which yield ap~ agg® and (A/A’)p> (A/A")gg. %
In an attempt to find an explanation of the results
in Fig. 1 we also considered the possible influence
of anisotropy upon the specific-heat parameters.
Because of the symmetry of the crystals, any an-
isotropy would be cubic. Crossover to behavior
characteristic of the cubic universality class for
systems which exhibit SR behavior far from T, has
been examined theoretically by Aharony. % This
crossover is expected to occur when |#| zu”"’,
where u is the ratio of the anisotropy energy to the
exchange energy, and where 1/¢ was estimated to
be about equal to 18.2* The cubic behavior, there-
fore, is not expected to dominate until |#| is much
smaller than the experimentally accessible range
for any material with #<<1. Furthermore the cubic
exponents, although different in principle, were
estimated by Aharony® to be numerically very simi-
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lar to the SR exponents, and probably could not be
distinguished from them by experiment. The cross-
over to cubic behavior in the presence of dipolar
forces has been treated by renormalization-group
theory by Bruce and Aharony.* They find 1/¢p =~ 5.6
for this case. Although this value is smaller than
the corresponding one for crossover from SR be-
havior, it is still much too large to permit experi-
mental measurements at values of ¢ where cubic
behavior should dominate, The exponents corre-
sponding to and the existence of a cubic universality
class in the presence of dipolar forces apparently
have not yet been investigated.* In any event, it

is not expected that the small cubic anisotropy in
the materials under consideration here would have
a noticeable influence on the measured parameters.

B. Analysis with correction terms

In Section IIT A5 we indicated that the apparently
nonuniversal behavior of the specific-heat param-
eters could be interpreted in terms of crossover
behavior resulting in effective parameters which
deviate from those characteristic of the SR sys-
tems by various amounts. We now would like to
present an interpretation in which such crossover
effects are taken into consideration explicitly by in-
cluding the term g(#) of Eq. (1)in the data analysis.
We shall approximate this term by

gt)=D|t|* W

for T>T,, and by a similar expression with primed
parameters for T <T,. The exponent x describes
the first correction term to C,. For SR systems,
x has been estimated from renormalization-group
theory both by an expansion in 4 —d, *!* and by using
the approximate recursion relations.* Although
the 4 — d expansion yields results which depend
upon the order to which terms are retained, all
these calculations are consistent with ¥ =0,5+0.2.
They indicate that x is only very mildly dependent
upon the spin dimensionality n. Experimental mea-
surements for the superfluid transition in liquid
helium (SR, n=2) yielded x=0.5+0.1,%% A very
similar value has been obtained also from high-
temperature series expansions for the Ising model
(n=1).%® However, in Eq. (7) we need to use the
value of x characteristic of dipolar systems with
n=3. For this case, an expansion in 4 ~d to sec-
ond order* indicates that x — x5z ~0.1. But none
of our results are very sensitive to the choice of

x, and we therefore analyzed the data in terms of
the function

C,=(A/a)|t|"*(1+D|t|"+B, (8)
with
x=x"=0.5, (9)

where this value of x is based largely on experi-
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TABLE IIl, Amplitude ratios A/A’ of the leading
singularity, and the parameter ®=(1~A/A’)/ca, ob-
tained by fitting to Eq. 8 with two choices for the fixed
leading exponent .,

o==0,14 o=-0,10
A/AY @ A/A’ [
EuO 1,812+0,036 5,80+0,26 1.516+0,022  5,16+0,22
Ni 1,.759+0,032  5,42+0,23 1,489+0,019 4,89+0,19
RbMnF; 1,420+0,024 3,00+0,17 1.281£0,017 2,81£0,17

mental measurements for liquid helium (SR, #n=2).?
We retained the constraints Egs. (2) and (3). In addi-
tion, we wanted to fix the leading exponent at the
value appropriate to the dipolar universality class.
We do not know this value from experiment, but the
4 - d expansions indicate that ap is not much differ-
ent from agg. We therefore used our best experi-
mental estimate « = - 0. 14 for the SR system [Eq.
(5a)] and assumed that it was also representative of
ap. We also performed the analysis with o =o'
=-0.10, however, because we wanted to see wheth-
er any of the conclusions are sensitive to the choice
of @. In order to make the comparison of results
for the several materials more reasonable, we
again restricted the range of £ to 0.005= [/]| = 0.07
in all cases, even though reliable data nearer T,
were available for some. We did not find it useful
to analyze the data for Fe in this manner because
the statistical errors would have been too large.
The results for A/A’ and @ are given in Table III.
In Fig. 2, A/A’ is shown graphically, again with
the materials arranged in order of decreasing di-
polar interactions as was done in Fig. 1.

The results of the data analysis in terms of Eq. (8)
are consistent with all existing theoretical predic-
tions. From calculations based on renormalization-
group theory it is expected that the leading dipolar
specific-heat exponent, although different in prin-
ciple from agr, remains numerically almost unal-
tered by the dipolar forces.* This result is of
course consistent with the use of the same fixed
value of o for all three materials represented in
Table III. Further, it has been estimated that
(A/AN 5> (A/A")gp. 2 Unfortunately, the calculation
for the dipolar case has been done only to zeroth
order in 4 —d, but to that order the calculation
yields (A/A’)p - (A/A")sg=0.2. We see from the
data in Fig. 2 that Ni and EuO have the same value
of A/A'. This value presumably is characteristic
of the »=3 dipolar universality class. The experi-
mental value for the SR system RbMnF, is smaller
than the experimental (4 /A’), by 0.4 or 0.2, de-
pending somewhat on the choice of ap. This dif-
ference in A/A’ is in remarkably good agreement
with the calculation.
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IV. SUMMARY AND CONCLUSION

In this paper we presented the results of a re-
analysis of specific-heat data for magnetic ma-
terials with spin dimensionality »=3. It was our
objective to determine what evidence exists for a
difference in critical behavior between systems
with only isotropic short-range (i.e., exchange)
interactions, and systems with an appreciable di-
polar contribution to the interaction. In addition,
we wanted to determine whether all available ex-
perimental data could be explained in terms of these
two universality classes. In our analysis we im-
posed certain theoretically predicted relations be-
tween specific-heat parameters as constraints.
Specifically, we used the scaling law o =« and in-
sisted that the specific heat be continuous at T,
(note that a <0 for n=3 and therefore C, is finite
at T,). The purpose of using these constraints was
to obtain, separately for each material, the best
set of parameters which, taken by itself, was con-
sistent with theoretical predictions. We then pro-
ceeded to compare the parameters for the various
materials with each other in order to see whether
they are consistent with the predicted universal
behavior of materials whose Hamiltonians belong to
the same universality class.

We first analyzed the measurements by fitting
them to a pure power law. We obtained values for
the specific-heat exponents o which were rather
similar to earlier estimates by others, but the use
of the continuity constraint resulted in amplitude
ratios A/A’ which differed far less for different

T T T T

4 _

16— —

A/A
@
Q-

2.

14—
o a=-0i44
® a=-010 é
12 1 1 1 1
Eu0 Ni Fe RbMnFy
FIG. 2. Amplitude ratios for the leading singularity

obtained from fitting to a function which includes a con~
fluent singularity in addition to the leading power-law
term, The leading exponent o was fixed at the two values
given in the figure., As in Fig. 1, the materials are ar-
ranged in order of decreasing dipolar contribution to the
interaction,
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materials than previous analyses had indicated.
Even though our exponents and amplitude ratios
covered only fairly narrow ranges of values, the
differences between parameters for different ma-
terials was well outside of the statistical errors.
A monotonic trend in @ =a’, A/A’, and (1 -A/A")/a
with the relative strength of the dipolar contribu-
tion to the interaction was evident (Fig. 1). Al-
though this trend is consistent with the existence of
different critical-point parameters for dipolar and
isotropic short-range-force systems, there is no
assurance that any of the materials represent the
pure dipolar case. We do expect, however, that
the antiferromagnet RbMnF, represents the pure
isotropic short-range case because dipolar forces
are believed to be absent in antiferromagnets. Ex-
cept for RbMnF,, it is likely that the parameters
in Fig. 1 are effective parameters which do not
describe the limiting behavior of C, as ¢ vanishes,
but rather are determined by the extent to which
the experimental range of ¢ coincides with a rather
wide crossover region.

Next, we analyzed the measurements in terms of
a power law for the leading singularity, but included
also a correction to this leading term in the form
of a confluent singularity. The additional param-
eters introduced enough flexibility to permit the as-
sumption of a universal leading exponent for all ma-
terials under investigation. We fixed o =’ at the
value - 0.14. This is our best experimental esti-
mate for the isotropic short-range case, but calcu-
lations based on renormalization-group theory
indicate that the leading exponent, although changed
in principle, remains numerically very similar to
the short-range value even when dipolar forces are
present. For EuO and Ni, we obtained the same
amplitude ratios for the leading singularity. We
presume that this value is characteristic of dipolar
systems. The value of A/A’ for RbMnFz; was con-
siderably smaller than the one for EuO and Ni, and
we assume it to be representative of SR systems
with »=3. The difference in A/A’ betweéen the two
classes is consistent with calculations based on
renormalization-group theory, which yielded the
prediction (A/A’)p>(A/A’)gr. However, the cal-
culations are available only to zeroth order in 4 -d,
where d is the dimensionality of the system. Ob-
viously they must be regarded with great caution
when applied to the case d =3, but it is not unrea-
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sonable to expect that they might yield correctly
the relative size of (A/A’)p and (A/A’)sg. In any
event, they are consistent in this respect with our
analyses for the real materials. ,

Our analysis of specific-heat data has revealed
no evidence for a systematic difference in critical
behavior between ferromagnets and antiferromag-
nets which cannot be attributed to the presence of
dipolar forces in the case of the ferromagnets.

This conclusion differs from that of Lederman,
Salamon, and Shacklette.®

We believe that the pure-power-law parameters
for the antiferromagnet RoMnF; are representative
of Heisenberg systems with isotropic short-range
interactions. There appear to be no measurements
at this time, however, which are representative of
the strong dipolar case with spin dimensionality
n=3. For all ferromagnets examined so far the
experimental range of ¢ appears to lie in a region in
which the pure-power-law parameters have effective
values which are not representative of either the di-
polar or the short-range case. It would be inter -
esting to obtain precise measurements on a good
sample of an isotropic ferromagnet with a lower
transition temperature than that of EuO.

Note added in proof: Very recent measurements
[A. Kornblit and G. Ahlers (unpublished)] of the
specific heat of EuS have yielded a=a’=-0,130
+0.003 and A/A’=1,54+0.02 from a pure-power-
law fit over the range 0.005= [#| =0.07 (to be com-
pared with Table II). For EuS, T,=16.51 K and
dipolar forces are thus expected to be more im-
portant than for EuO, As expected from theory
(Ref. 4) for pure dipolar systems, the exponent
agrees well with the =3 SR value obtained for
RbMnF;. The amplitude ratio is not as large as
had been estimated for the pure dipolar case by us-
ing Eq. (8) and the data for EuO and Ni. The EuS
data and Eq. (8) yield A/A’=1.63 if @=-0.14, and
A/A’=1.41 if @=-0.10, to be compared with
Table III. Consistent with the prediction for pure
dipolar systems (Ref. 22), these ratios are still
larger than the SR values based on the measure-
ments for RoMnFj.
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