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Magnetic susceptibility in the Anderson model
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An expression for the partition function for the Anderson model obtained via the functional-integral
technique is used to calculate the magnetic susceptibility. The result indicates the appearance of a
characteristic temperature in the strong-coupling regime, and is free of divergences at low temperatures.

The functional-integral method has been extensive-
1y'*? applied to the study of magnetic susceptibility
of the Anderson model for very dilute magnetic
alloys. In this paper we would like to report the
result of a calculation using a new® approximation
wherein we overcome divergence difficulties pres-
ent in previous works. In particular we obtain the
following results: (1) The zero-external-magnetic-
field susceptibility simulates that of an antiferro-
magnet in the strong-coupling regime and of a sim-
ple paramagnet in the weak-coupling regime; (2)
the magnetic susceptibility is expressed as an in-
finite series which converges rapidly in the high-
B! temperature region and is weakly convergent in
the very-low temperature limit., The asymptotic
(8~ ) form of the latter is proposed; (3) the mag-
netic field dependence of the magnetization and the
susceptibility shows close similarity to the s-d
coupling-model self-consistent calculations.* It
should be noted that all our calculations are based
on the so-called symmetric case of the Anderson
model, wherein the impurity d-energy level is vir-
tually bound at 2U below the Fermi level, U being
the Coulomb repulsion at the impurity site.

Starting with the Anderson Hamiltonian for the
nondegenerate orbital model
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and writing the Coulomb two-particle interaction
term as
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we use a Stratonovich-Hubbard transformation
formula
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in order to obtain the exact formal expression for
the grand-canonical-partition function (GCPF) of
the Anderson model®:
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The integrand Z[¢] represents a partition functional
of “free particles” moving in an external random-
pairing field £(7), which acts at the impurity site
and determines a temporary existence of a quasi-
bound state between the impurity and the conduc-
tion electrons. Z; is the partition function for the
“pure” paramagnetic contribution of the impurity
electrons, this quantity having been calculated by
Keiter and Kimball,

Using nonequilibrium- Green’s-function techniques
one finds, after Fourier analyzing, that

Z[¢)=Zyexp[Trin(l+ P)], (5)

where P is a matrix in the discrete frequency vari-
ables:

(Pm== 0" 3" EmnG ¥ (G, a=@BUVE. )

G} is the free (U=0) d-level Green’s function given
by

G = (iw, = Bego + iBASENW,) T, w,=@n+ V)r. (1)

In Eq. (7) €5,,,==2UFh and A=qN(0)|V,,|%, are
the energy and the width of the d level, where N(0)
represents the density of states of the conduction
electrons at the Fermi level. The Planck and Boltz-
mann constants 7 and %, and the magnetic moment
of the impurity electrons %gdu p are put equal to 1.

Assuming statistical independence of the differ-
ent Fourier components of the random field g, and
retaining only the diagonal matrix element of P in
Eq. (5), the integrations over the infinity values
of the random variables ¢, were accomplished.®
The exact analytical integrations enabled us to ob-
tain the following expression for Z:

zp=2, [] 1+ pUs,), ®)
where Z, represents the complete GCPF of the
Anderson Hamiltonian obtained in the “diagonal
approximation, ”® normalized by the band-electrons
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part Zz. The polarization bubble @, defined as

&=~ G*G,, 9)
n

was explicitly calculated in terms of physical
parameters, ® and represents the interaction be-
tween a free (U=0) particle and a hole having an
opposite spin. Equation (9) for &, recalls another
polarization bubble introduced by Wang ef al. in
their RPA approximation and explicitly calculated

|
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by Keiter, ? but in fact these two quantities have
different components. In our case &, exhibits an
antiparallel spin interaction in contradiction with
the parallel obtained in the RPA, The latter is
artificially introduced in the RPA and gives a non-
physical divergence in the GCPF, a divergence
which, as explained by Keiter,? can be overlooked
by a complicated renormalization scheme, or di-
rectly by using a two-variable functional-integral
scheme, as pointed out by Amit and Keiter.? Our
explicit result for &, is

1 1 . .
®,0= @n? &, (v+ e BA/n[\p(‘H v+ iB€ge/2m) = ¥ (a+iBe 40/ 21)]
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where a=3%+ BA/27 and ¥(z) is the digamma (psi)
function, ®

Using the formula x, = 8(8%1nZ,/9%%),,, the zero-
magnetic-field susceptibility is given by

XD = Xpar+ Xv0+ Z;x,,. (11)
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C, has the same expression as A,, with the func-
tions ¥ replaced by ¥,

Xpar = (8/7°) Re¥V(2) . (12a)

In Eqs. (12) z =3+ BA/21+iBU/47 and ¥(2), ¥V (2),
and ¥®)(z) are the first three logarithmic deriva-~
tions of the Euler y function.® In writing Eq. (11)
we used the fact that &_,=®%. X, is the “pure”
paramagnetic contribution of the impurity, arising
from Z,, where the “localized” magnetic part of
the susceptibility is given by the infinite series and
the ¥, term of Eq. (11).

Our “static approximation” X, is the sum of xp,.
and ¥,. Inthe A=0 limit, ., equals B(1+ e *7/2)1
a result which recovers Curie behavior for suffi-
ciently low temperatures (8U>>1). The remaining
series gives, in the A=0 limit, a small contribu-
tion which goes exponentially to zero for BU>>1.

In the strong-coupling limit y= U/24A > 1 the An-

[¥(a+v+iBesy/2m) - ¥(a- iB€dg/21r)]) ,
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derson model was shown to be equivalent to the
antiferromagnetic s-d coupling model.” This limit
corresponds to N(0)J<<1 in the s-d model, J being
the s-d coupling constant. [The exact correspon-
dence for y>1 is N(0)J=4/ny.] The s-d model is
nonanalytic® in the 7—~0 °K, J—0 limits. Our re-
sult also possesses this property, since for
T-0°K only A=0 (infinite y) gives divergent sus-
ceptibility (of Curie type), while 7= 0 °K, y—

(A +0) gives finite susceptibility, a result which
tends to zero as y". This should be contrasted
with Wilson’s low-temperature theory of the spin 3
Kondo Hamiltonian.® His results, obtained within
renormalization-group method and scaling consid-
erations, exhibits a finite zero-temperature sus-
ceptibility which tends to infinity when N(0)J~0.

Our result points that for every finite A and U
at low enough temperatures the system behaves
paramagnetically.!® In the weak-coupling regime
(y<1) Pauli-like paramagnetic behavior is exhibited
for all temperatures,

The numerical results for xp, for various values
of y=U/24, are illustrated in Fig. 1. Results of
previous works are also illustrated; it should be
noted that these results are calculated only in the
limit BA>>1, Figure 1 illustrates the antiferro-
magneticlike behavior of the system for y>>1; the
susceptibility shows a distinct peak at some tem-
perature T,. For T > T, the behavior is Curie-like,
while for T< T, the susceptibility drops sharply to
a Pauli-like behavior. The abrupt decrease of the
zero-magnetic-field susceptibility recalls the “dis-
appearance” of the localized magnetic moment as-
sociated with the impurity site. This disappear-
ance is connected with the screening of the impurity
spin due to the spins of the conduction electrons,
which occurs well below the Kondo temperature
T,.! The results obtained within the s-d coupling
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FIG. 1 Dimensionless susceptibility Uxp as a function
of the dimensionless temperature 7/U in logarithmic
scale for various values of y =U/2A, The dashed lines
illustrate the high~-temperature extrapolation of the re-
sults of Ref, 1.

calculations for the spin %, and reviewed recently
by Brenig and Zittartz, ! point to a complete (or
over complete) screening, but they still give a
divergent susceptibility (or a negative one!) in the
limit =0 °K. In our case the Curie “constant”
(Tx) goes to zero (when T—0 °K) as T, a fact that
ensures a Pauli-like behavior of the susceptibility
at very low temperatures. However, we do not
identify T, with T for the following reasons: (1)
T, appears to be too high, e.g., for N(0)J=~0,1
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FIG, 2, T-+0°K limit of the dimensionless suscepti-
bilities UXE™"* of Eq, (13) and Ux,, of Eq. (13a) vs.
logyy(»). The crosses signify the numerical results,
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FIG, 3 (a) Temperature dependence of the U, terms
in the susceptibility series for y=U/2A=1; (b) the cor-
responding curves for y =10,

(y~10) and U=0.1 eV, Ty=~1 °K, while 7T;=~100 °K,
This is related to the second reason (2), T shifts very
slowly (logarithmically) to lower temperatures
with increasing y. Numerically for y>1, it is
found that U/Ty=4.31log;,y ~0.98.

The series in Eq. (11) converges slowly for low
temperatures for all values of y, We obtain for the
asymptotic value (for 7-0 °K)

xEymet(T - °K)=;:%y—yz%, re~1 -%. (13)
This shows that the series simply renormalize the
y>1 regime of the “pure” paramagnetic result

[Eq. (12a)]:

O .

Xpar(T =0 K)—WU?—:I-' (13a)
These results are illustrated in Fig, 2. Because
the terms of the series change their character
(see below) at y,, the numerical results—crosses
in Fig. 2—fall below the 5™ curve for y<y,,
and above it for y>y.. In Fig. 3 this character
change of the various x,’s (v>0) as a function of
temperature is illustrated, e.g., compare Fig.
3(a) with Fig. 3(b). The x, (»#0) for y>y, are
oscillatory in character and attain negative values,
while for y<y, all the terms are positive through-
out the low-temperature region. We expect that
the oscillatory nature referred to above precludes
perturbative treatment in this low-temperature
range. Figure 3(b) and Eq. (11) illustrate that x,,
for y>y,, is qualitatively given by ;= Xpar+ Xo-

We now turn to the calculation of the external-
magnetic-field (%) dependence of susceptibility and
magnetization. The calculations are performed in
the static approximation which, as mentioned above,
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FIG. 4. (a) Magnetic field dependence of the y =10
susceptibility for different temperatures scaled with 7'y,
The dashed line represents the curve for y =0, 5, which
is typical for all temperatures; (b) the corresponding
curves for the magnetization,

should give good qualitative results. Figure 4(a)
exhibits the results for the susceptibility in units of
Xst(2=0). For y=10, at T<T,,** the curves show
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large maxima. For T > T, the curve for the same
y (=10) decreases monotonically with #. The
curves for y<1 are monotonically decreasing func-
tions of & for all temperatures. This is illustrated
by the dashed line for which y=0.5. The respec-
tive curves of the magnetization M,,(%) are given
in Fig. 4(b):

M, (n)=— (Im\If(z+zb) Im¥(z - ib)

Re¥V(z+ip) - Re¥ ™M (z - ib) ) (14)
T 27 - Im¥(z+ib) - Im¥(z - ib)] )’

where b is #/27T. Figures 4(a) and 4(b) are very
similar to the corresponding curves obtained for
the s-d coupling model by self-consistent calcula-
tions.* It should be noted that the above s-d curves
were plotted with the temperatures scaled with the
Kondo temperature for the case N(0)J=0. 125,

i.e., y=10.

In conclusion, we find that the Anderson Hamil-
tonian in the strong-coupling regime (y> 1) leads
to a characteristic temperature (7,), which signi-
fies the transition from a Curie to a Pauli para-
magnetic behavior of the susceptibility. This tem-
perature T, has a weak dependence on y= U/24,
contrary to the very strong dependence of the Kon-
do temperature on N(0)J, which equals 4/7y in
this regime. Our results are free of divergences
when 7-0 °K,

The decoupling scheme we use in the functional
integral emphasizes a virtual bound state of anti-
parallel spins. The importance of this state was
previously considered in the s-d coupling model®!3
and in the Anderson model.'* We believe that the
decoupling scheme used above is particularly
suited for the problem of magnetic impurities in
superconductors.
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