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Magnetic phase transitions in anisotropic Heisenberg antiferromagnets. I. MnCla 4H20$
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Differential magnetic susceptibility measurements have been used to study the magnetic phase transitions in

antiferromagnetic MnC1, 4H,O between 0.3 and 1.6 K. The antiferromagnetic to spin-flop (SF) transition is
shown to be a first-order phase transition below 0.4 K. The SF to paramagnetic transition is observed to have

a predominantly T" temperature dependence, while spin-wave theory predicts a T'" dependence. From the

values of the critical fields, extrapolated to T = 0, the exchange and anisotropy constants are determined. The
results are consistent with a Heisenberg model of isotropic exchange with a biaxial single-ion-type anisotropy.

I. INTRODUCTION

The behavior of antiferromagnetic materials in
magnetic fields depends strongly on the relative
magnitudes of the exchange and anisotropy energies.
For example, if the anisotropy energy is somewhat
less than the exchange energy a simple two-sublat-
tice antiferromagnet can have three distinct phases,
antiferromagnetic (AF), spin-flop (SF), and para-
magnetic (p). Mncla ~ 4H~O (T„=l. 62 K) exhibits
simple antiferromagnetic order with moderately
small anisotropy and is a good example of such a
system.

The phase transitions in MnC13 ~ 4H30 have been
previously studied using a variety of techniques. '
In most of these studies the fields that were used
were relatively small so that only the AF-to-SF
and the AF-to-P phase boundaries were accessible.
The studies of Rives, Qiauque et al. , and Reichert
and Qiauques were more complete. Hives used dif-
ferential magnetic susceptibility measurements to
map out the H-T phase diagram in the preferred
direction. Giauque eI; al. measured the specific
heat and magnetization and made adiabatic measure-
ments with the external field alternately along the

crystallographic c axis, b axis, and perpendicular
to the bc plane.

The crystal structure and positional parameters
of most of the atoms in MnCla ~ 4H&O were deter-
mined by x-ray diffraction by Zalkin et al. A
refinement of the hydrogen positions was deter-
mined by neutron diffraction by El Saffar and

Brown. The magnetic structure was studied using
NMR techniques by Spence and Nagarajan, ' and

more recently, fully determined by neutron diffrac-
tion by Altman et al. The crystal belongs to the
monoclinic system with the angle P= 99. 74'.

There has been disagreement in the literature
concerning the preferred direction for spin align-
ment in this compound. The c axis and the direc-
tion perpendicular to the ab plane (c' direction)
have been claimed to be the proper preferred direc-

tion. The neutron- diffraction measurements of
Altman et al. indicate that the preferred direction
is in the c'-c plane 2. 8' from the c' direction, or
'7 from the crystallographic c axis. Experiments
that were carried out with the external field along
the e axis were, therefore, performed with the
field displaced as much as 7' from the preferred
direction. This is of particular importance at the
AF-to-5F transition. It is well known that this
transition should be first order, because of the
finite increase in magnetization in going from the
AF state to the SF state. However, Hohrer and
Thomas'3 and Blazey et al. 's have recently reported
a mean-field calculation which demonstrates that
the first-order behavior will be observed only if
the external magnetic field is oriented within a
small critical angle relative to the preferred direc-
tion. The full significance of this point as it re-
lates to MnCl~ ~ 4820 will be discussed in Sec. IV.

Vfe wish to report our measurements of the dif-
ferential magnetic susceptibility on spherical sam-
ples of MnCl~ ~ 4830 between 0. 3 and 1.6 K. Spe-
cial care was taken to ensure that the external field
was aligned along the experimentally determined
preferred direction. Measurements were also
made with the field along each of the two perpen-
dicular directions (a and b axes). The magnetic
phase boundaries are determined from these mea-
surements.

Particular care was taken in the determination
of the behavior near the AF-to-SF transition. We

shall show in Sec. IV that it is indeed possible to
observe first-order behavior at this phase boundary
if the field is properly aligned and if the magnetic
properties of the system are expressed in terms
of the proper shape-independent internal field.

We shall also show that serious discrepancies
exist between the observed temperature dependence
of the phase boundaries that border the paramag-
netic state at low temperatures and the tempera-
ture behavior expected from spin-wave theory for
a simple-cubic model,
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II. THEORY

The case of a simple two-sublattice antiferro-
magnet in an external field has been treated exten-
sively by a variety of techniques. Nagamiya,
Yosida, and Kubo reviewed the molecular-field
approach and the early statistical theories. The
phase transitions in an orthorhombic crystal were
studied by Qorter and Pan Peski- Tinbergen using
a mean-field approach. The AF-to-SF and the
P-to-SF phase transitions were studied by Ander-
son and Callen 6 by a Green's-function analysis of
the Heisenberg antiferromagnet with uniaxial an-
isotropy. The temperature dependence of the phase
boundaries at low temperatures was determined by
treating spin-wave interactions in a manner similar
to that of Dyson in the ferromagnetic case. Using
spin-wave theory, including spin-wave interactions,
Feder and Pytte" determined the temperature de-
pendence of the phase boundaries for a Heisenberg
antiferromagnet with both uniaxial single-ion an-
isotropy and anisotropic exchange. Rang and
Callen studied the limits of stability of the SF
phase in both the low- and high-field limits to de-
termine the conditions for the SF-to-AF and the
SF-to- P phase transitions.

A. Spin-wave theory

The Hamiltonian studied by Feder and Pytte'8
which includes intersublattice interactions only can
be written in the form

is normally observed, since there are fluctuations
present of sufficient energy to prevent the system
from "superheating. " Since spin-wave theory pre-
dicts only the limits of stability, it is of interest
to compare h',f, h... and H'„' in the case of uniaxial
anisotropy. Using the experimentally determined
values of the exchange and anisotropy energies
given in Sec. IV for MnCla 4H30, we find to first
order in the spin-wave corrections,

h', q, H'„:h,f = 1.001:1:6.832 .
There is a 17% difference in the two limits of sta-
bility; however, the limit of stability of the AF
phase differs from the true thermodynamic critical
field by only 0. 1$&&. Thus for practical purposes
we can substitute H', ~f for h'„ in the foregoing dis-
cussions.

At 7.'= 0 the critical fields can readily be ex-
pressed in terms of the effective exchange field h~
and the effective anisotropy field h„ for both types
of anisotropy. At the AF-to-SF phase boundary we
have

H'„(0)= (2ksk„+ k~) (2)

where ks= 2$zJ/g, kz= 2$$ L/iJ. for uniaxial an-
isotropy, k„=SzX/g for anisotropic exchange, and
t~= 1 —1/2S. The SF-to- P critical field for uni-
axial anisotropy can be written

H'„(0) = 2ks- k„,
whereas for anisotropic exchange we get

3C=2J QS& 8, +X Q S&. L SEES(.+QS,')
(4s &

H'„(0) = 2ks+ k„. (4)

—pH S;,+ S&,

where the sum (i,j ) is taken over all nearest-neigh-
bor pairs, and i and j refer to the two sublattices.
The terms, in order, represent the isotropic ex-
change, anisotropic exchange, uniaxial anisotropy,
and Zeeman energies with J, K, and J the exchange
and anisotropy constants for the appropriate terms.
The z axis is taken as the preferred direction, and
H is applied along the z axis.

The field-dependent spin-wave dispersion rela-
tions are determined from solutions to Eq. (1).
The phase transitions occur at those fields which
yield zero-energy spin-wave modes. In the case
of uniaxial anisotropy hysteresis is predicted at
the first-order AF-to-SF phase boundary. 6'

Specifically, the limit of stability of the AF phase
for increasing fields h',

&
exceeds the limit of stabil-

ity of the SF phase for decreasing fields h~. No
hysteresis is predicted in the case of anisotropic
exchange. "

Experimentally, in a quasistatic experiment it
is the true thermodynamic critical field H„which

The temperature dependence of each of the phase
boundaries is determined by including spin-wave
interactions in the treatment. For the AF-to-SF
phase boundary Feder and Pytte find, for ks T/g
X p, sH~(0) «1,

Hp (T)/H', ['(0)= I -AT' '+BT"
where H'„'(0) in this relation contains a small tem-
perature-independent spin-wave correction to Eq.
(2). For uniaxial anisotropy

A = (4z /& )I, (1 L)I'(—)I(—)

XS [ks/gas HB (0)]

and

xS [ks/gijsH„, (0)]

For anisotropic exchange A = 0 and

B = (z /2m )g(1+If') (1+K/2)$ I'(2) I'(—,')

In the above relations g(x) is the Riemann zeta
function, I'(x) is the gamma function, z is the num-



1910 J. E. RI VE S AND V. BENEDICT

ber of nearest neighbors, S is the syin quantum
number, L, is the reduced anisotropy constant
L/2zJ , an'd K is the reduced anisotroyy constant
K/2 J.

The temperature dependence of the SF-to-P
phase boundary is of particular importance since,
according to Anderson and Callen, it is directly
related to the temperature dependence of the re-
normalized spin-wave energies. For a simple-
cubic model with uniaxial anisotropy Anderson and
Callen find

Htl(T)/HII(0) = I C1 T Cz T I

where-

Cg = 2&(z) (3/2v)" S '(kz/gpz hz)"'

and

(6)

H', (0)= 2hz+ h„. (8)

Equations (3) and (8) provide a unique determina-
tion of h~ and h„ from the exyerimentally deter-

C = l3& /2H'(0)ft(-')(3/2~)"'3' '(&,/gu @,)"'
Feder and Pytte' calculate only the 7 term,
which is valid for both types of anisotropy mith a
coefficient of the same magnitude as Cz above.

With the magnetic field applied along a direction
yerpendicular to the preferred direction, there is
only a single transition from the AF state to the P
state. Keefer discusses this case for biaxial an-
isotroyy in a first-order spin-wave theory. In this
treatment the zero-wave-vector spin-wave mode
goes to zero energy at 0= 2h~. This result ap-
pears not to take proper account of the anisotropy
and, thus, it is necessary to look to mean-field
theory to extend our treatment to perpendicular
directions.

B. Mean-field theory

In a mean-field treatment the anisotropy can be
introduced in a yhenomenological way in terms of
the anisotropy energy given by'4' '

&~= —K(/+ V'-)/2,

where y is the direction cosine of the magnetization,
the subscripts refer to the tmo sublattices, and Z'

is the anisotroyy constant. This leads to the def-
inition of an effective anisotropy field h„which
takes on the maximum value K/Mo, where M0 is
the saturated value of the sublattice moment.

At T = 0, with this definition of hz and an appro-
priate definition of h~ which relates the molecular-
field constant to the exchange constant, 3' one ob-
tains for H'„(0) and H'„(0) expressions identical to
Eqs. (2) and (3). With the applied field yerpen-
dicular to the preferred direction the critical field
for the single AF-to-P transition H'„(0) is found to
be

H',g(0) = 2hz+ h„g (10)

H~(0) = 2hz+ h„2 .
A measurement of the three critical fields bordering
the paramagnetic state, thus, is sufficient for the
determination of h~, h„i, and h,„2.

The AF-to-SF transition has been studied in more
detail recently by Rohrer and Thomas Bnd Blazey
et al. ' within the mean-field approximation. They
investigated the limits of stability of the magnetic
phases as a function of both magnetic strength and

direction. They find that the AF-to-SF transition
is first order only if the applied field is aligned
within a certain critical angle g, relative to the
yreferred direction. A good approximation for (,
at T= 0 for uniaxial anisotropy is given by (,=h„/
2k~. This is an extremely restrictive condition
for a large number of antiferromagnetic compounds
which have a relatively small anisotropy energy.
In materials such as MnClz 4H&O we expect g, to
be of the order of several degrees, which should
make it possible to observe the true first-order
nature of the transition.

III. EXPERIMENTAL PROCEDURE

A. Sample preparation

The single crystals of MnC13 ~ 4H&O used in this
work mere grown by evaporation from saturated
solution at room temperature. Spherically shaped
samples of approximately 1-cm volume were
fashioned from large single crystals. After shap-
ing, the samples mere dried for a short time in a
desiccator, removed, and coated immediately with
GE 7031 varnish for protection against dehydration.

mined critical fields for the case of uniaxial anisot-
ropy.

In the case of anisotroyic exchange one obtains

H'„(0) =H'„(0)= 2hz+ h„;
therefore an experimental determination of the two
critical fields H'„(0) and H', (0) makes it possible to
distinguish between the tmo types of anisotropy if
one is dominant in a given system.

If the two perpendicular directions are not equiv-
alent, a uniaxial model is insufficient. For this
case a biaxial, or orthorhombic, anisotropy model
has been investigated. ' There are two distinct
anisotropy fields h» and h» which are related to
two anisotropy constants K& and Kz in the same may
as in the uniaxial case. With the ayplied field along
the preferred direction, the critical fields H'„'(0)
and H'„(0) are again identical to the spin-wave re-
sults in Eqs. (2) and (3), but with h„~ substituted
for h„. For the perpendicular directions Eq. (8)
must be replaced by tmo relations,
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1—= P A„(lnR)"
n& 1

(12)

to an absolute accuracy of +2 mK, except near
1.0 K, where the accuracy was no better than +5
mK.

The thermometers were mounted in good thermal
contact with a liquid-3He refrigerator, which was
situated some 15 cm outside the windings of a
superconducting solenoid. With this placement
magnetoresistance corrections for the thermometer
were negligible. The thermal relaxation time be-
tween the thermometer and the sample was about
1 sec, but since data were always taken only after
the temperature and field had been stabilized for
more than 1 min, no appreciable error was intro-
duced by this arrangement of the thermometer.

C. Susceptibility measurements

The spherical sample was rigidly mounted in a
brass goniometer in good thermal contact with the
He refrigerator and positioned in the center of a

superconducting solenoid. The goniometer could
be rotated about two mutually perpendicular axes
to allow accurate alignment of the crystal relative
to the direction of the external field. Compensated
mutual-inductance coils were positioned symmet-
rically within the bore of the superconducting sole-
noid with the sample in the center of one-half of
the secondary coil. The mutual i,nductance is pro-
portional to the susceptibility of the sample; how-
ever, absolute values of the susceptibility are ob-
tained only after calibration of the entire system.
The mutual inductance was measured with a Cry-
tronics mutual-inductance bridge, which has a
resolution of = 8x10 4 H. The bridge was cali-
brated by measuring a series of precision mutual
inductors over the entire range of the bridge. The
details of the calibration of the coil system are
described below. Qver all, the system was capable
of measuring changes in the susceptibility of the
order of 0. 1x10 6 emu/cm in zero field, and owing
to the effect of the superconducting solenoid 1.0

Treated in this manner, the samples lasted indef-
initely, even after many temperature cycles to
liquid-helium temperatures.

B. Temperature measurements

Speer nominally 470-Q, 2-W carbon resistors
were used as secondary thermometers throughout
the entire temperature range of the experiments.
They were calibrated against the 1958 4He vapor-
pressure scale in the range 1.5 to 4. 2 K, and
against the 1962 3He vapor-pressure scale from
0.6 to 1.8 K. Below 0.6 K the resistors were
calibrated against the susceptibility of cerium mag-
nesium nitrate. The resistance was least-squares
fitted to the relation

1 —(X /X )sin e
cos 8 (13)

In the case of MnC12 ~ 4H20 the angle 8= 7 . Below
7 = 1.0 K the perpendicular susceptibility has not
been determined; however, the susceptibility in
the spin-flop state X'))' has been measured by Reich-
ert and Giauque. 3 Again from mean-field theory
we have

while

1
A+Kg/2MO ' (14)

x"= 1
A -Kg/2Mp ' (15)

where Mo is the sublattice moment at T= 0, A. is
the molecular-field constant, and g& is either the
uniaxial anisotropy constant, or the smaller of the
two biaxial anisotropy constants. From Eqs. (3)
and (8) the ratio of the two susceptibilities at T = 0
1S

Xg /Xii =Ã~(0)/If,', (0),
which from the experimentally determined critical
fields (see Sec. P7) gives a ratio of 0.81.

As an example of the magnitude of the angular
correction of the data, at T= 0.4 K from Reichert
and Giauque we find yt'= 154x10 4 emu/cm~, in
good agreement with the value of 160 x10 4 emu/cms

x 10 8 emu/cm~ with the solenoid energized. How-
ever, owing to uncertainties in the calibration pro-
cedure discussed below, there is an over-all un-
certainty of 1.5% in the absolute value of the sus-
ceptibility. The ac measuring field was =0.30 Qe
throughout the experiment.

D. Calibration of mutua1-inductance coil system

The mutual-inductance method that is used in
these experiments measures the susceptibility in
arbitrary units; therefore, it was necessary to
calibrate these measurements to obtain absolute
susceptibility values. Gijsman, Poulis, and
Pan den Handel measured the magnetization of
MnC12 4H20 along the crystallographic c axis
down to 1.2 K, and Reichert and Giauque extended
these measurements down to 0. 4 K. The differen-
tial susceptibility along the c axis can be calculated
from those results. However, the neutron-diffrac-
tion measurements of Altman et al. indicate that
the preferred direction differs from the c axis by
7'. The data along the c axis must be corrected
to give the susceptibility along the preferred direc-
tion.

From mean-field theory we have

2 2
Xe X)) cos 8+ X~ sin e

and thus
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FIG. 1. Differential magnetic susceptibility and mag-
netization of MnCl& ~ 4H20 as a function of external field
along the preferred direction at 0.297 K. ~, suscepti-
bility (left-hand scale); 0, magnetization. (right-hand
seal, e).

Initially the susceptibility was measured at a
series of angles relative to the c' direction in order
to determine precisely the preferred direction.
The angular dependence of the AF-to-SF transition
provides a very accurate test of proper alignment.
The large peak in the differential susceptibility, as
a function of external field, which accompanies
this transition should have a maximum height and
minimum width with the field along the preferred
direction. In addition, the value of the field at the
peak should be a minimum. The orientation of the
crystal which optimized all these quantities was
taken as the preferred direction. The uncex'tainty
in the preferred direction from these measurements
was +2 in the c-c' plane and +1 for out-of-plane
rotations. within this expex'imental uncertainty,
the direction that was determined from these mea-
surements was later found, by neutron diffraction,
to agree with the direct determination of Altman
et al.

B. AF-to-SF transition

Extensive measurements of the susceptibility
wexe made at four different temperatures in order
to obtain detailed information about the nature of
the AF-to-SF transition. At other temperatures
measurements wexe carried out only in the neigh-

calculated from Eq. (15). In the limit H = 0,
X,(8 = 7') = 5. 8x10 4 emu/cm . From Eq. (I&) we
obtajn )(„/gg ——Q. 626 at T = Q. 4 K. Using the above
angular corrections to obtain a calculated value for
X~) at H= 0 the calculated relation between the mutual

inductance and the susceptibility is given by X(emu/
cm )= 5.46x10 4(M -M„f) (pH), where M ~ is the
mutual inductance with the sample removed.

EV. RESULTS AND ANALYSES

A. Determination of preferred direction of spin alignment

borhood of the transltlons ln order to detel"mine
the temperature dependence of the phase boundaries.

In Fig. 1 the susceptibility and magnetization
ax'e shown as a function of external field at
T = 0. 297 K. The large peak in the susceptibility
near 7 kQe is a result of the rapid increase in the
magnetization at the AF-to-SF transition. The
susceptibility attains a maximum value equal to
I/N, within experimental uncertainty, where N is
the demagnetizing factor (4m/8 for a sphere). In
the SF state the susceptibility is almost constant
and has a value slightly larger than the perpendic-
ular susceptibility at small fields, as described in
Sec. III. At the SF-to-P transition there is a small
peak followed by a rapid drop in the susceptibility
in the P state. The magnetization is calculated by
numerical integration of the susceptibility. It
shows the rapid increase at the AF-to-SF transi-
tion, followed by the increase within the SF state
and saturation at the highest fields in the P state.

AQ expanded version of the susceptibility near
the AF-to-SF transition is shown in the inset in
Fig. 1. Typical error bars reflect an estimated
1.5% uncertainty in the absolute value of the sus-
ceptibility due to the calibration procedure outlined
in Sec. III. The relative uncertainty between. in-
dividual data points is an order of magnitude less
than that shown by the error bars.

It has been shown by Levy that the proper ther-
modynamic parameter for the description of the
magnetic properties of an ellipsoidal sample is the
shape-independent internal field

&i =Ho- &M (16)

~her~ Ho is the external field, N is the demagne-
tizing factor, and M is the magnetization of the
sample. The susceptibilities obey the relation

X~ =Xo'-& (I'7)

wh~~~ X; = (aM/»;), and Xo= (&M/»0), .
AF-to-SF phase boundary the magnetization should
be discontinuous in the internal f ield, and the dif-
ferential susceptibility y; should be infinite. Ex-
perimentally, however, one measures yo, which
from Eq. (1V) has the value I/N at the phasebound-
ary. The measured value of yo does equal I/K,
within the limits of uncertainty shown in Fig. 1.

The susceptibility X~ and the magnetization are
plotted against the internal field in Fig. 2. Since

yo is consistent with the value I/N, the calculated
maximum value of y; = 25. 8 emu/cm is consistent
with the expected value g; =~ at a first-order tran-
sltlon, The increase ln the magnetlzatlon takes
place over a range of internal field of 10 Oe, which
is just the calculated inhomogeneity in internal
field expected from the known inhomogeneity of the
superconducting solenoid and the experimental un-

certainty in Xo. The behavior of the susceptibility
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FIG. 2. Differential magnetic susceptibility and mag-
netization of MnC12 ~ 4H20 as a function of internal field
at 0.297 K with the external field along the preferred di-
rection. ~, susceptibility O.eft-hand scale); 0, mag-
netization {right-hand scale).

and magnetization in terms of the shape-indepen-
dent internal field clearly establishes the first-or-
der nature of the AF-to-SF transition in MnCl~
~ 4H&0 at a temperature of 0. 29V K.

The susceptibility yo as a function of external
field in the neighborhood of the AF-to-SF transi-
tion at several different temperatures is shown in
Fig. 3. At 0. 3V2 K the behavior of Xo is basically
the same as at 0. 29V K, except that it does not
quite attain the expected value of 1/X at the phase
boundary. At higher temperatures the height of
the susceptibility peak at the phase boundary de-
creases rapidly with increasing temperature.

The susceptibility X& and the magnetization as a
fuuction of internal field are plotted in Figs. 4 and
5. A definite change in behavior takes pIace be-
tween 0. 3V2 and 0.426 K. At 0. 3V2 K, although
the maximum value of X& is somewhat smaller than
at 0. 29V K, the magnetization is discontinuous,

0.
6.5

.UJ 4
7.0 7.5

HI ( kOe)

I

8.0 8.5

FIG, 4. Differential magnetic susceptibil. ity of MnC12
~ 4H20 as a function of internal field near the AF-to-SF
transition for several temperatures with the external
field along the preferred direction.

within the uncertainty in H& discussed above. How-
ever, at 0. 426 K the magnetization no longer in-
creases discontinuously. The first-order behavior
has disappeared between 0. 3V2 and 0.426 K. The
susceptibility at 1.143 K has been left off in Fig.
4 since it reaches a maximum value of only 0. 005
emu/cme at the phase boundary.

The foregoing data provide substantial proof that
the AF-to-SF transition in MnCl~ ~ 4H&0 is first
order at least up to 0. 4 K. Since the alignment

0.3—

I/N =0.239

MnCI2 4H&0

AF-SF
300- 0.297 K

(BM
)

02

O.
M

Ol—

IOO

0=
8.58.06.0 6.5 7.5 9.0

Ho (kOe)

FIG. 3. Differential magnetic susceptibility of MnC12
~ 4820 as a function of external field along the preferred
direction nea. r the AF-to-SF transition for several tem-
peratures.

0
200 5 IO l5

H; (kOe)

FIG. 5. Magnetization of MnC12 4H20 as a function of
internal field for several temperatures with the external
field along the preferred direction.
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to zero near 0. 6 K. This implies that the first-
order transition will not be observed above 0. 6 K,
and suggests that the bicritical point~s may be as
low as 0.6 K in this compound.

C. Temperature dependence of the phase boundaries

D
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of the external field was known only to + 2, the
disappearance of the first-order behavior above
0. 4 K can be interpreted as evidence that the crit-
ical angle P, has decreased from its maximum
value at 7'= 0 to -2' at 0. 4 K. From the experi-
mentally calculated values of the effective exchange
and anisotropy fields listed below, we estimate
that g, = 6. 5' at 7 = 0. If tIt decreases approximately
linearly with increasing temperature then it goes

TEMPERATURE (K)

Magnetic Phase Diagram for MnCI2 4H20

FIG. 6. H-T phase diagram for MnC12 ~ 4820 as deter-
mined from the differential magnetic susceptibility.

In addition to the data just presented, the sus-
ceptibility was measured at a series of tempera-
tures in the neighborhood of the phase transitions
in order to obtain the values of the critical internal
fields as a function of temperature, The resulting
H-T' phase diagram is presented in Fig. 6. The
solid circles are the data obtained with the external
field along the preferred direction. The three
phase boundaries separating the AF, SF, and P
states are clearly indicated. Vfith the external
field along the a axis and b axis, respectively,
there is only a single transition from the AF state
to the P state at the critical internal fields indicated
in Fig. 6. The behavior of the perpendicular sus-
ceptibility near the transition is similar to the be-
havior of the parallel susceptibility near the SF-
to-P transition. The data for all the critical fields
are tabulated in Table I.

The temperature dependence of the SF-to-P
phase boundary is of particular importance, since
according to Anderson and Callen'6 it should direct-
ly reflect the temperature dependence of the re-
normalized spin-wave energies. Based on their

TABLE I. Critical internal fields for MnC12 ~ 4820.

Magnetic field parallel to preferred direction
Magnetic field perpendicular

to preferred direction

0. 00
0, 297
0.371
0, 456
0.464
0.512
0, 617
0. 637
0.738
0, 811

0, 891
0. 943
1.002
1.049
1.056
1.094
1.110
1.135
1.179
1,217
1.248

H„(t Oe)

7. 065'
7. 040
7. 036
7. 045

7, 064

7. 123
7. 174
7.211

7. 324
7. 352
7, 391
7.433

7.486
7.500
7. 523
7, 529

H~ (kOe)

18, 55
18.390
18, 050

17, 802
17, 534
17.039

16, 181
15.234

14.569

13.163

12.198

11.200

9.921

1.281
l. 303
1.327
l. 364
1,432
l. 507
l. 548

6. 884
6. 886
6, 260
6. 097
4. 889
3.749
2. 892

T (K) H, (kOe)

0, 00
0.287
0. 308
0, 513
0. 741
0. 747
1, 002
1.207
1.390
1, 515

l. 591
1, 605

H„(kOe)

22. 95
22. 760

22. 251

21, 059
19.034
16.508
13,847
11,035

5, 542
3, 352

H„(kOe)

24. 55

24, 300
23. 621
22, 097

20, 229
17.697
14, 349
10, 040

4. 906
2. 121

~Extrapolated values.
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FIG. 7. Temperature dependence of phase boundaries
bordering the paramagnetic phase at low temperatu. "es
for MnC12 ~ 4H&O. o, H along the preferred direction; 0,
H along the 5 axis; x, & along the a axis; dashed line,
theory of Anderson and Callen (Ref. 16).

treatment of spin-wave interactions there should
be a predominantly Ts dependence. In order to
compare the experimental data with the expected
behavior given by Eq. (6), it is convenient to re-
write Eq. (6) in the form

&&((&)I"i(o)&"'=I"'«(0) «l(&)ll"J-(0)&—'"
=Cj+C,T . (18)

Presented in this form the data are expected to
produce a linear fit with intercept C& and slope C~.
However, the value of the critical field at 7 = 0,
H'„(0), is unknown and must be determined in the
analysis. It is treated as a parameter and is var-
ied to obtain the best linear fit to the data when
presented in the form of Eq. (18). The experimen-
tally determined values of C& and C~ are simply
extracted from the resulting fit.

The data are shown in Fig. 7, +here we present
not only the data for the critical field for the SF-
to Ptrans-ition (H parallel to the preferred direc-
tion), but also the critical fields for the two per-
pendicular directions. The solid lines represent
the best fits to the data, and in all three cases a
value of C&= 0 produced the best fit. The dashed
line represents the behavior expected from the
theory of Anderson and Callen 6 as applied to the
case of MnCL~ ~ 4H20, for which the values of the
constants C& and C2 are calculated to be 0. 42 and
0. 064, respectively. Since C, is found to be zero,
there is no experimental evidence for a T de-
pendence for the critical fields bordering the para-
magnetic state in MnC13 ~ 4820. Thi. s is inconsis-
tent with tb~ Anderson-Callen model for a simple

0.6—

MnCI& 4 H&0

SF-P
CV

IA
I-

04—O
O

O

0.2—

il

, n (~y—yI ~

j II

00 I I I I I I I I I I I I I I I I

0 0.5 l.0 t.5

T(K)
FIG. 8. Temperature dependence of phase boundaries

bordering the paramagnetic phase at low temperatures
for MnC12 ~ 4H20. ~, H along the preferred direction; 0,
H along the b axis; x, H along the a axis.

cubic antif erromagnet.
The data at the highest temperatures for 0 along

the preferred direction deviate significantly from
the linear form of Eq. (18), suggesting the pres-
ence of a higher-order temperature dependence.
Assuming C& is exactly zero from the above analy-
sis, both sides of Eq. (18) can be divided by T.
Any higher-order terms will cause the data to de-
viate from a horizontal stra, ight line of magnitude
Ca when bH'(T)/H'(0) T ~ is plotted against tem-
perature. The results are shown in Fig. 8. It is
seen that the data for 8 along the preferred direc-
tion are consistent with an additional Tv~ term
which is significantly greater than zero. The solid
lines again represent the best fits to the data. In
the two perpendicular directions the data are not
entirely inconsistent with the absence of a higher-
order contribution, although the best fit has a small
positive slope. The values of the critical fields,
extrapolated to T = 0, found from the above analysis
are

for H parallel to the preferred direction,

H,', (0) =18.55+0. 05 kOe;

for H parallel to the b axis,

H;&(0)=22. 95+0.05 kOe;

and for H parallel to the g axis,

EP2(0) = 24. 55 +0.05 kOe.

The experimentally determined coefficients C, ,
C~, and Cs are tabulated in Table II, along with the
values of C& a.nd C~ ca.lculated from the theory of
Anderson and Callen and the value of C& calculated
from the theory of Feder and Pytte.
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TABI.E II. Comparison of theoretical and experimen-
tal critical-field parameters for H =H (0) (1 —C&T
—C2T —CST ). SF-to-P transition and perpendicular
AF-to-P transitions in MnCl2 4820.

Theory

AC (Ref. 16)
FP (Ref. 18)

Cf

0.42
0.42

0. 064

C3

Experimental

preferred
direction

b axis

a axis

0.00+0. 02

0. 00+ 0. 015

0. 00 + 0, 015

0.240 + 0. 02

0.160+0. 015

0.180+0.01

0.04+0. 01

0.008 *0. 004

0.010 + 0.008

The calculated values of A and 8 from Feder and

Pytte ' for MnCl& ~ 4H,O are

~canc=0. 066 K

a„„=0.177 K '" .
Using the experimentally determined values of A
and B, we find that the data are consistent with the
existence of a minimum in the phase boundary at
T „=0. 6A/& = 0. 307 K.

At temperatures above the bicritical point there
is a second-order transition from the AF state to
the P state with the external field along the pre-
ferred direction. This transition has been inves-
tigated previously by Gijsman, Poulis, and Van
den Handel using NMR and electron-resonance
techniques, and by Reichert, Butera, and Schiller
with specif ic-heat and magnetization measure-
ments. However, both of these investigations were

The expected temperature dependence of the AF-
to-SF phase boundary is given by Eq. (5) for both
uniaxial single-ion anisotropy and anisotropic ex-
change. Again, it is convenient to express Eg. (5)
in the form

(T)/H*'(0) T'"-=[a"(T)—H"(O)]/H"(O) T

= —g+B T.
In this case only the lowest-temperature data are
included in the analysis, since Eq. (5) is valid only
for T«T»=gp&H;, '(0)/ks =1.0 K. The data are
shown in Fig. 9, where the solid line represents
the best fit to the data, and the dashed line is the
expected behavior for single-ion anisotropy for the
case of MnC12 ~ 4820. The presence of a nonzero
value for the coefficient A strongly suggests that
single-ion anisotropy is dominant in this compound.
From the analysis of the data, we obtain

~H;, '(0) =7. O65+O. O1 kOe,

A =0.066+0. 007 K

$=0.129+0.020 K"
0.05

OJ

I-
0 0

O

O

-Q05

4HpO

SF

1 I I I I I I I I I I I I I (

I.O l.5

T(K)
FIG. 9. Temperature dependence of the AF-to-SF

phase boundary for MnC12 ~ 4H~O. o, data; solid line,
best fit to the data for T & 0. 6 K; dashed line, theory of
Feder and Pytte {Ref, 18),

performed with the external field along the c axis
and, therefore, give a phase boundary slightly dif-
ferent from the true phase boundary with the field
along the preferred direction.

In the present experiment the differential sus-
ceptibility as a function of magnetic field exhibits
a single rather broad peak at all temperatures be-
tween the bicritical point and T„. The field value
corresponding to the maximum in the susceptibility
is chosen as the critical field. The data are shown
in Pig. 10 as I function of temperature. The solid
circles are the present results, while the open
circles and the crosses are the results of Reichert
et al. and Gijsman et a/. , respectively. The
critical fieMs in the present case are substantially
lower at all temperatures than the earlier results
along the c axis.

The temperature dependence of the AF-to-P
phase boundary has been treated by a number of
authors in the limit H= 0. Besides the mean-field
model' which predicts a quadratic dependence of
T„(H) on magnetic field, i. e. , T~(H)/T„(0) -1- yH',
the only known calculations of the phase boundary
in finite fields are the Ising-model calculations of
Fisher and Bienenstock, and more recently the
Monte Carlo calculations on Ising systems by
Landau. 6 The two-dimensional superexchange
model considered by Fisher leads to a quadratic
dependence of T„on 8 in the limit II=0. The work
of Bienenstock can be expressed by the relation
T„(H) = T„(0)[1—(H/H, ) ]~, where t' = 0. 87, 0. 35,
and 0. 36 for the square, sc, and bcc lattices, re-
spectively. This reduces to a quadratic dependence
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H

(koe)

therefore, that the biaxial anisotropy model should
be appropriate in this case. Equations (2), (2), (10),
and (11) give the critical fields at T=0 in terms of
the effective exchange and anisotropy fields. Pos-
sible anisotropic exchange contributions are ex-
pected to be small and will be discussed later. In
Eqs. (2) and (2), h„should be replaced by h„1 for
the biaxial model. Inserting the experimentally
determined values for the critical fields bordering
the paramagnetic state in Eqs. (3), (10), and (11)
we obtain

I I I

1,3 l,4 I,6

r(K)
FIG. 10. Temperature dependence of the AF-to-P

phase boundary for MnC12 ~ 4H20. ~, present data; solid
line, best fit to present data; 0, data of Heichert, Bu-
tera, and Schiller (Ref. 5); +, data of Gijsman, poulis,
and Van den Handel Q,ef. 7).

l.2 l, 5

in the limit 0=0. However, for the three-dimen-
sional lattices at larger fields the variation of T„
with field is considerably slower than quadratic.
Landau has shown that the value of g is not com-
pletely determined by dimensionality and that, in

fact, it can take on a range of values which depend
on the details of the interactions considered.

In any event, it is not clear that any of the Ising-
model calculations should be expected to reproduce
the phase boundary in MnCl& ~ 4H30. Many of the
features of this compound appear to be well repre-
sented by the anisotropic Heisenberg model. On
the other hand, Fisher and Sykes found that the
zero-field susceptibility of MnCl~ ~ 4H&O is sur-
prisingly similar to the susceptibility of the bcc
Ising system.

Experimentally we find the data can be described
very well, over the entire temperature range, by
a quadratic relation of the form T„(H)/T„(0)
= 1 —yH, with y = 4. 3 && 10 Oe . This is shown

by the solid curve in Fig. 10. Previously it has
been found that the antiferromagnetic compounds
CoC1, ~ 6HEO (Ref. 28) and MnBr2 ~ 4H~O (Ref. 29)
are also consistent with this simple form over the
entire temperature range.

The temperature dependence of the phase bound-
aries very close to the bicritical point is of par-
ticular importance in view of the recent discussions
of Fisher and Nelson. Unfortunately, the present
data do not allow us to draw any conclusions about
this very important point.

D. Exchange and anisotropy energies

The two perpendicular directions are found to be
nonequivalent in MnCl, ~ 4H~O. It is expected,

and

h8=10. 375~0. 03 kOe,

h~g =2. 20+0. 05 kOe,

h»=3. 80+0.05 kOe .

It was not necessary to use Eq. (2) to determine
the effective fields. However, it may be used as
a self-consistency test of the model. Inserting the
above values of hE and h» in Eq. (2) we calculate
H~~ '(0) = I . 10 kOe, which is within the calculated
limits of uncertainty of the experimentally deter-
mined value of 7. 065+0. 05 kOe.

The observed temperature dependence of the AF-
to-SF transition suggested that single-ion anisot-
ropy dominates any possible anisotropic exchange
in MnC12 ~ 4H30. %'e can place an upper limit on
the effective anisotropic exchange field h&E by in-
cluding it in the critical-field expressions. From
spin-wave and mean-field theory we get

and

~ii(0) = 2hE + hAE —hA1

&1(0) 2h E hA K hA1

(20)

(21)

E. AF-to-SF transition and first order

The observed temperature dependence of the
AF-to-SF phase boundary was found to be consis-
tent with the spin-wave theory of Feder and Pytte,
which predicts a minimum in the phase boundary
for uniaxial anisotropy. A linear plot of the ex-
perimental data is shown i.n Fig. 11, where the
solid line is the best fit to the data up to 0. 6 K as
indicated above ia. Fig. 11. The shallow minimum

From mean-field theory the upper limit of stability
of the AF state, which does not differ significantly
from the true thermodynamic transition in MnCl~
~ 4H20, can be written

H" (0) = ~(2hE+ hAE+ hA1) (hAE+ hA1)]"' .

Inserting the data, in Eqs. (20)-(22) we find

h„~ =0.00+0. 025 kOe,

with h~ and h» the same as above.
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FIG. 11. Low-temperature portion of the AF-to-SF
phase boundary for MnCl& 4820. , data; solid line,
best fit to data from theory of Feder and Pytte (Ref. 18).

at T „=0.307 K is clearl. y evident. The lack of

data below 0. 297 K means that the values of the
parameters derived from the fit should be viewed
with some skepticism; however, the existence of

the minimum appears well established. For a
first-order phase transition the latent heat is re-
lated to the slope of the phase boundary by the
Clausius-Clapeyron equation, which for magnetic
systems can be written in the form

r= T'~M
d&j '

where l is the latent heat and &M is the increase
in the magnetization in going from the AF to the
SF state. At T „, then, the latent heat must
vanish. The vanishing of the latent heat at T „
also implies a lack of hysteresis accompanying
the first-order transition. Hysteresis at the AF-
to-SF transition as a function of internal field has
not been previously observed, a fact which general-
ly has been attributed to impurity or imperfection
nucleation. However, it is quite possible that the
true first-order transition was absent in these
eases due to misalignment.

In the present work no evidence of hysteresis
was found at T=0. 297 K, whi. ch is not significantly
different from T „. However, at T=O. 372 K a
"superheating" effect was observed during one ex-
perimental run. The value of the external field at
which the transition was initiated exceeded by 150
Oe the initiation field that was observed during two
"normal" runs. The complete absence of hystere-
sis at 0. 297 K and the superheating that was ob-
served at 0. 3'72 K are consistent with a first-order
transition with a minimum in the phase boundary
at 0. 3 K.

U. DISCUSSION AND CONCLUSIONS

From the measurement of the differential mag-
netic susceptibility, we have been able to observe
the various magnetic phase transitions which occur
in MnClz ~ 4H&O. The AF-to-SF transitionwas stud-
ied in some detail. %'e observed first-order be-
havior up to 7' =0.4 K. The primary argument in
support of this conclusion concerns the behavior of

yo, which reaches a value of 1/N at the phase
boundary, within experimental uncertainties, and
remains at this value over a range of about 300 Oe
in Ho. The internal field H;, obtained by applying
proper demagnetizing corrections to Ho, remains
constant over this range in Ho. At this constant
value of H; the susceptibility y; is infinite and the
magnetizati. on increases dis continuously.

It is important to mention again that the first-
order transition will be observed only if the ex-
ternal field, as shown by Rohrer and Thomas, ' is
within a small critical angle with respect to the
magnetically pref erred direction. Outside this
critical angle the moments will rotate rapidly, but
continuously, from the antiparallel alignment to
the essentially perpendicular alignment of the spin-
flop state. According to Blazey ef; gl. the crit-
ical angle will decrease with increasing tempera-
ture, going to zero at the bicritical point where
the three phase boundaries meet. The present re-
sults are somewhat puzzling on this point. From
Fig. 6 the phase boundaries appear to meet at 1.25
K. From the loss of the first-order behavior of
the AF-to-SF transition it appears that the bicrit-
ical poi.nt might be considerably lower, =0. 6 K.
However, it is quite likely that the critical angle
does not extrapolate to zero as rapidly as proposed.
Thus, the bicritical point is most probably close
to 1.25 K.

The temperature dependence of the phase bound-
aries was also determined and compared with spin-
wave theory. ' Anderson and Callen ~ include
spin-wave interactions to determine the renormal-
ized spin-wave energies. For cubic symmetry
they show that the temperature dependence of the
SF-to-P phase boundary should exactly reflect the
temperature dependence of the renormalized spin-
wave energies, which they find to have a predom-
inantly T dependence. Feder and Pytte obtain
an identical result in their work. Experimentally
we find in MnC12 ~ 4HzO that there is no evidence of
a T ' term in the temperature dependence. The
dominant term is T with evidence of higher-or-
der contributions.

At the present time the nature of the discrepancy
is unknown. As the phase boundary is approached
from the P state the paramagnetic mode goes soft
at the zone corner. However, in the SF phase
the low-energy SF mode continuously changes from
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a linear function of wave vector, near 4 =0, to a
quadratic function of 4 as the SF-to-P phase bound-

ary is approached. It has been suggested that to
describe properly this situation, the spin-wave in-
teractions might have to be treated to higher order
than the first-order treatments of Anderson and
Callen and Feder and Pytte. '
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