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The magnetic scattering of neutrons by an arbitrary system of particles has been examined by exploiting its
similarity to the radiation problem in spectroscopy. It has been shown, in fact, that the magnetic scattering

amplitude can be expressed in terms of the multipole moments of the scattering system, The number of
multipoles, which contribute to the scattering amplitude, is limited by selection rules based on the symmetry

properties of the states of the system, in particular, parity and angular momentum conservation. The
formalism has been applied to the magnetic scattering of neutrons by an atom in the l" electronic
configuration. If the spin-other-orbit and orbit-orbit interactions in the atomic Hamiltonian can be neglected,
only even-order electric and odd-order magnetic multipoles, whose order of multipolarity is less than or equal

to 2I+ 1, contribute to the scattering amplitude. In this case the calculation of the magnetic scattering amplitude
is reduced to evaluating matrix elements of the Racah double tensors 8' "~ and 8" '" ~ (k' even). The former
tensors are associated with the convection current and the latter with the spin magnetization contribution to
the magnetic scattering amplitude. The calculation of the maxtrix elements of these tensors is simplified by
selection rules based on the groups Sp(4l+ 2), R(2l+ 1), R(3), G, used in the classification of the atomic
states. The contribution to the magnetic scattering amphtude of the convection current, associated with the
spin-orbit and mass correction terms of the atomic Hamiltonian, has been examined in some detail.

I. INTRODUCTION

The magnetic scattering of neutrons by an atom
has been the subject of many theoretical investiga-
tions. Following the orig nal investigations of
Bloch~ and 8chwinger, Halpern and Johnson ex-
amined the scattering by an atom with zero orbital
magnetic moment. The general case of scattering
by an atom with both spin and orbital magnetic mo-
ment was first examined by Trammell. The ma-
trix elements in the theory can be calculated by us-
ing either the traditional Condon and Shortley for-
malism or the more powerful techniques of Bacah
algebra. ' However, the evaluation of the magnetic
scattering amplitude by both methods requires xath-
er involved calculations which offer little physical
insight into the problem and which in some cases
may even lead to erroneous results. It is the pur-
pose of this paper to present a new treatment of the
theory which makes possible the appbcation of the
techniques of modern spectroscopy to the magnetic
scattering of neutrons. In this new formulation the
calculation of the magnetic scattering by an atom is
reduced to evaluating matrix elements of the gen-
erators of the groups used in the classification of
the atomic states. The symmetry properties of the
atomic states can then be used to considerably sim-
pbfy the calculations.

We examine the magnetic scattering of neutrons
by an arbitrary system of particles by exploiting
the similarity of the problem with that of the inter-
action of radiation with the system. The magnetic
scattering amplitude is determined by the Fourier
transform of the transverse (to the scattering vec-
tor) component of the current density operator of

the system. The Fourier transform of the trans-
verse component of the current density operator can
be simply related to the multipole moment opera-
tors of the scattering system. Thus the calculation
of the magnetic scattering amplitude can be reduced
to evaluating the transition matrix elements of the
multipole moment oyerators. In any given problem
the number of multipole operators used for the
evaluation of the scattering amp1. itude is limited by
selection rules based on parity and angular momen-
tum conservation. The actual calculation of the
matrix elements is a straightforward application of
well-known techniques in atomic and nuclear spec-
troscopy.

The formalism has been appbed to the magnetic
scattering of slow neutrons by an atom in the l"
electronic configuration. If the two-particle mo-
mentum-dependent terms of the atomic Hamiltonian
(such as the spin-other-orbit and the orbit-orbit
interactions) can be neglected, the magnetic scat-
tering amplitude can be expressed in terms of odd-
order magnetic and even-order electric multipoles,
respectively, whose oxder of multiyolarity is less
than or equal to 2l+1. By relating the multipole op-
erators to the Racah unit tensors, one can employ
the symmetry properties of the atomic states to
simplify the calculation of their matrix elements.
The extensive tabulations of the reduced matrix
elements of the Racah unit tensors can then be
used for the yraetical evaluation of the magnetic
scattering amplitude.

We examine the scattering of neutrons arising
from their electromagnetic interaction with an ar-
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bitrary system of charges. In the present work we
will assume that the scattering system can be de-
scribed by a nonrelativistic Hamiltonian. The neu-
tron interaction with the system may be written

Hq, q= —— j r ~ A„r dr

is the neutron scattering vector and Su = E' -E is
the energy transferred to the neutron. For mag-
netic scattering, the scattering amplitude f(q) is
given by

where j(r) and p(r) denote the current and charge
densities, respectively, of the system, and M is
the neutron mass. The charge and current densi-
ties of the system are related by the continuity
equation

ep i
& j=- —=-—I:If plet

where H is the Hamiltonian of the system. For
slow neutrons, the vectox and scalar potentials due

to the magnetic moment of the neutron are given by

A ( )
p»»+(r rn)—
Ir-r„l

In th686 e@uations x'„ ls the pos1tlon vectox' of the
neutron, 7 is its velocity, p. „=yp~o is the magnetic
II10111ellt of the llellil'011 (p= —1.91)» RIld 0' ls the
Pauli matrix. The first term in Eq. (1) is the in-
teraction of the magnetic moment of the neutron
with the convection and spin current of the sys-
tem, 1 the second is the neutron-spin-neutron-
orbit term arising from the coupling of the electric
field of the moving neutron with the charge density
of the system, and the third is the Foldy term due

to the Eitterbewegung motion of the anomalous mag-
netic moment of the neutron. In the present paper
we will examine the contribution to the scattering
cross section from the first term in Eq. (1). The
corresponding scattering amplitude wiG be referred
to as the magnetic scattering amplitude.

A. Magnetic scattering amplitude

We consider a scattering process in which the

system undergoes a transition from some initial
state of energy E,. to a final state of energy E&, and

the neutron is scattered from an initial state of

wave vector k and energy E to a final state of wave

vector k and energy E', The diffexential neutron
scattering cross section in the first Born approxi-
mation can be written quite generally as

, =()», '/k)lf(q)I f)(E; Ez —Ice), -

After some simple manipulations, this equation

may be written as

rY&0 ~ . d d~» I(»)-i') r„
q =&2)z o r„qe

„»(fl f I(I&~"'"di&i&,

where m is the electronic mass, ro=e /mc is the
classical electron radius, and e = —l eI denotes the
electronic charge. This expression for the mag-
netic scattering amplitude can be considerably sim-
plified if one assumes that the current density is in-
dependent of the neutron coordinates. This as-
sumption is equivalent to neglecting terms in the
interaction Hamiltonian which are quadratic, ox of
higher order, in A„(r). With this assumption Eq.
(V) reduces to

f(q) = i(yr, ) (m/eIIq)o ~ (q xJ,), (8)

where J is the Fourier transform of the current
density operator

»=(f~$ J j(r)e""dr~/»),

and q is a unit vectox along the scattering vector q.
It is seen that only J„ the component of J perpen-
dicular to the scattering vector, contxibutes to the
scattering amplitude. The neutron magnetic mo-
ment couples only to the transverse component of
the current density. The magnetic scattering am-
plitude is sometimes written in a slightly different
form by defining the dimensionless operator g, as

Ag = - I',(m/eiq)q XJ, .
With this definition the magnetic scattering ampb-
tude may be written as

f&q)=&l&1~0)o S. .
The magnetic Scattering amplitude has been re-

lated to the Fourier transform of the transverse
component of the current density operator. The
magnetic scattering of neutrons is thus similar to
the problem of the lntex'action of polax'ized x'adia-

tion with the system, Actually, the matrix ele-
ments of the spherical components of J, (or g,) are
proportional to those involved in the problem of the
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The vectors e~ with P = + 1 are sometimes referred
to as the helicity vectors associated with the direc-
tion &3. Since both J~ and Q~ are transverse, they
are completely defined by their components along
the helicity vectors e~ associated with the scatter-
ing vector. First, the multipole moment expansion
of these latter components will be determined.
Then the multipole moment expansion of J, and g,
in the fixed coordinate system will be obtained by
a simple rotation of coordinates.

The components J,,~ of J, along the helicity vec-
tors e~ (P=+1) associated with the scattering vec-
tor are

= jd~ f j(r) e, e"'dr jr), A=* j .

The right-hand side of Eq. (11}is essentially the
interaction Hamiltonian of polarized radiation with
the system. The circularly polarized wave in the
right-hand side of Eq. (1.1}can be expanded in mul-
tipole fields,

where

A»„' = [k(k+ 1)] 14»„(r),
A'„'„' = (1/q) [k(k+1)] VxM» (r),

(i2)

(i3)

(i4)

dk»„(r}=i"[4v(2k+1)]~~~ j»(qr) I'»„(r) .

interaction of polarized radiation with the system.
It is well known that these latter matrix elements
are directly related to the multipole moments of
the scattering system. Thus the magnetic scatter-
ing amplitude must also be simply related to the
matrix elements of the multipole moments charac-
terizing the scattering system.

9. Multipole moment expansion of the magnetic scattering

amplitude

We showed that the magnetic scattering ampli-
tude can be expressed in terms of the vectors J,
or dTA [Eq. (8) or (6')]. These vectors will be de-
termined in an arbitrary fixed coordinate system
defined by the orthonormal vectors &&,

However, instead of the Cartesian components of
JA (or jA), it is more convenient to use the compo-
nents of these vectors along the spherical unit vec-
tors e~ defined by

e» = —(P/W2) (7, +ip&,), p= + I

eo= ~3 ~

In these equations 1= (I/i) r x V is the angular mo-
mentum operator, j»(qr) is a spherical Bessel func-
function, D"»(rp, 8, 0) is a rotation matrix, and y, s
are the polar angles of the scattering vector in the
fixed coordinate system. The fields A„"' and A„'

are known as the electric and magnetic multipole
components of the polarized wave and they have
parities (-)"'~ and (-)", respectively. Substituting
Eq. (12) into Eq. (11)

This equation can be written in the following com-
pact form,

(i6)

by introducing the dimensionless multipole opera-
tors

(1Va}

The operator Q can also be expressed in terms of
the multipole moment operators by using Eqs. (10)
and (16),

QA', »= j)JA,»= — Q P"D"»(V', ~, o)
eIjdf

x(f~7,' ~f), P='+I, . (is)

In Eqs. (16) and (18}v takes the values 0 and 1 for
the electric and magnetic multipole operators, re-
spectively. The superscripts (0) and (1) of the mul-
tipole operators then simply mean "electric" and
"magnetic, " respectively. The multipole operators
[Eqs. (20)] are irreducible tensor operators of or-
der k. Since the parity of I is (-) the electric and
magnetic multipole operators have parities (-)' and
(-)»'~, respectively.

We expressed the components of J, and g, along
the helicity vectors associated with the scattering
vector in terms of the multipole moment operators
characterizing the scattering system. It is more
convenient in some problems to use the spherical
components of these vectors in the fixed coordinate
system. These components can be easily obtained
by a rotation of coordinates. The components of
J, in the fixed coordinate system are
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J»,p= Jg ~ ep=Q (-) D p, (y, 8, 0)J», , P=O, +I

where J»,, has been expressed in terms of the multipole moment operators [Eq. (16)]. A simple expression
for eJj„,p can be obtaHled 1f one notes that

Substituting for 8,', in Eq. (19), one obtains

&+/+a 4~ 2
~ I f/8 2 2 y TI(e) ~ 0 ~ y

(20)

The spherical coInponents of g& in the fixed coordinate system are obtained by the same manipulations used
xn obtalDjLng the corresponding components of Jg',

S..~= 2(-)'I&+(-)"")(4~(2)+&&I"'(
p p }{«o}"~~--(I&&fl &a". I&), ( = + o(&2&&

f 15

U8111g Eqs. (20) RIld (21) the vectol"s a7@ Rnd al» cRn be written m R form which exhlbIts explIcitly t1181I' tI'RIls-
verse chax'Rcter. Let us consHier flI'st

p~ ( ) JJ&pe pe
P

with J»,p given by Eq. (20). The summations over II, j, Rnd p can be easily performed if one notes that for
II = 0 (electric multipoles) j can take only the values 0+ 1, and for v = 1 (magnetic multipoles) j must be equal
to k. The result is

8~
2{2~;, (x' &~&&flT'a 'I&& -.&II«:."(.I))&fl&(".I&&), (22)

where X»„(&I) is a vector spherical harmonic. Io In deriving Eq, (22) we used the definition of the vector
spherical harmonics and the following identity,

(I&X» $/(2k+ 1) [WAY»» I I+ (k+ 1) Y»» I I ]
where Y„",»,I,I, Y»",» I, I are vector spherical harmonics. Io Using Eqs. (10) and (22), one canwrite the vec-
tor operator Jg as

I.=. Z(@„)}"'(X.".&I)&fl&l I
&- &R«&: (I&)&)'I l."'i &)2. ~ (23)

Equations (22) and (23) express the vectors S» and g, in terms of their components along the transverse and

mutually perpendicular vectors, X» (()) and [q&X»„(&I)].
%e showed that the magnetic scattering amplitude can be expressed in terms of the matrix elements of th(

multipole operators characterizing the scattering system. In fact, by substituting Eq. (23) in Eq. (3 ), one

obtains
xi@

j(q)=(I I.) ZI;„,', Ex,*.«)&jlTl". I
&- [. x.*-Q)]&jlTl-"'I'&l,

In any given problem the number of multipole mo-
ment operators involved in the calculation of the
magnetic scattering amplitude is limited by angular
momentum and parity conservation. If the state
of the scattering system is characterized by the to-
tal angular momentum J' and its projection M along

the z axis, then angular momentum conservation
I'equires

I zg —O';
I
~ k ~ Jp +JI,

Mg =M)+m,
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Parity conservation, on the other hand, requires 0
to be such that

P& = (-)"P; for w= 0 (electric multipoles),
(26)

P&
—(-) ' P, for w= 1 (electric multipoles) .

where P, and P& are the parities of the initial and
final states, respectively, of the scattering system.

C. Multipole moment operators. Small~ approximation

The magnetic scattering amplitude has been re-
lated to the multipole moment operators charac-
terizing the scattering system. We will examine
here some of their properties which are of impor-
tance to the magnetic scattering of neutrons. It is
weQ known that the magnetic and electric multipole
operators are related to the magnetization and
charge densities, respectively, of the system.
Substituting for. A,' ' [Eq. (1.3)] in Eq. (17b), one
obtains

m .„., 2w(2k+1)
~ehq

'
k(k+1) ) j(r)=j, (r)+j (r), (32)

termined by the velocities of the particles and thus
it depends explicitly on the momentum-dependent
terms of the Hamiltonian of the system. There-l
fore, the electric and magnetic multipole operators
[Eqs. (27), (28), and (31)]depend explicitly on the
momentum-dependent terms of the Hamiltonian.
Since the magnetic scattering amplitude is deter-
mined by the multipole operators, it will also de-
pend explicitly on the momentum-dependent terms
of the Hamiltonian. In most cases of experimental
interest the dominant convection current contribu-
tion to the magnetic scattering amplitude arises
from the kinetic-energy term of the Hamiltonian.

For a given current density, the multipole mo-
ment operators can be evaluated using Eqs. (27)
and (31). A point-charge-point-magnetic-moment
expression for the current density can be adopted
if the effects associated with the internal structure
of the particles can be neglected. With this as-
sumption

x dr g, (qr)p'"'(r) r,.(r)
m .~ ) 2w 2k+I x/a

x drMr ~ V j, q~Y„~r (27)

where the convection current j, is

j,(r) =g —e;[v,5(r —r, ) +6(r —r, )v,.]

and the spin magnetization current j is

(32a)

where

M(r) = (1/2c)r x j (r)

and

(23)

j (r) =gg, Vx[s, 5(r —r, )].
PRE

The velocity operator of the ith particle v, is de-
fined by

p' '(r)=-V. M(r) (29)

are the magnetization and the magnetic pole densi-
ty, respectively, of the system. By substituting

i 98
v)= [H, r(]= ~ t

Sp)
(33)

P

(,) .g„) 4w(2k+1) ii
A,„=f

k(k 1, qrj,(qr) r„(r)
k k+1)

+ —v r, (r) —[rJ', (qr}] J (30)

where H is the Hamiltonian of the system. It is
seen that the convection current is determined by
the momentum dependent terms of the Hamiltonian.
It is convenient to write the Hamiltonian in the
following form:

in Eq. (17a) and using the continuity equation [Eq.
(2)], one obtains the following expression for the
electric multipole operator:

m 2w(2k+ 1)
ehq k(k+1}

d»..(r}p(r) —„[ri.(qr)]Sq

+q drj&qx Y+„zr ~ j r

The current density j (r) consists of the convection
current arising from the motion of the particles
and the current associated with the spin magnetiza-
tion of the system. The convection current is de-

H = Ho+ Hg+ H~+ ~ ~ ~, (34)

~p aH,
ep]

(35)

where Ho consists of the kinetic energy and the
momentum-independent terms of the Hamiltonian,
H, consists of the one-particle momentum-depen-
dent terms (except the kinetic energy), and Pz de-
notes the two-particle momentum-dependent terms,
etc. This separation of the Hamiltonian has been
adopted because the dominant contribution to the
convection current arises from the kinetic energy
of the system, which is the only momentum-depen-
dent term in Ho. Since
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the multipole moment operators may be written as

T,")= T,"(0)+QT,("(j), j=1,2. . . . (s6)

The first term in Eq. (36) is due to the magnetiza-
tion current and the convection current associated

vpith the kinetic energy of the system; the other
terms arise from the convention current associated
%'1th the One-particle, two-particle, .. . momen-
tum-dependent terms of the Hamiltonian. Substi-
tuting the first term of Eq. (N) in Eqs. (31) and
(2V), one obtains

( )( )
~(. m) 2()(20+1) '~ g i(E, —E )

( )
d

[
.

( )]e5q] I»(a+ 1) ffq ' "" ' »fr

+2" [ja{qr»)I"a.(r»)r» p»+p .r» ja«r»)I'a. (r»)] -i 2" s;

l»[jan«r»)&a.

(r»)]
FPlf

2m 1'"
Tk".'(0}=i" '. '. 2 ' Ii'q[ja(qr»)I'a. (r»)1 I»+~ -'~»s» 'q" l»[&a(«»)~a «»)]& (38)

The first term of Eq. (3V) (in the large curly brackets) arises from the convection current associated with
the kinetic energy and the second term from the spin magnetization current. A similar separation is seen
in Eq. (38) for the magnetic multipole operator. The contributions to the multipole operators of the con-
vection currents associated with the one-particle, two-particle, . . . momentum-dependent terms of the
Hamiltonian are

T, ' (j)=i '
@ 1 Z j„(qr»)I; (r,)r,. —— + ~ r; j,(qr»)y', (r, )

(,) . .a„m 2()(2k+ I) '"~
~qe eH) BH)

ep& 8pl
(38)

(„) . .~ m 2v(2I»+ 1) '~'r
~e

- . - S&gT„(j)=(' ~ „„) ~ i, [j,(q~, )r, (~, )] -=- „+ 4[i,(qr)v, „(r)]).
~p& ~p&

(40)

Equations (3V}-(40}are the point-charge-point-magnetic-moment expressions for the multipole operators.
In most cases of experimental interest the dominant contribution to the magnetic scattering amplitude
arises from the first term in Eq. (36). In this approximation v» --p, /m and the multipole operators are de-
termined by Eqs. (3V) and (38).

If qR«1, where R characterizes the size of the system, the multipole moment operators are proportion-
al to the static multipole moments of the system. In fact, it is easily seen [Eqs. (2V) and (31)] that in this
limit

(„) m 2ci' 'q' 2(({a+I) '" -, („„-.Iq (2m+1)! ) n(a+I} (41)

(, ) m i q" 2(((2f»+ l)(k+I) ' E, —E, „( ) ( )ea (2u+ 1}]( (42)

( qr)».'

j),(qr) —
(2~ 1) ( (, qr&& l. (4s)

Note the close connection in this limit of the
multipole operators with the static multipole mo-
ments given in the integrals in terms of the mag-
netic and charge densities of the system. Equation
(42) is the mathematical statement of the well-'

known Siegert's theoI em in spectroscopy: The
electric multipole operators in the small-q approx-
imation do not depend explicitly on the momentum-

In deriving these equations me used the small-argu-
ment expression for the spherical Bessel function

dependent terms of the Hamiltonian. The small-q
expressions for the multipole operators [Eqs. (41)
and (42)] can be used for most problems of nuclear
and atomic spectroscopy, since the wavelengths
involved in these problems are much larger than
the linear dimensions of the systems. These ex-
pressions, on the other hand, are of limited ap-
plicability in the magnetic scattering problem,
since the neutron wavelengths are usually of the
order of 1 A.

If the initial and final states of the system are
of different parity only the electric dipole term
[)'» = 1 in Eq. (42)] is of importance at small values



of q. The magnetic scattering amplitude [Eq. (24)]
at small values of q is then independent of the
magnitude of the scattering vector and is propor-
tional to the transition matrix element of the elec-
tric dipole moment of the system. If the magnetic
scattering of neutrons occurs without change in the
parity of the scattering system only the magnetic
dipole term [k= 1 in Eq. (41)] is of importance at
small values of q. In this case the magnetic scat-
tering amp11tude is independent of q and propor-
tional to the transition matrix element of the magnetic
moment of the system.

gI. MAGNETIC SCATTERING BY AN ATOM

In this section we will examine the magnetic
scattering of neutrons by the electrons of a free
atom or ion. It has been shown in Sec. IT that the
magnetic scattering amplitude ean be expressed in
terms of the multipole moment operators. Adopt-
ing the point-particle model for the atomic. e elec-
trons, these operators are given by Eqs. (37}-(40).
We will examine the scattering by an atom in the
l" electronic configuration, and we will assume
that the energy of the neutron is sufficiently low so
that. only transitions within the k" configuration are
possibl. In this case, by parity conservation
[Eq. (26)], only even-order electric and odd-order
magnetic multipoles contribute to the magnetic
scattering amplitude. The calculation of the mag-
netic scattering amplitude is thus reduced to eval-
uating matrix elements between states IZM) of the
atom, of even-order electric and odd-order mag-
netic multipoles. These states are, in general,
determined from Russel-Saunders states leZM)
of the E" configuration:

~ZM) =Pa(e) ~eZM),

where 8 = gSL and z stands for additional quantum
numbers needed to specify the state. Assuming
that the a(e}'s are known, the calculation of the
magnetic scattering amplitude is reduced to evalu-
ating matrix elements of the form {eZM i T~„'~

x ~e'J'M'), where the multipole operators are
given by Eqs. (37}-(40), and the order of multi-
polarity 0 must be even for electric multipoles
(v=0) and odd for magnetic multipoles (v= 1). In
order to take full advantage of the symmetry prop-
erties of the atomic states, the multipole operators
will be expressed in terms of the Racah unit ten-
sors 8'~ '~ ' defined in the Appendix. The opera-
tors W t '~ ' are double tensors having rank 4'
in the spin space of the atom (defined by Ã=g, s&),
rank k" in the orbital space of the atom (defined by
L=g, I, ), and they form the basic building blocks
for describing the symmetry properties of atomic
interactions. By using the Raeah unit tensors the
calculation of the matrix elements of the multipole

operators is separated into (a) evaluation of radial
matrix elements, and (b) evaluation of angular
matrix elements. The radial matrix elements can
be calculated using radial mavefunctiona obtained
from some type of Hartree-Fock calculation. The
angular matrix elements are determined by the
matrix elements of the Racah unit tensors. The
ealeulation of these latter matrix elements is con-
siderably simplified by symmetry properties,
since the double tensors 8''~ '~ ' are the genera-
tors of the group U(4/+ 2) used in the classification
of the atomic states. The availability of extensive
tabulations of these matrix elements considerably
simplifies the calculation of the magnetic scatter-
ing amplitude.

In the extreme nonrelativistie limit the only mo-
mentum-dependent term 1n the atomic Hamiltonian
is the electronic kinetic energy. In this case the
multipole moment operators are simply given by
Eqs. (37) and (38). The extreme nonrelativistic
limit is an excellent approximation for most prob-
lems in neutron scattering. This is because the
momentum-dependent terms in the atomic Hamil-
tonian, other than the kinetic energy, are relativ-
istic corrections of the order of (v/c)', the elec-
tronic kinetic energy. In light atoms the contribu-
tion of these relativistic terms to the electronic
convection current is negligible in comparison to
that of the electronic kinetic energy. In heavy
atoms, however, the contribution to the electronic
convection current of the spin-orbit interaction
and the mass correction terms can be of some im-
portance. In this section we first evaluate the
magnetic scattering amplitude in the extreme non-
relativistic limit and then we include the relativis-
tic corrections due to the spin-orbit and mass cor-
rection terms. The calculations are a simple ap-
plication of well-known techniques in atomic spec-
troscopy.

The multipole operators in the extreme non-
relativistic limit [Eqs. (37) and (38)] and the multi-
pole operators associated with the spin-orbit and
mass correction terms are one-particle operators.
These operators ean be easily expressed in terms
of the Racah unit tensors if one notes that they are
linear combinations of one-particle operators of
the form

where d,
' and b', are one-electron tensor operators

{of rank k' and k") acting on the spin and orbital
coordinates, respectively, of the ith electron, and

[a, xb, ] denotes the tensor of rank k formed by
their tensor product. The matrix elements of
these operators ean be mritten in the following
form":
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(46)

where [k', k" ] stands for [(2k'+ 1)(2k"+ 1)] and W '» '" '», the mth component of a tensor of rank k, is de-
, fined in the Appendix. The tensor 8'+ '~ '~ is a unit tensor of rank 0' and k" in the spin and orbital space
of the atom, respectively. The matrix elements of these tensors are simply related to the reduced matrix
elements of the Racah unit tensors by"

(
(8JMIW' ' ' I8'J'M')=(-) ~[J' k, J']'i2I k" (8

f I
W (' "&

I I
8') .~-M m M'f

J J'

In the following calculations the multipole operators are first expressed in terms of tensors of the form
given by Eq. (45), then their matrix elements are related to the reduced matrix elements of the Racah ten-
sors by using Eqs. (46) and (47). Since there is little point in reporting details of algebraic manipulations,
only an outline of the calculations is given in this paper.

A. Extreme nonrelativistic approximation

In the extreme nonrelativistic approximation the multipole operators are determined by Eqs. (37) and

(36). We recall that, by parity, only even-order electric and odd-order magnetic multipole operators con-
tribute to the scattering amplitude. In addition, the order of multipolarity, of these multipoles must be less
or equal to 2l+1, since these operators are one-particle operators and we are considering only atomic
transitions within the l" electronic configuration.

The operators T,"&(0) and T~ '(0) [Eqs. (37) and (38)] can be expressed in terms of operators of the form
given by Eq. (45) if one notes that

s. 1 (j»y'» ) = —[k(k+ 1)]'~»(sxj»y'»)

&+1
~(j»&» ) ~ 1 =q [j»,&1'».&&('~7'+

2k 1
[j»-&y»-&&&~]'

and
|/p u i '/'- I

s.V'&(.'[1(j»y'» )]=fq[k(k+ 1)] — [s&(' j» fy» &]' +
'

[»& j».,&» &]

Using these relations and Eq. (46) one obtains

(e&~l&r &(o&Ie'z'M'&=( '((((»&(8&Ml~t'" le z nu &+ 2»''(a' '&&(H&~Iw"' "le z m
&]

a=('a'. '. 2(+ (

(46)
and

(8&M IT(0»()18'&'M') =i "[R2(k)(«M I

W"""I8'&'M')+&&(k k)(«M lw„"""I8'8 M )] (49)

It is seen that the matrix el.ements are naturally separated into radial and angular matrix elements. The
angular matrix elements are given in terms of the reduced matrix elements of the Racah unit tensors by

Eq. (47). Note also in these expressions, the separation of the orbital and spin magnetization contributions

to the multipole operators. As expected, the orbital contribution is expressed in terms of the 8" '~', and

the spin magnetization contribution is given in terms of the W"'» ' (or W ' '»') Racah unit tensors.
The radial matrix elements in Eqs. (51) and (52) can be calculated using radial wave functions obtained

from some type of Hartree-Foe@ calculation. If one denotes by f (r) and f'(r) the single-electron radial
wave functions of the states 18JM) and l8'J'M'), respectively, the radial matrix elements can be written
as

l
(~ ».&+~ »-&),

, (2/l k+1 l) k+1 1 k

R (k) ( ) +&(2f 1)
f(/+ l)(2/+1)(2k 3) '~

0 0 0) (50)
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and

»s fk' 1 k )(I k'

fear(k', k) =(-)ri' ~ '(2l+ 1)
(2k+1)(2k'+ 1) '

2 0 1 —I) (0 0 OJ

(51)

t'

rr ra)=
z (n+z)( )

In these equations

(52)

j&= x r x j&qx A'

and

k rf 2rrr ~p dh' 0
(54)

The integrals j~ for transition-metal and rare-
earth atoms have been calculated'3 using Hartree-
Fock radial wave functions.

The evaluation of the angular matrix elements is
simplified by symmetry considerations. The atom-
ic states of the l" configuration can be classified
according to the irreducible representations of the
groups Sp(4l+2), R(2l+ 1), R(3), and in the case of

f electrons the special group Gs. The angular ma-
trix elements in Eris. (48) and (49) are matrix ele-
ments of the tensors %' '~'~ and S""'~ ', where
k' is an even integer. The selection rules bas@ti
on R(3) are the familiar selection rules on angular
momentum. The matrix elements of W' '"'~ vanish
unless )J-J') «4»J+ J', lL-L') «jp«L+L' and
S' =S; similarly the matrix elements of W"'~ '"

vanish unless l J-J't k J+J', t L —L I —0
«L+ L' and 8' = S, S+ 1. The selection rules based
on Sp(4l+ 2) can be simply expressed by using the
seniorities of the atomic states. The odd tensors
W ro'~' (k odd) and W"'~ ' are diagonal in seniority.
The tensors Wro'~' (k even), on the other hand, can
only link states differing in seniority by 0 or 2.
The selection rules based on R(2l+ 1) impose addi-
tional restrictions. The operators W'0" (k odd)
can only connect states transforming according to
the same representation W of R(2l+ 1), because
these operators are the generators of the group.

Regarding the matrix elements of 8'"'~ ' and
W' '~' (k even), the selection rules based on
R(2l+ 1) cannot be so concisely stated. If one of
these tensors transforms like the representation
W of R(21 + 1), its matrix element between two
states transforming like W' and S" will vanish if
the coefficient C(W'W"W) in the decomposition of
the Kronecker product W' x W" = g rr

C(W' W"W) W
vanishes. For instance, the selection rules based
on R(5) (d electrons) and R(7) (f electrons) are
easily obtained by using the available tables of
C(W'W'(20)) and C(W'W" (200)), respectively, if

one recalls that the tensors W "'~ ' and Wro'~' (k
even) transform like the representations (20) and

(200) of the groups R(5) and R(7), respectively.
In the case of f electrons the double tensor W ra'sr

and S' "form the generators of the special group
G~ and therefore can connect only states trans-
forming according to the same representation U of
63.

The nonvanishing reduced matrix elements of the
double tensors W r '~' and W "~ ' (k' even), needed
for the evaluation of the magnetic scattering ampli-
tude, can be calculated by means of the formula

(8 11
w'"' "ll8') =n[s, S', L, L', k', k ]'"

x p (818)(8rf 8}( )s.r(s. s+r +Lrr.z;r"

where 8 = n S L defines a term of l" ' and (8I8)
is a coefficient of fractional parentage (cfp). Niel-
son and Koster'3 tabulated the cfp for states of the
p", d", and f" configurations. For most cases of
practical interest the reduced matrix elements of
the double tensors 8'' '~' and %'"'~ ' have been
tabulated. For the rrr", d", and f" configurations
with n» 2l+ 1 the reduced matrix elements of 8"o'~'
can be obtained directly from the work of Nielson
and Koster, ' which tabulated the reduced matrix
elements of U ~ = [2/(2k+ I) ]

' s W r '"'. If n & 2l + 1
the reduced matrix elements may be obtained from
those with n» 2l+ 1 by using the relation

(I "rrSL II
W" " 'III rr'S'L') =(-)» '~

x (l »L II W "' '""'
llf
"' "rr'S'L'),

where v and p' are the seniorities of the states.
The same tables can be used to evaluate the re-
duced matrix elements of W"'~ ' (k' even), since
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they are simply related' to those of the W "' '

tensors. The reduced matrix elements of the dou-
ble tensors S'"'~ ' have been tabulated by Kara-
ziya et a/. "for the f&", d", f3, f3 and f ' configura-
tions.

The calculation of the magnetic scattering ampli-
tude has been reduced to evaluating reduced ma-
trix elements of the double tensors 8'' ' ' and
W"'" ' (k' even). Denoting by lZ'M') and IZM) the

initial and final states of the atom, respectively,
the magnetic scattering amplitude can be written
as [Eq. (44}]

f (q) =P.*(8).(8')f", ,".(q),

where f('). ~.„.(q), the magnetic scattering amplitude
for the transition O'J'M'-8JM, is

~i& If"'~ «}= (l~ l~o) o.Z /" 2k', & *.(@[//2(k}(«M IIY"'"le'~'M')+//i(k, »(«M IIY."'"Ie'&'M')]
hym 2k+ 1

—/[~ ~X,*.(~)] Ifo(k)(«M I yY."'"I&'&'M')+ g I/i(k', k)(«M
I w." '" I

8'~'M') (58)

Equation (58) has been obtained by substituting Eqs. (48) and (49) for the matrix elements of the multipole
operators in Eq. (24). In the first term in the large square brackets, the electric multipole term, k
=2, 4, .. . , 2l and in the second, the magnetic multipole contribution 0 =1, 3, . . . , 2l +1. The electric multi-
pole contribution was not included in previous formulations of the theory. ' The magnetic amplitude for
elastic scattering can be considerably simplified if the state of the atom or ion can be approximately char-
acterized by a single Russell-Saunders state i8ZM). In this case the electric multipole contribution van-
ishes and only the m= 0 components of the magnetic multipoles contribute to the scattering amplitude.
Therefore,

where k= 1, 8, 5, . . .2/+1. Equation (59) is a good approximation for the magnetic scattering amplitude, in
the case of elastic scattering by rare-earth ions in their ground state.

8. Relativistic corrections

We calculated the magnetic scattering amplitude [Eqs. (57) and (58)] by assuming that the only momentum
dependent term in the atomic Hamiltonian is the electronic kinetic energy. This is a good approximation
for light atoms, since the other momentum dependent terms in the Hamiltonian are relativistic corrections
of the order of (v/c}, the kinetic-energy term. In heavy atoms, however, the contribution to the scatter-
ing amplitude of the spin-orbit and mass correction terms may be of some importance. The contributions
of these terms to the multipole moment operators can be calculated by using Eqs. (39) and (40) with

Ifi = Z &«&) I( s( —
3 2,8me (60}

SH) (61'i
v,. = = —$(~, )(s, xr, ) — » p, .

Bp( 2PFE C

The selection rules are the same as in the extreme nonrelativistic calculations: 4=1, 3. . . , 2)+1 for mag-
netic multipoles and k=2, 4. . . , 2/ for electric multipoles. The operators T~(")(I) and T~")(I) can be ex-
pressed in terms of operators of the form given by Eq. (45) if one notes that

(
1/3

sf(r)rx 1[j,(qr) Y),„(r)]}=i(&k[sxrg(r)j,((/~) Y„,(r)]„'+(k+ I)' '[sxrg(~)j, ( r(/)F, ,( )~]'} . (62)
k k+1

Using Eqs. (60)-(62), the matrix elements of T~(") and T~")(I), Eqs. (39) and (40), can be expressed in
terms of the Racah tensors:

r~&(i)=a" Z ~,() a)(sr~i)(!''"(e',V~ &.~&())(ezM()(!'"'(e z I&), )=i, s,'. .'. ,'n)+) (68)

and

T„".'(I) = "'I/, (k)(HAM
I

W„(0""le'Z'M'), k= 2, 4, . .. , 2/. (64)

The radial matrix elements in these equations are
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(2k'+ 1) ~)2 (k'
R,(k', k) = (-)'(2I+ I) „, ! I! IR,(k),22k+1 p 1 1 |0 p p

and

R~()') ~f r'(j ...+j, ~)((r)f(w)f'(r) dr;

I (I+ I)(2I+ 1)(2k~ 2) &('&(l k+ 1 / } k+ 1 1 k
R (k) = (-)"(u+ 1) !

4

~ 0 pf 1, I I

I(I+ 1) &, , I(l+ 1)
~4(~) 4 2 " ""(A +i. )f ~'f-' „s f-)l ~ f ~'f-

2 f) (65)

2k+1 «~~I k
R, (k) = . (2l+ 1) (k)

i k k+1 (0 0 0)

Rg(k) = 2 p r drj~(qr) f (V2f'—) f' -(V~—f) —
~ f~ —f'—d . . .d, I(I+ 1) ar', df

4m c dr dr r dr dr J

The angular matrix elements in Eqs. (63) and (64)
can be related to the reduced matrix elements of
the double tensors by using E(I. (50). It is seen
that the calculation of the contribution to the multi-
pole moments of the spin-orbit and mass correc-
tion terms is again reduced to evaluating reduced
matrix elements of double tensors W' '~' and
W"' ' (k' even). The evaluation of these reduced
matrix elements is performed as indicated in the
discussion of the extreme nonrelativistic approxi-
mation.

An order-of-magnitude calculation shows that in
the elastic scattering by rare-earth ions the con-
tributions of the spin-orbit and mass correction
terms to the magnetic scattering amplitude are
comparable, and of the order of a few parts per
thousand of the total amplitude. These relativistic
effects can be of importance in the investigation of
the conduction-electron polarization effects in the
rare-earth metals, since the conduction-electron
contribution to the total magnetic scattering ampli-
tude is of the order of a few percent at small scat-
tering angles.

In principle, the contributions of the spin-other
orbit and orbit-orbit terms of the atomic Hamil-
tonian can be included in the calculation of the rel-
ativistic corrections to the magnetic scattering
amplitude. In light atoms the contribution of these
terms is negligible in comparison to that of the
kinetic-energy term. In heavy atoms, on the other

I

hand, their contribution is smaller than that of the
spin-orbit term.

C. Small-q approximation

If q«1/R, where R is of the order of the atomic
radius, only a few multipole moments contribute
significantly to the magnetic scattering amplitude.
%e have seen that if the initial and final atomic
states are of opposite parity the magnetic scatter-
ing amplitude, at small values of q, is determined
by the transition matrix element of the electric
dipole moment. This is the well-known dipole ap-
proximation in atomic spectroscopy. In fact, it
can easily be seen [E(is. (10), (9), (3'1)] that for
e"'~1 the operator 4, is proportional to the tran-
sition matrix eLement of the electric dipole mo-
ment. For transitions within the l" configuration
the electric dipole contribution vanishes by parity
and one must proceed to the next approximation
e'~' ~1+ iq ~ r. In this approximation only the mag-
netic dipole g~ electric quadrupole moments con-
tribute to the scattering amplitude. In the present
paper this approximation will be referred to as the
small-q approximation to the magnetic scattering
amplitude for transitions within the l" electronic
configuration.

For simplicity, we will adopt the extreme non-
relativistic approximation. The magnetic scatter-
ing amplitude in the small-q approximation will be
given by Eq. (57) with

fl "(q)= —~( I~ lr.) 'E((l v)'"x* (q)[R.(2)(e~M lw.""'Ie'&'I')+»(2, 2)(«M
I w."'"lee I')]

—(-,'v)'"[q«,*.(q)][R,(1)&em~ Iw„"'"le'z'~ &+R,(0, 1) &ez~ lw„" 'le zm &

+R,(2, 1) &AM Iwg" leo'I'&]), (66)



1896 C. STASSIS AND H. %. DECKMAN

The first and second sums in this equation are the electric quadrupole and magnetic dipole contributions
to the magnetic scattering amplitude, respectively. The radial matrix elements in Eq. (66) are obtained
by using Eqs. (50)-(52):

I(l+ 1)(21+ 1)
0 6 jo+ j2

»(O ')( 2 ) io

l (l + 1)(2l + 1)
2 (2$ —I)(2I 2)

l (I + 1)(2I + 1)
(120(3(—1)(2(~ 3)

(6V)

It is seen that at small values of q the main contribution to the scattering amplitude arises from the first
two terms of the magnetic dipole. A closed expression for the contribution of these terms can be obtained
by exploiting the proportionality of the W' ' ' and 8" ' ' tensors to the operators L and S of the atom:

~(Oyi)1
i/i

2l l+1 21+1 )

W
2) 1 S

Using Eqs. (6V), (66), and the Wigner-Eckart theorem, one obtains

I
fto(1)&8J~ I

~"'"
I
8'J'~') It, (0, I)&8JM I

yi'"'"'I8'J'~'& = (-)'"
I(-M m

The reduced matrix elements in this equation can be expressed in terms
Jf Jy 1

(66)

Jl
, Ik(«ll( jo+ja)L+jo(2S) II8'J').

(69)
of J, J', S, and I,. In fact, if

(8JI
I

Q
I I
8J)(8J

I I
S

I I
8Jf)5(88)()~, (8 +L+J+)(L-8+J)(J'+8-L)(s+L —J+ I)

7 4J
where J& is the larger of J, J'. If J=J', on the other hand,

(8JIII. II8'J)=5(8, 8') ' ' ' ' [J(J+1)(2J,1)]'"

(7o)

(71)

and

(8JI lsll8'J')= 5(8, 8') [J(J+1)(2J'+1)]
2J'(J+ 1)

In any given problem the calculation of the magnetic scattering amplitude in the small-q approximation is
reduced, by using Eq. (4V), to evaluating the reduced matrix elements of the W'0'~", ~"'2'3, and Wn'~"
double tensors. These latter matrix elements can be obtained either from the existing tabulations or by
using Eq. (55). It is seen that in the limit (I 0 (jo 1 and j3-0), the magnetic scattering amplitude is pro-
portional to (8J ((L+ 28((8J ). As expected, the magnetic scattering amplitude in this limit is proportional
to the magnetic moment of the atom.

The magnetic scattering amplitude [Eq. (66)] can be considerably simplified in the case of elastic scatter-
ing by an atom characterized by a single Russel-Saunders state (8JM). This is a good approximation for
the elastic scattering of neutrons by rare-earth ions in their ground state. In this case the electric quad-
rupole contribution vanishes and only the nz = 0 component of the magnetic dipole contributes to the scatter-
ing amplitude. The scattering amplitude can be written in a well-kno~vn form if one notes that

A g 2

q

where

q =(q e~)q —ZB

is the so-called magnetic scattering vector. Using Eqs. (69), (73), and (4V) in Eq. (66), one obtains

(74)
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M 3l(I+ 1)(2l+ 1)f e 5(q) =- (lr l~o) (.~ q.) [~(~, ,)(2~„)].im -'(«II00+~a) I +io(») II«)+ (2~+1),(„,)(„„)le

S S
Xg3

J J
1

(e II
w"'" lie)

1
(75)

It is seen that the magnetic scattering amplitude can be written in the conventional form p(q) o q„where
p(q), normalized to 1 in the forward direction, defines the magnetic form factor f (q). Using Eqs. (71) and

(72) one obtains the following expression for the magnetic form factor:

J(Jy 1)+L(L+1)—S(S+ 1) 2[8(Z+ 1)(2Z+ 1)]~~~ 3I(E+ l)(2l+ 1)
3J(j+ 1)+$($+ 1)—L(L + 1) 3J(P+ 1)+$($+ 1)-L(L + 1) (2/ —1)(21+ 3) J J 1

(V6)

e-Q
&fePu(q)&= Z(~, -su) fefg(q) (VV)

where f~~&~ (q) is given by Eq. (59).
This expression can be simplified at high tem-

peratures, p «1. In this case e ~"= 1 —pM, and
it can be seen that only the magnetic dipole term
(k = 1) in Eq. (59) contributes to the coherent scat-
tering amplitude. Thus, for p «1 the coherent
scattering amplitude is inversely proportional to
the temperature and its angular dependence is
given by Eq. (V6). Note that this result is not
restricted to small scattering vectors.

In this section we illustrated the formalism by
examining some simple examples. However, the
advantages of this formalism over more conven-
tional techniques becomes evident when one exam-
ines the magnetic scattering of neutrons by com-
plex atoms.

IV. SUMMARY

%'e showed that the magnetic scattering of neu-
trons by an arbitrary system of particles can be
investigated by techniques similar to those used in]

In the elastic scattering of neutrons by rare-earth
ions in their ground state, this expression can be
used to calculate the magnetic form factor at small
scattering angles.

An important application of Eqs. (V5) and (V6) is
in the calculation of the coherent amplitude for the
elastic neutron scattering by an atom in an exter-
nal field 9. gee will assume that, in the absence
of the magnetic field, the atom is in a single mus-
sel-Saunders state )«M). This state, in the
presence of the magnetic field, is split into (2J+ 1)
levels whose probability of occupation is propor-
tional to e ~", where p= g peg/kT and g is the
Lande g factor of the atom. The coherent ampli-
tude (f ~~@ (q) ) for the elastic neutron scattering
by the atom is

f

studying the interaction of radiation with the sys-
tem. It has been shown, in fact, that the magnet-
ic scattering amplitude can be expressed [Eq. (24)]
in terms of the multipole moments of the system.
This expression for the magnetic scattering ampli-
tude exhibits explicitly the main physical features
of the magnetic scattering of neutrons. The mag-
netic scattering amplitude is the scalar product of
the magnetic moment of the neutron with a vector
field transverse to the scattering vector. The
separation of the magnetic scattering amplitude
into a spin magnetization and a convection current
contribution arises naturally as a result of the
same separation in the. multipole moments. The
number of multipoles that contribute to the mag-
netic scattering amplitude is limited by the sym-
metry properties of the states of the system, in
particular, parity and angular momentum conser-
vation [Eqs. (25), (26)]. The calculation of the
magnetic scattering amplitude is thus reduced to
evaluating matrix elements, between the initial
and final states of the scattering system, of a lim-
ited number of multipole moments. In any given
problem the evaluation of these matrix elements
is a straightforward application of well-known
techniques in modern spectroscopy. In the small-
q approximation the scattering amplitude is deter-
mined by the transition matrix element of the elec-
tric dipole moment if the parity of the scattering
system changes in the scattering process. If the
parity of the system, on the other hand, does not
change during the scattering process, the mag-
netic scattering amplitude in the small-q approxi-
mation is determined by the transition matrix ele-
ment of the magnetic dipole moment.

The formalism has been applied to the magnetic
scattering of neutrons by an atom in the l" elec-
tronic configuration. If the spin-other-orbit and
orbit-orbit interactions in the atomic Hamiltonian
can be neglected only even-order electric and old-
order magnetic multipoles, whose order of multi-
polarity is less than or equal to 21+1, contribute to
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the magnetic scattering amplitude. The magnetic
scattering amplitude, in this case, can be ex-
pressed in terms of the W' ' ' and Wn' ' (0' even)
Racah double tensors. The calculation of the ma-
trix elements of these tensors is'considerably
simplified by the selection rules based on the
groups Sp(4l+2), R(2l+1), R(S), and in the case
off electrons the special group Gs. The nonvan-
ishing matrix elements needed for the evaluation
of the magnetic scattering amplitude are then cal-
culated [Eq. (55)] or they are obtained directly
from the tabulations. The corrections to the mag-
netic scattering amplitude due to the spin-orbit
and mass correction terms of the Hamiltonian have
been calculated. These effects can be of impor-
tance in the investigation of the conduction electron
polarization effects in heavy metals.
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APPENDIX

In this appendix we define the Hacah tensors
' and 8'~"'~ ' . Following Judd we intro-

duce the unit tensors t~ and e which act in the
spin and orbital spaces, respectively, of a single

electron, and which are defined by their reduced
matrix elements

'"'"'"=[t"'x "']' (A2)

Using the single-particle tensors defined by (A1)
and (A2) we can define the one-particle operators
~Q k & d ~(k 0 )kb

(&e &is) V Qs Ass j ]~ x (AS)

vier(A sk )0 W (0 sA' )0 I'i
(A4)

where the sum is over the electrons of the I" con-
figuration.

The (2k'+ 1)(2k" + 1) products

tu„'"'„'K'=t„', v„"' (-k'(e'(k'; —k"sm"sk")
(Al)

define the components of the double tensor so'~ '"
whose reduced matrix elements are

(sl

lieu�'

' ' lls'l') = [0', 0"]' 5(l, l') 5(s, s') .

The tensor u + '~ ' is defined as the tensor prod-
uct of the tensors t~' and e+'
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