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Bicritical and tricritical phenomena in uniaxial ferroma~ets
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The phase diagrams of a spin-1 uniaxial ferromagnetic model with both exchange anisotropy and single-ion

anisotropy (D) are studied in the mean-field approximation. In the absence of an external magnetic field a
bicritical point (BCP) is found in the (D, T) plane for the transverse (K) to parallel (J) coupling ratio

K/ J ) 0.462. As the exchange anisotropy is decreased the BCP moves towards the temperature axis. In the

limit of the isotropic exchange the BCP is located on the T axis. In the presence of a field along the parallel

(transverse) direction two symmetric lines of tricritical points (TCP) are generated in the (D, H, (H, ), T)
space. These lines meet at the BCP. For a significantly wide range of D/J and K/J values TCP prevails in

the (H, (H, ), 7) plane. Application of a transverse (parallel) field generates the wing coexistence surfaces.

The whole thermodynamic space is experimentally accessible. Outside the above ranges, one may still have a
TCP in the (H&,T) plane, but not in the (H„T) phase diagram. Some special features of the (H„T)phase

diagram are also discussed.

I. INTRODUCTION

The study of the systems exhibiting multicritical
phenomena has recently attracted much attention.
While some types of multicritical behavior have
been known to exist for many years the recent in-
tense interest in the subject reflects two great ad-
vancements: a fairly basic and thorough understand-
ing of ordinary critical phenomena through the
hypothesis of thermodynamic scaling and the re-
normalization-group approach, and the develop-
ment of high-precision techniques and ingenious de-
signs for measurements, which make the critical
region amenable to experimental scrutiny. The
study of the multicritical phenomena also allows us
to examine the validity of the existing concepts of
homogeneity and universality or the possibility of
their extension.

By now quite a few physical systems are known
to exhibit tricriticality. 2 The existence of bicritical
points (BCP) in the uniaxially anisotropic antifer-
romagnets in auniform magnetic fields and in the fer-
romagnetic-fer roe lectric systems4 has been known
for some time, although the implicationsof the bicrit-
ical singularities have notbeen appreciated until quite
recently. 5 Tetracritical phenomena are newcomers
on the scene. Their existence has been reported in
certain magnetic alloyss and in mixed crystals. 7

A multicritical point is characterized by the
existence of several phase transitions (which may
be of different natures) in its vicinity. Near a tri-
critical point the interplay is between first-order
and second-order phase transitions, and a single
order parameter is sufficient to describe both tran-
sitions. In systems exhibiting bi- and tetracritical
phenomena we have more than one kind of ordered
state. The phase transitions are from ordered
states to paramagnetic phase as well as between the
ordered phases. Therefore the behavior of these
systems depends upon the competition between the

two order parameters; e.g. , the parallel and the
transverse (in flop phase) sublattice magnetizations
in the uniaxial antiferromagnets in a field, the po-
larization and the magnetization in ferromagnetic-
ferroelectric, ' the crystalline and superfluid (diag-
onal and off-diagonal long-range orders) in He, 8

and two types of magnetic ordering in the magnetic
mixed crystals. ~'7 Theories based on the mean-
fieM approximation ' and the phenomenological
Landau-type expansions ' ' have been applied to
the above systems. Liu and Fisher and Bruce and

Aharony have given a succinct Landau-type theory
of the bi- and tetracritical points. A similar theory
for tricritical systems is developed by Baush. " In
this rather general and qualitatively correct con-
text, bi-, tri-, and tetracritical points are defined
as the points where two, three, and four critical
lines meet, respectively. While the coexistence of
two "pure" phases (defined by the iwo order param-
eters) along a line (flop line) is necessary to have
a BCP, at temperatures below a tetracritical point
an intermediate or "mixed" phase lies between the
tyro "pure" phases. Another approach~2 indicates
that this picture may not be complete if the full
thermodynamic field space is considered.

Fisher and Nelson' have postulated a scaling
hypothesis for BCP of a uniaxially anisotropic anti-
ferromagnet in a field. A similar homogeneity
hypothesis was applied to a model by Chang et al.
and Ha,rbus et aE. " The renormalization-group
technique' applied to a classical n-vector model of
a uniaxial antiferromagnet in a field, confirms the
scaling hypothesis, and leads to an important con-
sequence": for n~ n*(d) [n*(d) ) 3 for d= 3] the bi-
critical exponents are the same as those of a fully
isotropic Heisenberg system.

The application of the scaling hypothesis near a
BCP has iwo important consequences': (i) additional
scaling laws hold among the bicritical exponents,
and (ii) the critical lines and the flop line have a
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common tangent at BCP.
In the models discussed in Refs. 5, 10, and 13,

the ordering fields are either physically fictitious
fields or experimentally uncontrollable. There-
fore one cannot investigate the vicinity of the BCP
in all directions experimentally. The features in
the vicinity of a BCP are of great interest, For
example, it is shown- by Chang et al. ' that four
tricritical lines meet at a BCP in-a generalized
metamagnetic model, The ordering fieMs to gen-
erate these lines in all the above models are the
staggered fields.

In this paper we discuss an anisotropic uniazial
ferromagnetic model which exhibits, in addition to
the ordinary critical phenomena, bicriticality at
H= 0 and tricriticality in a finite field. The Hamil-
tonian contains a single-ion term of the form
D(S,) . The exchange interaction is also assumed
to be anisotropie. A magnetic field along either
the parallel or the transverse direction generates
two tricritieal lines which terminate at the BCP.
Consequently, in a region near the BCP one expects
a variety of critical (either Ising-like or xy-like),
bicritical, and tricritical behaviors, as well as the
crossovers between these behaviors.

Another interesting feature of the model is that
when the anisotropy D is treated as a constant,
(H, , H, = 0, T) and (H, = 0, H„T) phase diagrams
exhibit a tricritical point (TCP) for a wide range of
the values of the parameters of the system. Here
one has a situation where the TCP and the wings
are all within an experimentally accessible and
contro11able thermodynamic field space. This same
feature is shown in the Blume-Capel model in a
transverse field (which is a special case of our
more general model) and has been discussed by the
authors elsewhere. '7

In order to have a general picture of the phase
diagrams, we have carried out an investigation of.
this model in the mean-field approximation (MFA).
The model Hamiltonian is discussed in Sec. II. We
have obtained the zero-field partition function as a
double expansion in the order parameters. The
zero-field phase diagrams in the whole range of the
transverse coupling && 0 is obtained in See. III,
The range of values of K where the phase diagram
contains a BCP is found. The study of the system
in a finite magnetic field is the subject of Sec. IV.
The behaviors of the system in a parallel and a
transverse field are treated separately, and the
corresponding phase diagrams are worked out, The
ranges of the parameters D and positive K where
trieritieal behavior exists are found. Finally in
Sec. V the main points of the work are summarized.

P

II. MODEL HAMILTONIAN

We consider a spin-1 uniaxial ferromagnet with
an anisotropic exchange interaction and a single-

ion anisotropy

R= QZ„S,(i)S,(j) QK„S,(i) ~ S,(j)
&Q&

+ ~ Q [S,(i)1' —4 .g S(i), (2 1)

where 4 and K are assumed positive. The trans-
verse coupling provides the possibility for the sys-
tem to order in the basal plane perpendicular to the
z axis for certairi ranges of temperature and an-
isotropy. In the mean-field approximation (MFA)
the Hamiltonian (2. 1) can be written

X„=-2(S,)S, -~2K(S, )S,+D(S,)

—h ~ S+(S,) yK(Si), (2. 2)

where K=K(0)/&(0), h= pH/J(0), D=&/J(0), ~(0)
=g& J,&, K(0) =g& K,&, and energies are measured
in units of &(0).

It should be noted that while the basal plane is
isotropic we have chosen a direction for the order-
ing and have labeled it with the perpendicular sign;
(S,) is the component of (8) on the basal plane.

One can write Eq. (2.2) in an even simpler form

X„=D(Sg)3 n, S,—n—~S, + eo, (2. 3)

where

n = h, +2(S, ),
n~= h, +2(S~),

eo-(S, ) +K(S,) .

(2.4)

The energy eigenvalues of X are the roots of the
secular equation

Xq —2DX~q+ (D —n~ n~)Xq+D—n~ = 0 . (2. 5)

Equation (2. 5) can be solved by standard methods
to yield the result

=sD+s(D'+3n,'+3n', )'"cos[y+ 3m(k 1)]+e„-
where 4=1, 2, 3 and,

(2. 6)

1 2D' —18(n,'+n', )D+27n',D
(D'+ 3n'+ 3n')"'

Equations (2. 6) and (2. 7} are used for numerical
calculations. For the special cases of H, = 0 (or
H, = 0) a simple expansion in (S, ) (or (S,)) can be
easily obtained from Eq. (2. 5) in the vicinity of a
second-order phase transition. In general one. can
use Eq. (2.6) to find a set of self-consistent equa-
tions for the parallel and the transverse magnetiza-
tions.

. In the limit of zero external field a perturbation
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(2. 8b)

expansion of energy eigenvalues about (S,) = 0 (or
(S, ) =0) is a convenient approach to discuss the
second-o&rder phase transitions. To do this one as-
sumes that (S,}(or (S,)) is finite:

E,=e, + X — X + ~ ~ ~ +so, (2. 8a)
24, 16 $8

~ xa
4

E s +2 & +1 ( ) o ~ + +&to

beeri vrorked out in Ref. 3.8. %e refer the reader
to that paper for the details of calculation.

%'hen a transverse fieM is applied, again. two

phases are possible, a canted phase and a phase
with moments only in the basal plane. In this case,
(S, ) is the appropriate order parameter, and one
expands the partition function in powers of (S, ).

III. PHASE TRANSITIONS IN ZERO EXTERNAL FIELD

D' (1
2 l, E'+ e.j

D' j.x — + ~+~ ~X + ~ ~ ~ +so
4 s, s (e, s] (2. 8c)

Using Eg. (2. 10), one can write the Landau free
energy

F= - (1/P) lnZ, (3. 1.)

f=f fX yfrP+ftPX +fg fX + ~ ~ ~, (3.2)

c, =D(1 wq),

(2. 8)

f=PF& fo=PFo= —lnZo,

yD S
4K S, '

(S.Sa)

(3.3b)

2Z(S, )
D

Although it may appear that Etis. (2. 8a) and

(2. 8b) blow up as (S,)- 0, in the calculation of the
partition function one can show that all divergent
terms from the two energy levels cancel each
other, and so the free energy is actually an analytic
function of both (S,) and (S,). The final result can
be written as a double expansion of the partition
function Z, for small values of (S, ) and (S,)'.

g ~agg

= e 'o(Zo+ Z,X'+ Z,q'+ Zp X'+ Z,q'+Z, X'),

(2. 10}
vrhere

Zo(y) =1+2e ",
Zj(r) =r(1 e "), -
Zo(r) =r'e ',
z,(r)=r[l-e (1 +r+o)r],

Z4(r) =Jr'e ",

Zo(r) =r [or 1+e '(1—+ 'r)], -
1 Z(0)P= —=
t kT

(2. lib)

(2.1lc)

(2, lid)

(2. lie)
(2.. 11f)

One gets the same final results if one assumes (S,)
to be finite and expands the energy eigenvalues in
(S.).

fn a field parallel to the e axis, (S~) is the ap-
propriate order parameter. A simple classical
calculation at &=0 shows that two phases are possi-
ble: (i) a phase with moments parallel to the applied
field, snd (ii) a canted phase in which the e com-
ponent vanishes chen h, tends to zero. The per-
turbation calculation corresponding to this ease has

4 Zo

~ =-'.("."-")
g23

Z 2Z

1 Z',
fo Z 2Z 5)l '

(3.3d)

(S.Se)

(3, Sf)

(S.8)D.(r) =4Z, /rz. , t.(r) =4Z./r*z. ,

i e. , at D.=D,{y) [or t=t, (y)].
The transition from the & &0, q = 0 phase (T

phase) to. the paramagnetic phase occurs at f~=O,
fo, fo ' o,

f, = 'r[d d.(r)]=-(r'/«-)[t t.'(r)1, - (S.8)

d=D/K (3.Va)

The coefficients fo, f4, and fo are functions of y
only. The dependence of f on K is only through the
coefficient f~. One should note that knowledge of
sixth-order terms is needed only for checking the
stabibty at TCP.

The Landau free energies of the form (3..2) have
been discussed by Liu and Fisher %'egner and
more recently by Bruce and Aharony. ~0 %e just
mention the results for the case when f, & 0, which
is of relevance to our model. The continuous tran-
sition from the phase with g&0, X=O (Z phase) to
the paramagnetic phase (P) happens when fo = 0; f~,
f& & 0,

f, =b[D-D.(r)]=lr'[t- .(r)], (S.4)
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FIG. 1. Phase diagrams in (D, t) plane for different
K values. The BCP is the intersection of the two critical
lines (solid) and flop line (dashed), T and Z deisgnate
the phases with orderings in the basal plane and along
the s axis, respectively. (a) K=1.25, (b) K=1.00, (c)
K=0.6, and (d) K=0.35.

4 ~S p 4K'c yg ~ c yg Z

The paramagnetic phase is stable against a transi-
tion to the above phases when both f~ and fa are
positive. In general, a phase with both &+0 and

g&0 would be stable only if

a'=(2') -f4fs'0 (3 9)

Numerical calculation shows that for all values of
the parameter y &0, g&0. Consequently, the canted
phase (h= 0) is never stable for our model. The
transition between @&0, X=0 phase (Z phase) and
& &0, g= 0 phase (T phase) is of first order (flop
transition) and occurs whenever

fs = ( fs/f4)"f2 (3. 9)

provided f, and f4 are positive. One can easily show

that f, is always non-negative (i.e. , a T-P phase
transition is always of second order) while f,
changes sign at D = 0.924 and t= 0. 67, (which is the
Blume-Capel TCP). Equation (3.9), is the equa-
tion of the flop line close to the point where it meets
with the two second-order transition lines. When

f4&0 the iwo critical lines f~=O and f2=0 and the

flop line meet at the bicritical point (BCP) (D, , t~).
When f4& 0 the phase diagram ceases to contain a
BCP. This happens when K& 0.462. At K=0.462,
f, ~fz =f4= 0. The possible phase diagrams in the
D-~ plane are shown in Fig. l. One can distinguish
the following cases:

K&1. In this case the flop line is below the t
axis, and is bent slightly downwards [Fig 1(a)]. .

K= 3.. The flop line is along the D= 0 axis, and

BCP is located on temperature axis at /=+3. For
L)&0one finds the &phase and a&0, the Z phase
[»g 1(b)].

0, 462& K& 1, %e have a BCP in the D & 0 region
of D-t plane, as shown in Fig. 1(c}. The flop line
bends upward.

0.462 &K&0. In this case the critical line f~=0
meets a first-order phase transition line of Z phase

to paramagnetic phase [Fig .1(d)]. The Z- P line
before meeting the T-P transition line has gone
through its TCP.

The determination of the flop line in all above
cases is done by comparing the two free energies
corresponding to the two phases of Z and & order-
ing. At ~= 0 the flop transition takes place when
D = 4(WK- K}.

The coordinates of BCP in the D-T plane for any
value of K& 0.462 can be found from Fig. 2. In this
figure D, (y) and d, (y) are plotted as a function of y.
Since K=D,/d, at BCP, one should find the value of
y such that the ordinates for the two curves has a
ratio equal to K. Then t, can be found from y, = P,D,
= D~/t~.

One should note the similarity of the phase dia-
grams in the D-t plane, with those of an anisotropic
antiferromagnet in a parallel external field. As in
the case of an antiferromagnet, the flop line sepa-
rates two phases one with xy symmetry (T phase)
and the other Ising-like (Z phase). Phase diagrams
similar to Fig. 1(b) (near the flop line) have been
suggested by Bruce and Aharony'o for structural
phase transitions in perovskites, with basically the
same symmetries as mentioned above.

IV. PHASE TRANSITIONS IN A FINITE FIELD

A. E&0.462

l. .Field along s uxis

In the presence of a magnetic field along the s
axis two possible phases exist: one with moments
along the field and the other with canted magnetic
moments, The second-order phase transition be-
tween the two phases can be easily understood by
taking (S,) as the order parameter and expanding
the free energy as a Taylor series in powers of
(S,). The equation for the critical line is found by
setting the coefficient of the second-order term
equal to zero, with the condition that the coefficient

Dc dc

2.0

0.0' - y'
0.0 0.4 0.8 l.2 l.6 2.0

FIG. 2. Plot of Dc Eq. (3 4) a" dc Ej (3 6) a

functions of y =D/t. This plot is used to obtain the BCP
for K& 0.462.
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FIG. 3. Schematic phase diagrams in the (D, h.„t) and (D, h~, t) hyperplanes (K & 0.462). The hatched regions are the
coexistence surfaces. R2 and R& denote the two-dimensional critical surface of order 2, and the one-dimensional criti-
cal surface of order 3 (tricritical line), respectively (Ref. 12). In each phase diagram two R~ surfaces meet at the
BCP ( Rp)

of the fourth-order term is positive:

D- n, 2K D+a, M'

1 1 1 gD
D- o.~ D+n~ 2K

where

(4. 1)

n, =2(S,),+I,
(S ) ( Bag flag)y( sn~ --saq+ BD)

(4. 2)

(4. 3)

The coefficient of the fourth-order term is rather
involved and is given in Ref. 18. The numerical
computation of this coefficient is straightforward.
The simultaneous vanishing of the second- and
fourth-order coefficients gives the tricritical point
(TCP).

In discussing the phase diagrams, we shall al-
ways consider the parameter E as fixed. If then we
treat the anisotropy parameter D as a field, we
would have a thermodynamic field space for de-
scription of the phase diagrams consisting of the
three variables D, t, and h, (putting the ordering
field k, =O). Then the phase diagrams are the ex-
tension of those considered in Sec. ID, to the h, &0
region. The (D, f, h, ) field space is necessary for
understanding the nature of BCP and the geometry
of phase diagrams close to it. The variation of this
geometry with the transverse coupling K will pro-
vide us with the complete qualitative description of

the phase transitions.
If the anisotropy parameter D is also fixed, then

we can study the phase diagram in the (h„ f) plane.
These phase diagrams are convenient for the study
of TCP. Application of an ordering field h, , will
generate the wings. One should note that here the
whole relevant thermodynamic field space (h, , h, , f}
is exper imentally accessible.

To discuss the phase diagrams, -especially close
to BCP, we consider two typical values of K, E= 0.6
(~0.462) and K=0. 35 (& 0. 462). The latter case
will be discussed after the K=O, 6 case is fully ex-
plained in both parallel and transverse fields.

The three-dimensional phase diagram in (D, f, k,}
space is sketched in, Fig. 3(a). Three cross sec.-
tions of this phase diagram at different tempera-
tures of t=0, t=0. 65, and t=.0.8 are shown in
Fig. 4. At t=, 0, we have a quenched moment state
at 5, = 0, if 8 & 4K. By increasing the external field
the system undergoes a phase transition from the
quenched to the canted phase (curve a). The order
parameter is (S, ). One can easily show that thi. s
transition is always of second order' for all values
of K, and the equation of this curve-is given by

I, =[D(D-4')]'" . (4. 4)

The line b on Fig. 4 is the locus of transition points
from the canted phase to the paramagnetic phase as
5, is increased. The order parameter for this
transition is again the moment (S,), which vanishes
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2.0

I.O
BCP',

0.5 I.O
I

l.5

FIG. 4. (D, h, ) cross sections of Fig. 3(a) for X=0.6
at different temperatures. The bvo t=0. 0 lit, s a and b
meet at infinity and enclose the canted phase. Solid lines
and dashed lines represent, respectively, the second-
order and the first-order phase boundaries. The dotted
line is the projection of the line of tricritical points in
Fig. 3(a) on the (D, h ) plane.

An interesting case is K=1.0. From Eqs. (4. 4)
and (4. 6) one can find the corresponding curves a
and b at t=0 while Eq. (4. 6) gives the TCP at t=O
at (D=O, h, =O). At finite t, a similar situation
prevails, i. e. , the balloonlike surface in Fig. 3(a)
is totally a critical surface and the two tricritical
lines we had for E& 1 coincide with the flop line,
now on the t axis.

2. Field in the basal plane

%ith a fieM applied in the transverse direction,
while Pg, =0, we have a three-dimensional phase
diagram in the (D, h, , f) field space, as given sche-
matically in Fig. S(b). The surface of the second-
order transition can be obtained by a perturbative
expansion similar to the one discussed in Ref. 18.
Again we would have the free energy expanded in
even powers of (S,). Vanishing of the second-order
term in the expansion gives the critical point, while
the fourth-order term is positive. The equation of
surface of second-order transitions thus obtained is

at the transition point if it is of the second order.
The second-order part of curve b is given by

h, =D+2(K-1) . (4. 6)

The lines of first- and second-order transitions join
at TCP located by

2K'+2(D 1)K- D=—0 .

(4/zo)(bo e "o+ bg e "~ + h, e "2)= 1,
where

D
o=—a bi =- &2

kl X4g X&)

x = (D'+ 4u')'"

o.,=h, +2K(S,), ,

(4 6)

(4 9)

(4. 10)

(4. 11)
The two curves a and b meet at D=h, =~. At any
finite temperature the two lines join at finite D and

h, (curve c). As temperature increases the area
shrinks to a point at BCP. As shown in Fig. 3, the
two lines of TCP ( 8,) bounding the critical surfaces
( Rz) (notation due to Chang, Hankey, and Stanley'~)
meet each other at the BCP.

Some (h„ f) cross sections of the phase diagram
Fig. 3(a) for different D values are shown in Fig. 6.
The projection of the line of TCP's is also included
in these diagrams. Such (h„ f) phase diagrams de-
serve a special interest: since (S,) is the order
parameter, its conjugate h, can be utilized to set
up a three-dimensional phase diagram in (h, , h„ f)
space. The accessibility of the whole thermody-
namic field space is a point we want to emphasize.
To have a TCP in (h„ f) plane, the parameter K
should be greater than 0. 462, and D should be in
the following range:

(4. 12)

so= 8 "~ .

0.25---

0.20-

O. l 5-
~a

O. IO-

D=I.O

D=095

D=0.9

0=0.85

(S,)o is the transverse moment when (S,) =0 and is
given by the following self-consistent equation:

2E —2K
1-2K ' (4. f) 0.5-

where, D~ satisfies the equation

4K- DE 4K+ 2DE
D~

(4. 7a)

For K=O. 6, D should lie in the range 0. &3&a&2. 4
to have a TCP in an applied field h, .

O. I 0.3 0.5 0.7 0.9

FIG. 5. (h„t) phase diagrams for K=0. 6 and various
values of the anisotropy D. The projection of the tricrit-
ical line in Fig. 3(a) on the (h~, t) plane is displayed by
the dotted line,
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, BCP
0.8 '

0.6

I.5—

l.4—

I.3 P

OA

0.2

O. l 0.3 0.5 0.7

0.0
hq

l.2— /
/

I. I

/

I.O —,
'

O. l 0.2 0.3 0.4 0.5
hz

FIG. 6. P, h~) phase diagrams for K=0. 6. These
phase diagrams are cross sections of Fig. 3(b). For t
& 0. 924, the phase diagram consists only of a second-
order line. The dotted line is the locus of the tricritical
points.

FIG, 8. (D, hg) phase diagrams for K=0.35. The first-
order l.ines (dashed) Pq and PR terminate the second-
order (solid) boundary of the canted phase at point P.
As t increases the canted phase region decreases.

(
4ao sinh(-,' Px)

x[2 cosh(-,' Px) + e-""j ' (4. 14)

hg

I la ~ ~ ~ ~ ~ ~

0.25- 0=0.5

0.20-

O.I5-

O.IO-

0.05-
0=0.75

a

O. l 0.3 0.5 0.7 0.9

FIG. 7. (h~, t) phase diagrams for K'=0. 6 and various
values of anisotropy D. Solid l.ines and dashed lines
represent, respectively, the second, and the first-order
phase boundaries. The dotted line is the projection of
the tricritical line on the (h~, T) plane.

Again the equation of the fourth-order coefficient is
quite involved although its numerical calculation is
straightforward.

%hen D=O one can obtain easily the equation. of
the second-order line:

(4. 15)

(4. 16)

(4. 1V)

8,(y) is the Brillouin function.
In Fig. 2(b), the two coexistence surfaces (shaded)

intersect each other at the flop line which ends up
in the BCP. The two tricritical lines ( R~) bounding
the critical surfaces R~, also meet at the BCP.
Figure 6 shows some constant temperature cross
sections of this phase diagram (for K=O. 6). The

projections of the tricritical lines in the (D-h, )
plane are also shown in Fig. 6. As the temper-
ature increases these lines get shorter, and finally
vani. sh (at t =0.924). The (h, , f) phase diagrams,
Fig. 7, contain a TCP, for D within a certain
range. Here again we have the possibility of ob-
serving the wing coexistence surfaces in the ac-
cessible field space of (h, , h„ t). For the particu-
lar value of K= 0. 6, D should lie between 0. 44 and
0. 83 to have a TCP.

It should be noted that the range of values of D
where a TCP can be seen on the phase diagram is
somewhat wider tha. n that given by Eq. (4. 7). For
example for K=O. 6, if 0. 44&D&2. 4, one has the
possibili. ty of getting a YCP by applying one of the
two fields h, or h,

B. 0(X&0.462

In Sec. DI we noted that at H = 0 we do not have a
BCP on the D- t phase diagram if 0 & K & 0. 462,
Fig. 1(d). When D& DO=4(MK —K), the system ini-
tially orders in the basal plane, while it orders
along z axis for D&DO. For a typical value of
K=O. 35, DO=0. 96. When D&DO (D&DO) one can
apply a field along a longitudinal (transverse) di-
rection, without it being conjugate to the proper or-
der parameter.

A phase diagram in the (D-h, ) plane at constant t
for K=O. 35 and D & Do is shown in Fig. 8; it con-
sists, for all temperatures, of two coexistence
lines QP (between the canted and the paramagnetic
phases) and PR (between the states with longitudinal
moments only), and a second-order transition line
Sp. These three li.nes intersect one another at
poi.nt I'. As temperature is raised, the point I'
moves down and the area of the region of canted
phase decreases. This area shrinks to zero at
f =0. 6V (independent of the value K). The phase
diagram exhibits no TCP for any value of K i.n this
range.
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FIG. 9. (h~, t) phase diagrams for D=O. 98 and three
different values of the transverse coupling: K=O. 35,
0. 4, and 0. 5. For K&0.462 no TCP exists but a critical
end point C at (0.27, 0. 58).

The h; t phase diagrams at D = 0.98 & Dp are
shown in Fig. 9, for several values of K For
Z=O. 35 (K=0.4), there exist two lines of first-
order phase transitions AC (BC for %=0.4) and AF
(BG) and a. critical line AD (BZ), which intersect
at the point A (B). The slopes of the lines at the
intersection point are different in general, although
they appear to be equal in the drawing. The line
AC (BC) describes a phase change between the two
states with longitudinal moments only, and is in
fact, a part of a cross section of the wing CXS in
the Slums-Capel model (cf. Ref. 19). It is also
clear from the figure that as E increases, this co-
existence line shortens, and the canted phase region
increases. At E=O. 462 it completely disappears.

%hen a&Do, the system exhibits tricriticality,
only in an applied field in a transverse direction.
The D-h, , phase diagram for K&0. 462, Fig. 10, re-
sembles the D-h, diagrams for K &0.462. For
K=O. 35 the phase diagram exhibits a change in the
nature of phase transition for systems with B value
in the range 0. 56 &D& 0. 924, and the conj esponding
tricritical temperature range 0 & t, & 0. 67. «ince in
this range of temperature D-k, phase diagrams lie
very close together, we have only drawn the T = 0. 4

case in Fig. 10. TCI' for several values of temper-
ature are also depicted on the diagram.

The limiting case of K=O corresponds to the
Blume-Capel model in a transverse field which has
been discussed in detail elsewhere. '

(i) The model characterized by the Hamiltonian
(2. 1) exhibits two kinds of ordering, and therefore
two kinds of critical behavior are expected in zero
field, depending on the magnitudes of the anisotropy
parameter D and transverse coupling K The two
kinds of ordering are labeled as Z (Ising-like) and
T (xy-like). They are separated by a CXS (coex-
istence surface), the flop line, in the D-f phase
diagram.

(ii) The phase diagram in the D tpl-ane (h =0)
contains a BCP, if the transverse coupling
K & 0. 462. BCP is the terminus of the flop line
CXS. As the transverse coupling is increased the
BCP moves towards the temperature axis, and in
the limit of isotropic exchange it lies along the t
axis.

(iii) In the presence of an external magnetic field
(along either the parallel or the transverse direc-
tion) there exists a, TCP in the (h, f) plane, provided
that K and D are within certain ranges which are by
no means narrow.

(iv) In the four-dimensional field space of (D, h, ,
A„ f), four tricritical lines approach the BCP when
0.462 &K& 1.

At h =0, the flop line is the locus of the coexis-
tence of four ferromagnetic phases. To distinguish
these phases we should apply the infinitesimal fields
+5,-0 and +5,- 0. We designate these phases by
S', Z", T', and T . The signs + and —indicate
the direction of the infi. nitesimal fields. In the
notation of Chang, Hankey, and Stanley' the flop
line is an X, CXS. Since a (a+I)-dimensional CXS
~x„, (p being the number of the phases coexisting)
is bounded by a critical surface (CRS) of dimension
d and order p, our BCP is a critical point of order
4, Bo. Chang et al. ' and Hankey et gl, ' have
carried out a rather general study of the critical
points of higher order. Based on an Ising model
with variable interplanar interactions, they have-
demonstrated that a R~ critical point is the inter-
section of several tricritical lines. A similar situ-

I.O- .~TCP at t=0.65

0.5

V. CONCLUSION

We have studied an S =1 ferromagnetic model
with both exchange and single-ion anisotropy. A

summary of the main features of the model as re-
vealed by an MFA calculation is as follows:

0.0
0.0 0.5 I.O

FIG. 10. (D, k,) phase diagrams for E=O. 35 and two
values of temperature, The phase diagram resembles
F ig, 6,
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ation prevails at the BCP of our model.
The assumption of homogeneity near a BCP (or a

Ro) has important consequences. In addition to the
bicritical scaling laws, the tangency of the critical
lines to the flop line may be of special importance.
Also of interest is the competition between critical,
bicritical, and tricritica) behaviors in the vicinity
of the BCP, which results in crossovers between
these different criticalities. Hankey et al. ,

'
based on the simultaneous validity of the scaling
groups of critical points of order 2 (ordinary criti-
cal point) and 3 (tricritical point) with that of or-
der 4, have arrived at the "double and triple scal-
ing functions" for the singular part of the Gibbs
potential, and have discussed the corresponding
crossover regions. Most of the systems exhibiting
bi criticality (uniaxial antiferromagnets and an-
isotropically stressed perovskites' ) suffer from
the restriction that the ordering field is either fic-
ti.tious or uncontrollable in the laboratory. This

restriction delimits a complete scan of the vicinity
of the BCP in all directions. The model discussed
in this paper, though not suffering. from this re-
striction, is subjected to another limitation in the
study of BCP: A controlled variation of D in a real
magnet, if not impossible, is rather difficult (al-
though there are evidences that D can be varied by
applying a pressure to the crystal ).

Perhaps the most interesting feature of this model
is the TCP behavior. Since the ordering field is
experimentally accessible, the wing CXS's are
wholly in the experimental fi,eld space. The range
of the parameters Kand D to permit a TCP in an
external field is significantly large. Therefore, a
search for a system with the model Hamiltonian
(2. I) is highly desirable.

A study of this model in the light of the recent
works by Fisher and Nelson, Nelson, Kosterlitz,
and Fisher, and Bruce and Aharony wi. ll be pub-
lished later.
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