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A spin-1 system with isotropic quadrupolar coupling is analyzed by the method of double-time Green's

functions. A consistent decoupling procedure, which exactly preserves two important spin-correlation sum

rules, is constructed. The resulting self-consistent integral expressions are solved numerically for the case of a
simple-cubic lattice with nearest-neighbor coupling and the ground-state energy, the long-range-order
parameter, and the dispersion relation of the elementary excitations are evaluated. Our result for the ground-
state energy is found to be somewhat lower than that obtained by using the decoupling procedures of Raich-
Etters and Barma. On the other hand, our result for the zero-point defect for the quadrupolar long-range
order is very slightly greater than that given by the Raich and Etters's random-phase-approximation (RPA}
procedure but is distinctly smaller than that found by properly evaluating the expressions obtained by using
the Barma procedure. Similarly, our results for the elementary excitation dispersion are also closer to the
RPA predictions than those obtained via the Barma procedure.

I. INTRODUCTION

Much like the isotropic Heisenberg antiferro-
magnet, the ground state of the simplest of the
dynamical quadrupolar systems is not exactly
known. Here the mean-field-theory prediction of
a perfectly ordered ground state, with Q equal to
-1, where

q=-, f&(s;)&) --:], (1.1)

is as suspect as the corresponding prediction of
saturated sublattice magnetization for the anti-
ferromagnet. The reason, of course, is that the
relevant mean-field state is not an eigenfunction
of the Hamiltonian and as such zero-point fluc-
tuations are expected, which give rise to a finite
zero-point defect for the order parameter.

A variety of physical situations can be described
in terms of effective quadrupolar coupling. ~'2 Our
interest in this paper is, however, to examine the
ground-state properties of the simplest of these
(dynamical) Hamiltonians. Such a Hamiltonian is
described in Sec. II. In order to study its dynam-
ics, double-time Green's functions are introduced
and their equations of motion given in Sec. III.

In Sec. IV, we describe the Raich and Etterss
and the Barma~'3 approximations. The crucial
role played by the conservation of the off-diagonal
self-correlation sum rule has been clarified by
Barma. ' The inconsistencies that appear in
random-phase-approximation (RPA) theories,
which are nonconserving in such a sense, can be
rendered relatively harmless by defining a sym-
metrized version of the RPA. Interestingly, the
Raich and Etters3 approximation is equivalent to

just such a symmetrized RPA. The Barma de-
coupling, ~'~ in this context, can be viewed as an
improved approximation which corrects the non-
conservation of the crucial off-diagonal sum rule.

To improve the decoupling approximation still
further, a higher-order correlation-function sum
rule is then identified and finally, in Sec. IV, the
resulting equations are recorded and their solution
is presented in Sec. V.

In the concluding section, VI, the philosophy of
the correlation-function sum rule conserving de-
couplings of Barma and that used in the present
paper is discussed with reference to the ground-
state energy. It is shown that the symmetrized
RPA estimate for the ground-state energy is a
few percent lower than that given by the molec-
ular-field theory. %hen the ground-state energy
is computed self-consistently within the Barma
scheme, we find it to be slightly lower than the
corresponding prediction of the symmetrized RPA.
The interesting feature of this result is that while
the lowering of the energy, from the RPA result,
is relatively quite small, within the Barma scheme
the relative increase in the elementary excitation
dispersion relation as well as in the zero-point de-
fect of the long-range-order parameter (LRO) is
rather substantial. Finally, within the decoupling
approximation of the present paper-which in ad-
dition to conserving the off-diagonal self-correla-
tion sum rule also preserves a correlation func-
tion sum rule associated with a higher-order fre-
quency moment of the basic spectral function-we
find that the ground-state energy estimate is the
lowest of the four approximations. Yet, the re-
sults for the elementary excitation energy as well
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as the zero-point defect in the quadrupolar LRO
are found to be very close to those given by the
symmetrized RPA. These features are reminis-
cent of the behavior of oscillatory, though con-
vergent, successive approximations.

II. HAMILTONIAN

[b», b»z] =(1 —n»- 2m»)5»»,

[a», bt»] = —bz»a»5»»,

[b„a',] = —atb»b»»,

[a» b»]-=[a'», b»]-=0,

where

(2. 6)

2

& = —QZ», Q I, (i)I, (j),
f&f ms:-g

(2. 1)

Following Barma, '2 we study the simplest of
the quadrupolar dynamical Hamiltonians, i.e. , - the
isotropic nearest-neighbor Hamiltonian in the spin-
1 subspace

n)=a]ag) m& =
blab (2 7)

(The operators n and m are readily identified to be
the number operators for excitations with M~ =+1
and Me ———1.)

A basic property of the spi.n-1 subspace is the
following:

where a;a~ = 6~6~ =a&a, = b,Q, = 0,t (2. aa)

I, .(z) =[I,,.(z)]',

I, , (z) =P[(S,')'- —',],
I z z(z) = z(s'»S'»+S» S»),

I, ,(z) =-.'(S;)',

(2. 2a)

(2. 2b)

(2. 2c)

(2. 2d)

a;b; =at b~ =0 . (2. Sb)

X =- j;, ~ n)+m] —3 n+m~ —3

Using these operators, the quadrupolar Hamil-
tonian takes the form

and where + z (a» —b»)(a» —b») +a»b»b»aj I (2. 9)

a', = (1/~s;[1 —(S;)'], a, = (az»)',

b', =(1/P)S, [1 —(S',)'], b, = (b,')' .
(2.4)

(2. 5)

These operators obey the following commutation
relations:

[a», az»] = (1 —2n, —m»)6»»,

J&&=J &0 when i and j are nearest neighbors
cJj)—

0 otherwise. (2. 2e)

The lattice sum in Eq. (2. 1) is over the@'sites
such that each neighboring pair is counted only
once.

Within a mean-field approximation, the ground
state of this system is completely ordered and the
order parameter,

q =+(I, ,(z)), (2. 3)

attains its minimum value of -1. Because such
an ordered state breaks the rotational symmetry
of the system, we expect to find a Goldstone soft
mode. Because the total order parameter
Iz, o(K=O) =$»Iz 0(i) does not commute with the
Hamiltonian, hence a long-wavelength behavior of
the type E~~

t E )
~", e ~ 0, is consistent with Bog-

olyubov's inequality. '
Following Raich and Ettersz (and as in the re-

cent work of Barma), we introduce a set of crea-
tion and annihilation operators which are particu-
larly useful for dealing with spin algebra of 8 =1
and are natural operators for describing creation
and annihilation of excitations in quadrupolar sys-
tems,

Note that in terms of the a and b operators, the,
various spin operators are

+8
I n~ fn t

(S;)'=n, +m», z

S'=»Q( a, y b)»,

S; = Q(a»+ b'») .

III. GREEN'S FUNCTIONS

(2. 1o)

In order to analyze the dynamics of the system
represented by the Hamiltonian (2. 9), we study,
the following Green's functions:

((a,(t); a, (0))&
= G'„'(t),

((b, (t); a, (O)))
-=O'„(t),

«b, (t); b', (O)» =- G",,'(t),
«a'(t) b', (0))) = G' ' (t)

(3. 1a)

(3. 1b)

(3. 1c)

(3. ld)

Here we have used the following notation:

~",;(t)-=«A, (t); H, (0)»

= —2~e(t)([A, (t), a, (0)]), (3.2)

Tr(e ~ ~ ~ )
Tr(e-»»x)

—
~

A(t) =e' 'A(0)e '

(3 3)

(3, 4)

e(t), as usual, denotes the Heaviside unit step
function which is unity for t & 0 and is zero other-
w1se ~

Whenever convenient we shall use a Fourier-
transformed representation such that
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p +»I

GAB(t} GA»»(E)e»»»»dE
a»o

G»»'&E} = «A», a»»,'

(S. 5a}

(s. 6b}

proceed to the limit P- ~, once the expressions
for the correlation functions have been obtained.

The energy Fourier transform of the equations
of motion of the various Green's functions are
readily obtained from the relation

Consequently~

&a»(0}A»(t}&= lim (- 1/»»}

p'" G~»»s((g+ie}e»"»d»d
x Im Jl "-1

(s.6)
Here jg= (k»»T} '. Because in the present work we
focus our attention on the ground state, which is
thermodynamically relevant only at T =0, we will

G"„'(E)=([A„a,] )+ G'„'(E),

where

C, =[A„X].
We get

EG;»'(E}= (2n+ m —1}5»»+I"»»"(E},
with the notation;

(n,) =6,

(3. ra}

(s. vb}

(S.8a)

(s. 8b}

I

I »» "(E)= P J&»(2[&(at»(n~+m~}; a»&&z- —,', 0';
»( E}] +2[G&»'(E} —2((a&tn», a»&&»»

—((at&m», a»)&z]

', [G»'»(E} —-2«b»n», a»»z —&(b»m», a»)&»»]+ &((aIb»a&,'a»»z 2((a»—b»b»„a»»»»+ «a», b», b», a»)&»») .
Similarly, we find

EG»» (E) = (1 —n —2m}5»»+ I'»» (E),

I »'» (E) =g J'~»( ~[(&b»(-n», + m~}; b»»))z —-', G~»~» (E)]+2[G~»~ (E) —((attn„bt))z —2 &(a~tm „bt»&&z]

(S.8c)

(S.9a)

—~ [G»» (E) —((b»n„b»»»» —2(&b»m», b»»»»]+ ~((a»b»a», ; b»)&»»
-—,'((a, b»b», ; b»)&»» - ((a»b»a», b»&&»»], (S.9b)

EG" (E}=1"'"(E} (S.10)

EG", (E) =I'"(Z} (3.11)

[Note that expressions for I »»' {E)and I', '»'(E} are
identical with those of I »» '(E) and I'»'» (E), given
in E»ls. (3.8c) and (S.Qb), except for the substitu-
tion of the appropriate operator on the right of the
semicolon in the superfix. ]

IV. DECOUPLING

The standard RPA type of decoupling for the
various higher-order Green's functions contained
in the functions I'"»» e(E}, where A = a», b and
B=-a, b~ is of the following form'.

l

which a suitable, conserving decoupling was ex-
tracted. We proceed as follows: From the first
two commutators given in E»l. (2.6), we can readily
obtain the following identities:

n»+m» = »r(n»+ m»)

--.'(1 - o.}([a„a'»] +[b„b',] -2),
(4. 2)

n» —m, =X(n» —m, )

—(1 —X}([a»,a»] —[b», b»] ) .
(Here n and X are arbitrary parameters. )

~e now introduce these identities into the right
hand side of E»ls. (3.8a), (3. 9a}, (3.10), and (3.11),
Next, in the resultant, we carry out the foOowing
truncation:

((A,w„a,)),=w((A„a,)), , i~p,
(&atb»C~; &&aors, ie p

where

8'p=- np, mp,' Cp-=ap, bp~ .

(4. la}

(4. lb)

(4. lc)

A theory based on such a decoupling cannot con-
serve the off-diagonal self-correlation sum rule
referred to earlier and consequently is subject to
inconsistency and nonuniqueness. ~'~

To zemedy this problem, we follow Barma,
who introduced a Callen-like~ procedure from

((a'»a,'a„a,»s = (a',a,&((a'„a,&)s

+ (a»a, ) &(a»„a,»»»,

&("»b',b, ;a,».= &b,'b, & «"„',».
+&at»b,'& «b„',»„

(&at»a», a»t, ; a»»z = (a~ a»t& ((at», a»))~

((at» bp bp', a»»s = &b»bp'& ((at», a»»s.&",b', & «b„',».,

imp.

imp,

i"p.

(4. s)
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[Note that these relations do not constitute a de-
coupling. Rather, Eqs. (4. 7)-(4. 11}do. ] Here
we have ignored the nondiagonal contractions, be-
cause they are Mentically vanishing, i.e. ,

(atbp) =(ata,') =0. (4. 4)

Using the above prescription, i.e. , Eqs. (4. 2}
and. (4. 3), the relevant decoupling becomes:

((at&(np+ mp); a p))z = (n+ m} ((at~, ap&)z+ n((asap) ((atp; ap))z+(at& bpt) ((bp, a p&&z}, i 4P,
((at&(np —mp};a p)&z = (n —m) ((at», a p&)z+X ((at ap) ((apt; a p»z —(a~q bp) ((bp; ap)&z}, i & p,

and similarly,

((bp(n, +m, };a,))z = (n+m) ((b„a,))z+n((bpa, ) ((at„a,))z+(bpb", & «b„a,))z}, iv p,
((bp(n, —m, };ap&)z = (n-m} ((bp;ap&)z+X((bpa, & ((at„ap))z —(bpbt) ((b„a &p) z}, imp .

(4. 5a)

(4. 5b)

(4. 6a}

(4.6b)

(4. 8}

(4. 10)

(4. 12}

Another set of four pseudo-Boson-operator Green's functions, which occurs in Eqs. (3.8}-(3.11}is trun-
cated similarly to Eq. (4. 3}by introducing the Boson-like contraction, e.g. ,

(4. 7)

(Again, in the above, we have omitted writing terms containing correlation functions of non-diagonal oper-
ator combinations, e. g. (atb, ), because they are vanishing. }

The net result of these decouplings is identical to that given by Barma, i. e. ,

= (& '; » +-:( +~}& ';,)&& '„,&&,+l( -))}& 'b',&(&b„,&&„&p,
((a &mp; a p)&z = m(&a&, ap)) z+ & (n - X}&aPp& ((ap; ap))z+ 2 (n + X}(a&bp) ((bp; a;))z, it P, (4. 8}

((bpn&, ap)&z = n((bp, ap»z+ ~ (n + X}(bpa~) ((a &, ap)&z+B (n —X}(bpb&& ((b&, a p)&z, it P,
((bpm „ap»z = m((bp, ap»z+ —,'(n —X}(bpa && ((a~&, ap)) z+—', (n + X}(bpb~~& ((b „ap))z, (4. 11)

Barma'B has emphasized the importance of preserving the identity (2. 8b}, which is the basic property
of the 8 =1 subspace. As noted by Barma, the conservation of this identity places an important restrictions
on the Green's functions that occur in Eqs. (3.10) and (3.11}. Indeed, it can be shown (see Sec. VI} that a
certain frequency moment sum rule has to be satisfied by the corresponding spectral functions. Similarly,
we find that the same identity also plays a central role in specifying a null sum rule for the spectral func-
tions relating to Green's functions appearing in Eqs. (4. 10}and (4. 11). This is best displayed by looking
at the correlation functions that follow from Eqs. (4. 10) and (4. 11), i. e. ,

(apbpn&& = n(apbp& + z'(n + X}&bpa,) (ap a;) +-', (n —X}(bp b, ) (ap b&), i e P

(apbpm, & =m(ap bp) + —,'(n —))}(bpa,) (apa, ) + —,'(n+))}(bp b, ) (apb, ), imp. (4. 13}

Consequently, when j=P, we have for iW j
n(&a)b, &(a', a,)+(b', b,&(a, b,)}=0, ixj, (4. 14}

~((a,.b, & (a',a, ) —(b', b, ) (a,b,)) = O,

Hence,

n((a', a,)+(b, b,)}=O, iej,
)).((a~a,) —(bt, b,)}=0, iej .

(4. 15)

(4. 16a}

(4. 16b)

Because for the quadrupolar system under investi-
gation, the identity of the correlation functions,
x. e. ,

l

the basic sum rule referring to the vanishing of the
the correlation (a, b,) = (at b~~&, as will be made
clear in Sec. V.

In what follows, we shall assume that n = 0. To
conclude this section, we recast the Green's func-
tions equations of motion, (3.8}-(3.11}, into a
compact form suitable for computation. To this
end we introduce the inverse-lattice Fourier trans-
formation,

GAB(E} ~ GAB(E}B &K (I-j)
kj

(a', a,) =(b', b, ), (4. 17}
(4. 18)

holds and, in general, these functions are non-

vanishing, therefore q should be taken to be zero.
It is clear that the remaining parameter, X, need
not be zero to preserve the sum rules (4. 16a} and

(4. 16b}. Indeed, X can be chosen so as to satisfy

g g(A}e iK &t-))

wa

Hence, for arbitrary range of the quadrupolar
coupling we get
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EG'-'(E) = (Sn —1)(1+[Z(O) --,'Z(K)]G'„-'(&) +1&(K)G'„-'(E))

q J K+q G + ~ atb~ q J K+ q GK
~t

Jq ~q —,t q G- ~+- G-~ ~ q

+&'-„" (K)(2K Z(~(q)(qb. (q)-qbrb(q))+ 2~(K+q)r)bbb(q))

+G-„'(K)( K)Q(Z(q)(rl, b (q) —qr r(q)) +2Z(K+q)r)bbr(q)j . (4. 1S)

When the spatial range of the coupling is limited
to the nearest-neighbor separation and the lattice
coordination number is s (s = 6 for sc lattice) we
have

~»= ~+4»(q)y(q) (4. SS
a

(Note that Q=Sn -1.) Using the abbreviated no-
tation,

(K) ix (f i)'-
&K&K=&»(=&,

~qi»= ~n2=V 2

(4. S4)

e»(K) =C»( K) . - (4. 21)

The Brillouin zone also manifests the same sym-
metry for such lattices; hence we get

~ Q(('»(q)y(K+q) =y(K)Q~» 2 (4. SS)

where

y(K) = s ' Q e'* = 3[cos(IC„a)+cos(SC„a)

+ cos(&,a)].

[Consistent with the dictates of Eqs. (3.8b) and

(4. 17), here we have used the notation (n,)=(m;)
=n ]

For lattices with inversion symmetry, such as
cubic lattices, we have the symmetry

we can recast Eq. (4. 19) into the following con-
venient form:

(4. aS)

where

C(K) = sZQfl —2y(K)+ [r(K) ——.']u

+ ~t+ —,'X(v -u)}, (4. 86a)

&(K) = sZQ(2y(K) + [y(K) ——,']v+ —,'u y-,'X(v -s)] .
(4. &6b)

Following the same procedure, we can also ob-
tain the corresponding expressions from the three
remaining Green s-function equations of motion,
i.e. , Eqs. (3.9)-(3.11). The resultant three
expressions, along with Eq. (4. 25), are displayed
in a convenient matrix form below:

(G'-'(E) G'-' (E)) Q
fE+ C(K) —D(K) )

E'-Z'(K) ( -u(K) -E+C(K)) (4. S7)

where

E(K) = sJQ([1 -y(K)](1 -u+v)[1+y(K)(u+ v) ——,'X(u -v)] j~ ~~ . (4. S8)

With the help of the spectral relationship embodied in Eq. (S.6), these Green's functions yield the follow-
ing result for the corresponding correlation functions:

e(K) PZ(K)
((I «i(K) g».t(K)) @K)

"
S

(r)~(K) qbbb(K) J 2 D(K) (PK(K))
Z(K)

qr(K) „(2K(K)))

C(K),„(((K(K)) )
(4. aS)
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V. CORRELATION FUNCTIONS

The matrix expression (4. 29) embodies our re-
sult for the four correlation functions (A~ &&&,

where A=-a, b and B-=a and 6. We note that there
are as of now only four unknowns in our theory,
i.e. , &, u, v, and Q. The basic sum rule relating
to the off-diagonal self-correlation, i.e. ,

(a; h & = (bt at & = 0, (S.Ia)

specifies one condition that these quantities have
to obey, namely

——QD(K)&(K) =0, (5. lb)

where

S(K) = coth[ —,
' PE(K)]/E(K) . (S.lc}

The second condition is provided by the relation-
ship which follows from Eq. (4.29), i.e. ,

(fata, & =Q Js,.&
= n =-.'(q+I),

or in other words
j.

@=2 1+— C(K) b(K)
N

(S.2a)

(s.2b)

The remaining two constraints, which help speci-
fy the four unknowns completely, are contained in
Eqs. (4, 23) and (4. 24) as follows:

u= yKCK &K, (s.3)

coth[-,'PE(K)]-+ 1 (5.5)

depending on whether Q is positive or negative [see
Eq. (4. 28)]. Knowing that the molecular-field ap-
proximation gives Q & 0, it is eminently reasonable
to choose the lower of the two signs in Eq. (5. 5)
and then numerically solve for the remaining three
unknowns using Eqs. (5.1), (5.3), and (5.4). In
what follows we shall treat only the case for which
T =0.

Our computations were performed for a simple-
cubic lattice. First we used only 8000 Gaussian
points in the Brillouin zone by choosing an irreduc-
ible section in the first octant. Such a section has
a total of 18 of the zone volume but contains 220 rele-

Z r(K) D(K) ~(K). (s.4)

In order to find a solution at general tempera-
tures, it is necessary to solve the four equations,
(5.1)-(5.4}, self-consistently. This is a compli-
cated task, for each of these expressions is itself
a three dimensional integral, involving rather awk-
ward kernels.

At zero temperature, on the other hand, the situa-
tion is considerably simpler. Here P- ~ and as
such

vant Gaussian points in it. Employing Newton-
Raphson iteration procedure, the following set of
results were obtained for the three unknowns:

u=-0. 0092; v =0.0595; ~=-1.9461. (s.6)

Inserting this set of values into Eq. (5.2b} we found
Q to be self-consistently negative, thus justifying
our original choice,

Q =-0.9357. (s. 7)

u = —0.009 14, y = 0.059 46,

A, = —1.946 05, Q = —0.935 72. -

(s. 8}

Comparing Eqs. (5.6) and (5.7) with (5.8) and noting
the level of accuracy obtained in the computation of
the Watson sum by the same method, we were able
to place error limits on the computational accuracy
of Qy i.e. ,

Q =-0.9357+0.0001. (s.9}

Having determined Q, we can immediately find
the ground-state average of (8')', i.e. ,

({S')&=—(I+@)=0.0429a0. 0001, (s.10)

(We emphasize that the errors quoted above reflect
only the level of accuracy of the numerical compu-
tational procedure used here ).

It is interesting to compare these results with
those given by the RPA and the procedure used by
Barma. As mentioned earlier, because of the non-
conservation of the off-diagonal self-correlation
sum rule, the RPA is not a uniquely defined de-
coupling prescription and it can lead to inconsistent
and even totally erroneous results, e.g. , the re-
sults obtained by carrying out the relevant computa-
tions (for a simple-cubic lattice) using the non-
symmetrical RPA decoupling of Ueyama and Mat-
subara. ' Nevertheless, the symmetrized RPA
(as recently defined by Barma and first used by
Raich and Etters) is a uniquely defined procedure,

To test whether other solutions to this set of
three self-consistent equations, i.e. , Eqs. (5.1),
(5.3), and (5.4), existed, we performed the com-
putation for a variety of initial conditions chosen
within the limits

0.5& v & -0.5, v=— &, u, v.

In about one hundred such runs, i.e. , with differ-
ent initial conditions, we found no other solution
except for that given in Eq. (5.6).

Having identified the correct solution in this man-
ner, we set out to improve the accuracy of our
computation by increasing the number of Gaussian
points within the zone to 512000. Moreover, the
convergence threshold was now decreased to 10"',
or better (compared with 10, or better, previous-
ly). The final results were found to be only slight-
ly altered by this procedure, i.e. ,
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even though it does not conserve the off-diagoiial
sum rule referred to above and using this we have
found

Q= —0.9367, ((S') ) =0.0422 . (5.11)

We have also performed the computation of the
expressions given by the Barma scheme. Here
too, for negative Q, we found only one solution of
the three self-consistent equations (involving n,
u, and v). Moreover, much like the solution to
our equations, on further increase in the compu-
tational accuracy this solution was also found to
be unaffected to more than a few parts in the fifth
figure. The relevant results are

n = 0. 6889, u = —0. 0094, v = 0. 0620,

Q = —0. 9316, ((S') ) = 0. 0456 . (5. 12)

(Recall that Barma's decoupling procedure consists
in making an ad hoc choice for X, i. e. , X= 0, and
then o. is chosen from the requirement that the off-
diagonal self-correlation be zero. Also note that
the given results were computed by us and they are
substantially different from those originally re-
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FIG. 1. Zero-temperature excitation spectrum for
K= (k, o, o), is plotted for a simple-cubic lattice with cube
edge a. The curve marked RPA is obtained by the use of
the relation E(K) =QzJt1 —y(K)]~ 2, which follows from the
symmetrical RPA procedure. Curves 1 and 2 refer, re-
spectively, to the results obtained by using the Barma
decoupling and those obtained in the present work.

1.e. ,

[&(~)]e, = «0 {Il- r(h)] [1—(1+ k n) (~ - ~)]

x[1~ (1+ —,'n) (u+v) y(k)]]'I', (5. 13)

is found to lead to a result which lies well above
that given by the symmetrical RPA, '4 i. e. ,

[E(&)],.= ~e [1-V(i )1'" . (5. 14)

The result obtained in the present work is close to
that given in the RPA and lies a little above it
throughout the zone (in this direction).

The behavior along the (1, 1, 0) and (1, 1, 1) direc-
tions (see Figs. 2 and 3) is similar except that
here the RPA results become larger than those ob-
tained in the present work somewhere past half-way
to the zone boundary. This "level inversion" is

ported by Barma. This is largely due to the pres-
ence of an error in his original expressions. The
error has been rectified in Ref. 2. )

Let us compare the three sets of results for
((S ) ) given in Eqs. (5. 10)-(5.12). We note that
the symmetrized RPA, i. e. , Eq. (5. 11), already
gives a good description of the quantum-mechanical
nature of the ground state for it tells us that, un-

like the prediction of the molecular-field approxi-
mation, the zero-point fluctuations lead to a non-

vanishing value for ((S') ). The next-order approx-
imation, which gives a correctly symmetrized
structure for the decoupling used in the symme-

. trized SPA which, in addition, also conserves the
off-diagonal correlation sum rule of Eq. (5. 1a), is
that of Barma. This predicts [see Eq. (5. 12)] a
somewhat larger zero-point fluctuation than that
given by the RPA.

An even higher-order approximation (see Sec. &I
for an amplification of this point), which, in addi-
tion to retaining the above-mentioned conserving
features of the Barma theory, also preserves the
first dominant set of moment-conserving correla-
tion function sum rules, '" is that described in the
present work. This approximation is found to lead
to a result for the zero-point fluctuation which is
only nominally larger [see Eq. (5. 10)] than that
given by the RPA. Such an oscillatory behavior of
successive approximations is not an uncommon oc-
currence. A satisfying feature of these three sets
of results is that they are all in reasonable agree-
ment with each other.

Having compared the results for the I.RO in these
theories, we examine next the behavior of the ex-
citation spectrum. For simplicity. we have carried
out the relevant computations only for the symmetry
directions K= (k, 0, 0), (k, k, 0), and (k, k, k) in the
simple- cubic lattice.

In Fig. 1, we have plotted the elementary exci-
tation energy for K= (k, 0, 0). Our computation of
the expression obtained in the Barma scheme,



1846 I. P. FITTIPALDI AND RAZA A. TAHIR-KHEI I 12

l.2

0.8

0.6

0.4

0.2

0.0
0.2 l.O0.0 0.4 0.6 0.8

kd

FIG. 2. The same as in Fig. 1 except for the differ-
ence that here K= (k, k, o}.

variational scheme has not, to our knowledge, been
shown to be equivalent to any thermodynamic mini-
mum principle. ' Therefore, it cannot, Per se, be
assumed to guarantee a physically more relevant
solution.

On the other hand, a weak, but quite possibly
physically meaningful, proviso can be attached to
the moment- conserving stationary principle"':
namely, when a self-consistent moment-conserving
approximation leads to a lowering of the system
free energy, then it is a more accurate approxima-
tion than a corresponding decoupling which does
not preserve the same moment.

In this spirit, in the following we shall examine
the results for the free energy at zero temperature
(it is equal to the system energy at T = 0) that are
obtained self-consistently within the context of the
four approximations referred to in this paper.
These are the molecular-field, the symmetrized~'4
RPA, the Barma approximation, and the present
approximation.

Within the molecular-field approximation (MFA),
the system energy is quite straightforward to cal-
culate. Writing the Hamiltonian (2. 9) as

(6. 1)

most noticeable near the (1, 1, 1) zone edge where
our results begin to differ appreciably from those
given by the RPA decoupling.

J()(n(+ m (
——,')(n)+ m) —~), (6. 2)

VI. GROUND-STATE ENERGY

As explained in the preceding sections, the quad-
rupo1. ar coupled system has now been solved in a
hierarchy of approximations. Although, the suc-
cessive nature of these approximations was men-
tioned in the introduction, the relevant statements
were rather vague. In particular, no substantive
criterion for the establishment of the hierarchy was
described.

A few years ago, Both" introduced a procedure
which was nominally variational. After making,
what was in effect a physically motivated choice of
a set of basis operators, a stationarity procedure
was invoked which helped specify an appropriate
linear combination of the basis operators used for
decoupling the Green's function. At about the same
time, and independently, Tahir-Kheli and Jarrett"
presented a decoupling procedure, based upon the
conservation of a given number of frequency mo-
ments of the spectral function of time-dependent
correlation functions, which was later ' shown to
lead to identical results to the Both variational
procedure. Thus, the moment conservation pro-
cedure mas, a Posteriori, provided with a basis
in a variational scheme.

It should, however, be emphasized that such a
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FIG. 3. Same as in Fig. 1, but with wave vector along
the cube diagonal, i.e. , K=@,k, k}.
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we readily see that

)MFA (6.4}

and

( +)MFA (3~~+}q (6 5)

I

J~[-,'{af -b, }(a~—b J)+a fb, b Ja&],
td (6. 3)

&+)MFA (0~~+) ~0 ' (6.6)

To calculate the ground-state energy within the
three set of approximations, i.e. , RPA, Barma,
and ours, we proceed as follows: First we recast
Eq. (6. 2) into the form

Because 0&((Sf)'& &1, therefore —,'~ q& -1.
;

Hence, the ground-state energy is the lowest when
q= —1, i.e. ,

(6.7)

(6.8)

(6.9)

(6. 10)

(6. 11)

(6. 12)

(6. 14)

&X ) = ——P J,A(&n, nF&+(m, mA&+(n, mA&+&m, nA&} —e0(1 —6n) .Q 3
P

Next, to calculate the sum of the four correlation functions appearing on the right-hand side of Eq. (6. V)

self-consistently with the corresponding decoupling procedures, we take the decoupling specified by Eqs.
(4. 8) and (4.9) and rewrite it as follows:

«atn„' a, »s = n&(a'„a, »s+ ', (n+-X) &a', a, & «a'„a, &), +-,'(c. —&) (a', b', & «b„a,»s, i+p,
&(atmo, a, »z = m ((at; a, »s + -,' (n —A) (at aF & ((aAt,

' a, »z + 0(a + X) (at bAt& «bA; a, »s, i 4p .
Using the usual spectral theorems, 6 this gives

(a, a, nA& =n&a, a, )+-', (n+&)(a, aA&(a, aA&+-', (n —X) &a, bA&(a, bA&, i+P,
(a, a, mA &

= m (a& a, ) + ,'(n —&—)(a, aA & (a, a] &+ —,'(a + x) (a, bA) (a, bF ), i+ p .
For the case when l= i, Egs. (6. 10}and (6. 11}yieM

&n, nA&+&m, nA& = 2(n) ——,'(a+ 5) (a, aA) &a,aF) ', (ct ——&-}(aJbJ& (a, bA&, imp,
(m, mA& + (n, mA &

= 2(n} ——,'(a —A) (a~aA& &a~aA&
- -', (n + &) (a, bt & (a, bF &, i + p .

(Here we have made use of the identity a&at&= 1 -n& -m&. ) Adding Eqs. (6. 12) and (6. 13) gives us the de-
sired sum appearing in Eq. (6.7), i.e. ,

( n, n&F(+m, m &A+( ,nm& A(+m, n &A=4(n} —n((afar&(a, a~A&+&a) bF&(a, bA&), i+p .

Now, we introduce Eq. (6. 14) into Eq. (6.V) and

write:
where

&X0& = —~0[1-6n+9(n)'-&qnq'(u'+ v')] . (6. 15)
0, for RPA

I —4 n for the Barma decoupling (6. 19)

&aJb, bt, a~&=&b) bt, &&at)a, &

+ (b, a, ) (a', b', ), i' .
Thus, using Eq. (6.3}we finally get

&X'& = —e0 [3q(u —v)+ 3q'(u'+ v')] .
Hence

(6. 16)

(3e& = —A0 [q'+3q(u —v)+3gq'(u'+ v')], (6. 18}

(Note that n=O within the MFA, the RPA, and the
present approximation. However, n is implicitly.
dependent upon the original decoupling and hence
is different in each of these theories. )

Next we examine the average of X', given in Eq.
(6. 3). The only interesting correlation here is that
referring to the four operators in the last term in
Eq. (6.3). Here we take our cue from Eg. (4.7).
Using the spectral theorem invoked earlier, this
yields:

Os MFA

—(1.0715+0.0002) e0, RPA
(x&-

!
—(1.OV31+ 0.0002) c0, Bs,rma

!
,

—(1.0790+ 0. 0002}A0, this work .

(6. 20)

1 for our decoupling .
Upon comparing the above result with that de-

rived by Raich and Etters (within their symmetri-
cal RPA procedure for the fcc lattice) from some-
what different considerations, we find that our re-
sult for the RPA is completely analogous to that
given by them.

We have carried out the computation of Eq.
(6. 18) self -consistently within the three decoupling
approximations. The result (given by our most
elaborate numerical procedure described in Sec.
V} is the following:



(The quoted error bounds refer only to the numeri-
cal computations). Hence, our procedure, inad-
dition to satisfying the symmetry features of the
HPA and the conservation of the off-diagonal self-
correlation identity, also helps self-consistently
preserve one additional fx"equency momeDt —beyond
that of the zeroth order vrhich only specifies the
weight under the spectral function and thus is auto-
matically preserved by the commutator appearing
in the inhomogeneous term occux'ring in the
Gx'een 8-function equation of Inotlon —fox' the case
of the nearest-neighbor spectral functions. Mox"c-
over, it yields the lowest estimate for the ground
state energy. [See Eqs. (4. 12) and (4. 13) and note
that putting j=p, makes these et(uations relate to
the equations of Inotion of the basic Gx'een 8 fuDc-
tions referring to taro neighboring sites. Also com-

yare with Ref. 8. ] We believe that this fact lends
some cx'edence to the px'esent x'esults.
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