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Elementary excitations of high-legree pair interactions: The two-spin-deviation spectra for a
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We consider a ferromagnetic linear chain and a simple-cubic lattice of spin-1 ions with isotropic dipolar and
quadrupolar pair interactioris. We calculate the zero-temperature energy spectra of two-spin-deviation states
over the entire range of P {the ratio of the quadrupoiar to dipoiar couphng), —1 & P ( i, for which the system
has a ferromagnetic ground state. We also calculate the spectral density of states for "quadrupolar"
excitations, which are single-ion two-spin-deviation excitations. We find that, in addition to the two-spin-wave
bound states outside the band. , there exists a new "quadrupolar" resonant state within the band, which is seen
as a distinctive peak in the spectral density of states for quadrupolar excitations. The hnewidth of the peak
decreases and the peak moves to a lower position in the band as P increases. As P approaches 1 the
quadrupolar resonant state becomes a "quadrupole wave" excitation, which is an eigenstate of the
Hamiltonian and describes the coherent propagation of quadrupolar excitations in the sohd. The dispersion
relation of the quadrupole wave is the same as that of the spin wave. We also find that, when P is sufBciently
negative, there is a repulsive interaction between two spin waves, which causes bound states to split off above
the band. We show that both the dipolar and quadrupolar pair interactions can in principle be simultaneously
determined from the Raman spectra of the isotropic system. Finally, we comment on the generalizations of
the present calculations to more realistic cases.

I. INTRODUCTION

In i ecent yeax s it has been shown that high-degree
pair interactions between magnetic ions may be
compax"able or even stronger than the dipolar cou-
plings, especially in rare-earth compounds. ~

Bare-earth ions retain many of their free-ion pro-
perties when they form solids. In particular, the
total angular momentum J= I.+8 remains a rela-
tively good quantum number. In a first approxima-
tion the effect of the crystalline surroundings on a
rare-earth ion is to split the (M'+1)-foM degener-
acy of the ground manifold. If the surrounding has
high point group symmetry, e.g. , cubic 0~ sym-
metry, the split levels will still be degenerate; the
orbital angular momentum of the rare-earth ion is
not quenched. The existence of the degenerate
levels means that high-degree pair interactions be-
tween rare-eaxth ions can be present. There are
several mechanisms which contribute to such in-
teractions, e, g. , electric multipole interactions,
Jahn- Teller effects (virtual phonon coupling), mul-
tielectron exchange (Schrodinger's idea), and the
contribution of. orbital anisotropy to exchange inter-
actions

It is of interest to understand how the high-de-
gree pair intex actions affect the elementary excita-
tion spectra in rare-earth compounds. Several.
studies have been made on this. ~ The purpose of
this paper is to study the effects of large high-de-
gree pair interactions on the two-spin-deviation
states .of a ferromagnet. We are particularly in-
terested in showing how a new dynamical symmetry
of the Hamiltonian manifests itself in the excitation

spectrum. For this reason, we will consider a
HamQtonian which is xotationally invariant, al-
though realistic HamQtonians contain anisotxopic
pair interactions and single-ion anisotropy. We
also xestrict ourselves to the case of spin 1 be-
cause this is the simplest case for which high-de-
gree terms are present.

The system we consider is described by the Ham
iltonian

&'"=- P (-l) i'"ge.'(t)c'.V), (2)
-lkme t

where 1'~' & t
X'~'I ~ 0 so that the exact ground state

of the system is ferromagnetic. 6 The terms 3.'"' and
&' ' represent, respectively, the dipolar and quad-
rupolar interactions. The summation is over
nearest-neighbor pairs of ions. The operatoxs 8„'
are spherical tensor operatox s defined by Judd. 7

6„'(i) is an abbreviation for 6„'(s'";, s';, s';). Specifical-
ly, the 6' are related to spin operatoxs in the fol-
lowing way for 8=1:

6,' = (l/&2) s„
61 y ~ 8+k1

6e = (U'~~) (».'—2),
est = + —,

' (s,s'+ s's, ),
e' =-'(s')'
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In terms of spin operators, the Hamiltonian &, Eq.
(1), can be written as

where

s, ~ s -Z s, ~ s -4 I'3",
2tl 2 ~ 2

~» P» -~ for &=1 (5b)

where

P= I (2)/I (()

They also considered the effect of single-ion an-
isotropy on the spectrum. Later Pink and Ballard
extended these calculations to the cases where the
anisotropy of the pair interactions is included. In
this paper, we are particularly interested in study-
ing the case where large quadrupolar interactions
are present, i. e. , I Pl approaching 1.

We formulate our problem by constructing wave
functions of the two-spin-deviation states based
directly on the Schrodinger equation. We find that
there is a single-ion resonant state within the band

in addition to the bound states outside the band. As
it requires a tensor operator of rank 2 or greater
to excite the single-ion resonant state (in a one step
process), we will call it a quad"rupolar res"onant

state. This quadrupolar resonant state shows up

as a distinctive peak in the spectral density of
states for quadrupolar (single-ion two-spin-devia-
tion) excitations which we also calculate in this
paper. The line width of the peak decreases and

the peak moves to a lower position in the band as p
increases. At the zone center, such a density of
states may be observed by Raman scattering.
Mechanisms for these single-ion excitations have
been derived by Moriya, Elliott and Loudon, and

Thorpe. ~0

When P=1, the Hamiltonian possesses a new

dynamical symmetry, namely, SU(3) symmetry,
in addition to SU(2) symmetry. Then the resonant
state becomes an eigenstate of the Hamiltonian,
called a "quadrupole wave, "which is degenerate
with the spin-wave excitation. ~' This excitation is
gapless and is a new Goldstone mode of the system.
The quadrupole wave describes the coherent prop-
agation of two spin deviations on the same site

~(l (1) +I (2))

a=I "~.

Pink and Tremblay have studied the effect of iso-
tropic quadrupolar interactions on the two-spin-
wave bound state spectrum by locating the poles of
the Green's functions for s =1, 2 and for

(5a)

From Eq. (4) we find that the range of K/& in Eq.
(5a) is equivalent to

through the lattice. This excitation is different
from the single-ion bound states ' '2 for which two

spin deviations are localized on the same site only
at the zone boundary. For P= 1 the spectral density
of states of quadrupolar excitations has a &-function
peak at the quadrupole-wave energy. The quadru-
pole wave and quadrupolar resonant states are the
main results of this paper. We also study the ex-
change bound states outside the band and we extend
Pink and Tremblay's calculation2 to large values
of I Pl, We find that, when P is sufficiently nega-
tive, there is repulsive interaction between two

spin waves, which causes bound states to split off
above the band. In addition to obtaining the bound-
state energies, we calculate the relative weights of
the density of states associated with the bound
states compared to that of the excitations in the
band,

In Sec. II we present our formalism and derive
the bound-state condition from the Schrodinger
equation. In Sec. III we obtain the exact zero-tem-
perature two-spin-deviation spectrum and behavior
of the wave functions for j. » P&-1 for a linear
chain and a simple-cubic lattice. In Sec. IV we
calculate the spectral density of states for quadru-
polar (single-ion two-spin-deviation) excitations.
Finally in Sec. V, we discuss our results and com-
ment on the generalization of the present calcula-
tions to more realistic cases. In Appendix-A, we
discuss the symmetry properties and the classifica-
tion of the eigenstates of a general class of isotro-
pic Hamiltonians of which the Hamiltonian in Eq,
(1) is a special case. In Appendix 8, we present
a qualitative study of the effects on the two-spin-
deviation spectra of the individual terms in a spin-
1 Hamiltonian with pair anigotropy. In Appendix

C, we discuss the symmetry of the bound-state
wave functions for the simple-cubic lattice.

II. FORMALISM

We consider a ferromagnetic system of effective
spin-1 ions described by the Hamiltonian, Eqs. (1)
and (2). The symmetry properties and the classifi-
cation of the eigenstates of this Hamiltonian are
discussed in Appendix A. Both &'" and &' ' in Eq.
(2) and hence X in Eq. (1) are invariants of the

SU(2) group. In addition, when P= 1, X is an in-
variant of the SU(3) group. The commutation re-
lations are as follows:

For all values of P, we have

and

where

I = g s „(i) (p. = x, y, z)
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I = 8„-+$q+Ig.

However, only for P= 1,

gt)'„(i), X =0 (8)

This result agrees with that by Nauciel-Bloch et
al. %e write the spin wave state as

where -2 ~ e ~ 2. Since is rotationally invariant,
we label the eigenstates of the Hamiltonian X by
the ~ component of the total spin of the system s, .
Assuming that in the ferromagnetic ground state
all the spins are aligned along the a direction, we
have 3, =N, where N is the number of ions in the
system. The excited states are characterized by
the number of spin deviations, defined by

s-(a)lg}= P e"'~ s,-lg&.
N

Besides the decrease in g, by 1 from the ferromag-
netic state, the spin wave carries with it a change
in the z component of the quadrupole moment

because

The one-spin-deviation (~ = 1) states are spin
waves. For completeness, we discuss them in
Sec. II A. %e will study the properties of the two-
spin-deviation (m =2) states in detail in Sec. IIB.

A. Spin waves

The one-spin-deviation state can be written in
the form

I p) & = +4 (r() s, I g& .

P(r, ) is the probability amplitude of creating a spin
deviation at site i, +& is the spin-lowerirng operator
at site i acting on the ferromagnetic ground state
lg&. To determine (][)(r,), we rewrite the Schro-
dinger equation

by using the spin commutation relations, in the
form

(I'"+I'"')$ (4( )-e(r +~)1=(Z -Z,)e(r ),

(11)
where ~ is the vector connecting nearest neighbors,
and Z» is the ground-state energy. Equation (ll)
can be easily solved. %e obtain the wave function
and energy of a simple spin wave of wave vector k

(12)

%e note thai the spin-wave excitation energy is
proportional to the sum of I""and r"". UnlessI' ' is fixed by some other experimental data, one
cannot identify the presence of quadrupolar inter-
actions only from the measurement of spin-wave
spectra. In the following, we will show that both
I '3' and I"'" can be simultaneously determined from
the energy spectra of two-spin-deviation states.

8. Two-spin-deviation states

The two-spin-deviation (m =2) states consist of
two-ion and single-ion excitations. %e note that
the z component of the quadrupole moment Q of the
two-ion excitations is equal to N —6, while that of
the single-ion excitations is equal to N Unles.s Q
is a good quantum number of the system, the eigen-
states of our Hamiltonians are combinations of both
kinds of excitations and can be written in the form

i &3&=g c'(r„r~)li, j) =-pc(r„r&) s, s&lg&.
isj j|j

By using the spin commutation relations and the
identity

(jj'l ii') =4s~(1-6; (,/2s) (5; ~5(, q, +5;,,5), (), (19)

we write the Schrodinger equation for two-spin-
deviation states in the following form

2zl'") (t)(r~, r~) —2I"'2' Q (t)(r& + 5, r& + 5) —2(I'~' —I'2') Q @(r&, r~+ 5) = (Z —Z~) (t)(r~, r~),
6 5

and for j &j

(F&» + F&&&)(3r3(r&, r,.)- / [3(r&+«, r& )+ 3(r&, r& +3 )])-[(I'"+3F&»)3(r, , r, , ) —II' '[3(r ... r& )
6

(20a)

+(][)(r&, r~)]}0(r~, r~. + F) = (Z- Z~)(t)(r&, r~ ), (20b)
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where (II)(r», r&) =[1 —(1/2s)5»&]4(r„r&). Since the
system is translationally invariant, we introduce
the Fourier transform of p(rf, r,. ):

p(r, , r,,) = Q e'" "'»'f'"q K(rf —r, ,).
K

(21)

By substituting E»l. (21) into E»ls. (20), we obtain
a set of E equations in the form:

(&0+ V) mK(R) = (E —&,) v'K (R), (22)

where

R = r) —r~. , (22a)

X -(R) = 2(r(" r"')

s sO-„(R) - Q cos )((R ss0)+
2

Vf»)»»(R) = —1 6(» 6)f(6)
os

- 5(R, 0)p cos
2

f(&') (22c)

&(K, k) =2r(») (1+P)

x z —P cos cos(k ~ &), (23a)
2

6

and wave function

y»» gR)0ccos(k R), (23b)

where

f(R) = (1 +00)Os(R) —40 coo( ) 0 s(0) . (000)

The term VyK(R) is the manifestation of the inter-
action between a pair of spin waves. ln the absence
of the term Vy-„(R) E»l. (22) describes two free spin
waves with total wave vector K and excitation ener-
gy 8 =E —Eg

where 2k is the relative wave vector of the pair.
By using Eqs. (22) we can derive the expression
for the scattering potential between two spin waves
in terms of the total and relative wave vectors,

h „=S~r'"(1iP). (26b}

Note that the neighboring-ion excitation is energet-
ically favored only if 1+SP & 0, and then the binding
energy is e»lual to I'(») (1+Sp). When 1+Sp& 0,
the energy for neighboring-ion excitation is higher
by I'~'

j 1+3pl than thy single-ion and non-neigh-
boring-ion excitations.

To solve Ett. (22) for the total wave vector K
within the Brillouin zone, we use the standard
Green's-function method. That is, we introduce a
Green's function

V(K, k„k,) = —I""g (1+SP) cos(k, ~) —4P
5

K &x cos cos(k& ~ &) —cos 2-)
(24)

where 2k„2ka are, respectively, the incoming and

outgoing relative wave vectors of the two inter-
acting spin waves. In the special case that P=0,
the Heisenberg case, this expression agrees with
that given by previous authors. 3 We note that V
can be attractive or repulsive, depending on the
values of P, K, kg, and k2.

The solution of E»l. (22) at the zone boundary
where cos(K ~ 6/2) =0 is very simple. We find that
the excitation energy is

(26a)

for states with neighboring spin-deviations, i.e. ,
y»(R) = &(R, &). For the states with spin-deviations
on the same ion or non-neighboring ions, p»(R)
= 1 —5(R, 6), the excitation energy is

1 r cos(p R}
D-„(R) =- -Z

N r 2(I' '"+X'~') [z -Q; cos(K ~ 5/2) cos(p ~ 5)]—h (26a)

(26b)

v'K(R) = Q &x(R'}DdR —R )

and show that it satisfies the equation

&,D-„(R) —h D-„(R)=6(R, 0).
Hence the solution for E»l. (22) yK(R) must be a
linear combination of the Dx(R). We assume that
the form for y"„(R) is

X-„(6)= —VV„-(6)= r'&'f(6),

R-(0)= —) (s"„(0)=—I'0 Q cos( )f(0),

&"„(R)= 0 if R + 0, R 00 & .

(28a)
0

(28b)

(28c)

By substituting E»l. (27) into E»t (22), and b.y using
E»l. (26b), we find

When we place the coefficients in E»ls. (28) into
E»l. (2'7) and consider only lattices with inversion
symmetry, we reduce the set of N equations, Eq.
(22), into a set of —,x +1 e»luations for R&+ 1 non-
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vanishing coefficients A2 =A-„(0) and A/ -Ax(5&)
(j=1, ... , 2z). The equations can be written in the
form:

(1+M)A =0,
where 1 is a (2z+ 1)x (2z+ 1) unit matrix, A is a
(2z + I}&& 1 column matrix, with elements A; (i = 0,
1, . . ., as). M is a (2z+1)x (2z+1) matrix whose
elements are

(29)

(SOa)Mph=0,

M21-2n, (i=1, . . . , 2z), (Sob)

M,2= —[(1+SP) D, —4Pn, D2]/2z(1+ P) (i =1, . . . , —,'z),
(30c}

M(/ = —[(1+SP)D1/ —4Pn, D/]/z(1+ P) (i, j= 1, . . . , 22),

(sod)
where

K
~& -=cos

2
(i= 1, ~ ~ ~, 2z), (31)

1 cos[(1- &~)p 5,]cos[(1—&,2)p ~ ~„]
t (2/z) —$,.,„..„/2 n, cos(p ~ ~1)

(32a)

(32b)Dv =Do v=.Dvo &

and

t= 1-8/2zl'1'(1+P) . (33)

For nontrivial solutions of A, (i = 0, 1, . . . , 2z),
we require that

[1+M[ =o. (34)

Therefore we must solve Eq. (M) for t. Then cor-
responding to each solution t, we obtain the coef-
ficients A, by solving Eq. (29). Finally, by sub-
stituting the values of t and the A, 's into Eqs. (2V)
and (33), we obtain the wave function and energy
of the two-span-deviation states.

M12A2+ (1 +M11)A1 —0 (36b)

where we have used the fact that Mpp = 0 and Mp~
=2n, see Eq. (30). From Eqs. (30)-(33), we find
that

M = [4PnD —(1+3P) D ]/4(1+ P),

M11 = [4pnD1 (1+ S—p)D11]/2(1+ p) .

(37a)

1 cos'(pa)
t- n cos(pa}

1 ~ cos(npa)
N ~ t —n cos(pa) '

(38a)

(38b)

t=1 h/4r "—"(1+P) (39)

By some algebraic manipulations of Eqs. (38), we
see that the functions Dgg Dg'and Dp are related in
the following way:

nD~)= tD~,

tDo-
(40a)

,(4ot)

n(D„,1+D„1)= 2(t D„—5„2). (40c)

For s =2, and the condition for nontrivial solutions,
Eq. (34) is of the form

(2V) and performing a contour integration. From
Eqs. (26a) and (27), we see that the wave function
is given as

1 ~ cos(pR)[A, +2A, cos(pa)]
&+ 4I'"(1+P)[t- ncos(pa)]

where a is the lattice constant, and n = cos(2ffa).
For z=2, Eq. (29) is of the form

(36a)

III. ENERGY SPECTRA AND WAVE FUNCTIONS
& +M)~ —2(y M~p

- O . (41)
In this section, we apply the formalism presented

in Sec. II to obtain the energy spectra and wave
functions of the two-spin-deviation states. The
qualitative features of such states are the same for
the different lattice structures and it is instructive
to obtain analytic results whenever possible in
order to obtain a clearer picture of these states.
Therefore, we first obtain analytic results for a
linea, r chain. Then we study the simple cubic lat-
tice; for this case we use numerical methods to
obtain our results.

A. Linear chain

a+5 Dp- Q,

where

a = (1 —5P) + (1+SP)t/n' (42a)

b=[4Pn' (1+SP)t](t -n')/n'. - (42b)

The analytic form of Dp can be obtained by a
contour integration. It is

By using Eqs. (37)-(40), this condition is written
as

In this subsection, we solve Eq. (29) for t and
A1/A2 for a linear chain. The corresponding wave
function Eq. (27) is obtained by substituting the
value of t and A1/A2 into the terms entering Eq.

(t2 n2)-1/2

For energies outside the band, I tl & n,

+ 1/(t2 n2)1/2

(43)
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t/a -plane

1 pea
o

& ~ p&-&/s

P ~l/2

p
pa)

P =-l/3 )I (b)

j' ~ ~ ~ ~ ~ gus~ (

-f/3 &p &-)

0
I

FIG. 1. I,ocation of solutions to the bound-state con-
dition, Eq. (42), in the upper half t/0-plane; for (a) 1
&p&-3, (b) p=- —,', (c) ——,'&p& —1. The lines parallel
to the real axis represent the real solutions on the physi-
cal sheet. The solid lines and the connecting broken
lines in the upper half of the plane represent the com-
plex solutions on the unphysical sheet. The broken lines
represent the schematic interpolation between the com-
plex sot. utions represented by the solid lines, The ar-
rows indicate the direction of increasing o'. The branch
cuts are represented by the wavy line. In (b), the real,
solution bel, ow the band increases from l. 155 to a maxi-
mum value and then decreases to 1 as cv increases from
0 to 1. In (c), the real solution below the band increases
from 1 to a maximum value and then drops back to 1 as
0. increases from o.2 to 1.

where

q = ln —~ (&2/&P —l, )1/ ~

6 (48a)

The excitation energy of these states is obtained by
using Ell. (39) and is shown in Fig. 2 by the thin
solid lines for P= 0, 0. 5, and 1, respectively. We
note that the exchange bound states move away
from the band as P increases. For P=1, these
states have a simple dispersion relation and wave
function,

8 = 2r'1& (1 —cosK&),

p (na)o-e '"" —& 0

where

(47a)

(47b)

By using the various forms for Do, Elis. (43),
we solve Ell. (42) for t. We find that for each
given value of n and P, either there are two real
solutions for ~ on the physical sheet, one above and
one below the band, or there is one real solution
on the physical sheet and one pair of complex con-
jugate solutions on the unphysical sheet, see Fig.
'1. We will consider the following regimes of P
values separately. (i) 1 &P & —3, (ii) P= —3, (iii)

1
3 &p&-1
(i) 1 & p& —3. For each valueof n there is one real

solution for t below the band on the physical. sheet.
This corresponds to the exchange bound states,
whose wave function has its maximum amplitude at
nearest-neighbor separation, i.e. , B=a:

+1 (f + ) -inly
~lc(+~) 2rll&(1 p) (p &&)1/Re 5n 0, (45)

where the plus sign is used below the band (& & n),
and the minus is used above the band (« —n).
side the band, I t t & n,

q = ln(1/n) . (47c)

~,/(l&.
2 f3)1/2 (43b)

y ( )=2r, 1&(1 )
[(t— )D„—5„], (35a)

By performing a contour integration, one can easi-
ly obtain

~2 g/a- tnt

(f2 &R)1/2
Q Q

(44)

so that the wave function as a function of t is given
as

(45)

where the plus and minus signs are used above and

below the branch cut, respectively. From Eqs.
(27), (36a), and (40c), we see that the wave function
in Ell. (35) is of the form:

QQ
+

s '
M
CU

~/2

Ka/2

FIG. 2. Two-spin-deviation spectra for a linear chain
for P=0, 3, and 1. The broken lines in the band repre-
sent the quadrupolar resonant states. The thick solid
line in the band represents the quadrupole wave disper-
sion curve. The thin solid lines below the band repre-
sent the exchange bound states.
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where

9 = cos (I t
I /n) (48b)

Within the band on the unphysical sheet, there is
a pair of complex conjugate solutions for t for 0
& n &

n& where n&= —(1+3p)/4p if p& -17- and n, = 1
if p&-&~ [see Fig. 1(a)]. The solutions with small
imaginary parts correspond to quadrupolar (single-
ion) resonant states; their wave functions have a
damped oscillatory character.

A, (t- n') e,„„+~K(sa) 2F(l&(1+ P)n (n2 t2)1/2 e 6,Q

(48a)

q = 1nll+ I t/I /(na —ta)~/a], (48c)

where t„and t& are, respectively, the real and imag-
inary parts of the solution t. We note in Fig. 1(a)
that, for a given value of n, t„ increases and t, de-
creases monotonically with increasing P, i.e. , the
resonant states move to lower positions in the band
and have longer lifetimes as P increases. In Fig.
2, we show the dispersion curve of the resonant
states by broken lines within the band for P = 0 and

0. 5. As P approaches one, the resonant states
become pure quadrupolar excitation states and

their dispersion relation is given as

8 = 4r'" (1 —cosxa) . (49)

This spectrum is shown in Fig. 2 by the thick solid
line in the band. We note this energy is twice the
energy of the exchange bound state Eg. (4Va). For
such a state, two spin deviations on a single-ion
propagate together through the lattice with wave
vector K. As mentioned in Sec. I, we call this a
quadrupole wave. The dispersion relation of the
quadrupole wave is the same as that of the spin
wave and it is gapless at the zone center. As dis-
cussed in Appendix A, this is a new Goldstone mode
of the system due to the SU(3) symmetry of the
Hamiltonian when P = l.

From Fig. 1(a)we also notethat, for agivenvalue
of P, I t„I/n decreases monotonically with de-
creasing n for the range of p, 1 & p& —3, When
1 & p & —+7, I t~ I /n decreases monotonic ally to zero as
0. decreases to zero. That is, the resonant state
energy moves towards the center of the band and its
lifetime becomes longer as the zone boundary is
approached. When —+7& p& —s, I t~ I/n = 0 for
1& n & n~. As n decreases from n~ to zero, I t;I/n
rises sharply and then drops slowly back to zero.
Therefore, there are no resonant states near the
threshold n„although they exist near the zone
boundary. ~~ The real solutions of t for 1~,» n&
correspond to bound states above the band. Their
presence is due to the repulsive interaction between
spin waves, Eg. (24), and their wave functions are
given as

K a/2

FIG. 3. Two-spin-deviation spectra for a linear chain
for P =--, —3, and —~. The broken lines within the
band close to the zone boundary represent the quadrupo-
lar resonant states. The thin solid lines represent the
bound states outside the band.

-A~
+ E(+a) 2F(l) (1 ~ P) n

~ (-1)" e-" ~ .. . ,—„+5„, , (50)«~, (!tl + n')

where

q=ln +(t /n —1)
. p p

The two-spin-derivative spectrum for p = —0. 2 is
shown in Fig. 3.

(ii) P= —3. There are two real solutions on the
physical sheet, one above and one below the band,
see Fig. 1(b):

t = 3n [ —n + 2 v'3 + n'] (51)

The plus and minus signs are for the bound states
below and above the band, respectively. The wave
functions for these bound states are given by Eqs.
(46) and (50). At the zone boundary all the energy
levels are degenerate. The spectrum for p= —-3

is shown in Fig. 3.
(iii) —~ & p & —1. Below the band, there is one

real solution for ~ on the physical sheet for 1 & o. . .

&na(l 3+)P/4. PThe wave function of this bound
state is given by Eq. (46). The degree of localiza-
tion depends on the relative binding energy. At
n =1 and n = n~, the wave function is spread out.
When 0& n& Q.~, there is a pair of complex conjugate
solutions for ~ connected to the reaI solution at
n=na, see Fig. 1(c). The imaginarypartof t/n is
small only when o. -0. Hence, resonant states
exist only near the zone boundary. These states
are represented by the broken line in the band in
Fig. 3.
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Above the band, there is one real solution for
on the physical sheet for each value of n. This also
corresponds to bound states which have localized
wave functions as a result of the repulsive nature
of the spin-wave interaction, Eg. (24). However,
these states are different from the exchange bound
states below the band found by Wortisf4 and Hanusf'
in the following way. Although the two spin devia-
tions are sharply localized on neighboring ions at
the zone boundary, they are more localized on a
single ion as the zone center is approached. The
excitation energies of these states are represented
by the solid line above the band in Fig. S. As p
decreases, such a state moves further away from
the band.

Mfo 1 +Mff M~ Mfp

Mfo Mfn f +Mf f Mf~ A3

=0 (52}

Mfo

where from Eg. (30b}
1e = cosg«,

1 yMff

(53a}

and from E'ls. (30)-(33)

M~0 = [4pnDO —(1+8p) D~]/12(1+ p), (53b)!

M, „=[4POD, —(1+Sp)D,„1/6(1+p) (p=1, 2), (58c)

cospf cosp„
&,~&, &- n(cosp, +cosp, +cosp, )/3

(58d)

1 ~ cos(spy}
N p

f —lx(cospg+ cospn+cosps)/8

The functions D are related in the following way:

(53e)

o'(D~|+ 2D~) = StD~ (54a)

atDf = tDo

The matrix Eg. (52).has nontrivial solutions if the
following condition is satisfied

(1+M|)™i~)~(1+Mgg+ 2M~~ —6O'gqo) = 0 ~ (55)

This agrees with the bound state conditions obtained
by Pink and Tremblay from the location of the
poles of the drab. -time Green's function. In Ap-
pendix C, we show that the wave function of the
hound states satisfying the condition

B. Simple-cubic lattice

In this subsection, we consider the case of a
simple-cubic lattice for which s = 6. For the total
wave vector K of the two-spin-derivation states along
the cubic diagonal, i.e. , K=X(1, 1, 1), Eq. (29) is
of the form,

2n Ao

1 +M„+2Mf2 - 6~Mfo = 0 (56a)

6(1+P) (1+SP-)(D -D )=0. (56)

By using the tables of lattice Green's functions by
Maradudin e~ ~E. for the functions Df f and Dfg,
we solved Eq. (51) for t outside the band for given
values of P and n. From the relation E'l. (33}, we
have obtained the energy spectra of the d-wave
bound states.

As in the one-dimensional case, there exist quad-
rupolar (single-ion) resonant states in the two-spin-
wave band for the simple-cubic lattice. W'e obtain
the energies of these resonant states from the loca-
tion of the peaks in the spectral density of states
of quadrupolar excitations which are calculated in
Sec. IV. Here we present the results for the ener-
gy spectra of the bound states outside the band and
the resonant states within the band for two regimes
of p: (i) 1&p---,', (ii) —k&p&-1.

(i) 1& P & —s. For a given value of P, we find

that below the band there are s-wave exchange
bound states for a, & z ~ 0, and doubly degenerate
d-wave exchange bound states for e& & e ~ 0, where

o', =([(1+&P) C + (1 —5P)l+ ( [(1+7P) C + (1 —5P)j'

have s-symmetry wave functions, while the wave
function satisfying the condition

&+M„-Mf2=0

has d-wave character. The d-wave amplitude is
zero for zero separation of the two spin deviations,
R= 0, while by definition the wave functions for
single-ion excitions have a finite amplitude at zero
separation. As we show in Appendix C, the quad-
rupolar interaction &'3' does not mix the d-wave
solutions with either the s-wave or the single-ion
solutions. However, it does mix the s-wave and
single-ion solutions. Silberglitt and Torrance, '2

who studied the effects of single-ion anisotropy on
two-spin-wave spectra, were the first to observe
that the d-wave bound states did not mix with either
the s-wave or single-ion bound states. By using
Erg. (58), the s-wave condition, Eg. (56b) is re
duced to the form

a+~Do= 0

where a and b are given by E'ls. (42a) and (42b)
This equation looks the same as Eg. (42) except
that here Do is a three-dimensional integral, Eq.
(53e). We have calculated the values of Do for
l f/u i &1 by using the numerical method of Cheby-
shev interpolation'7 and we have solved Eg. (5V)
for t. From the relation between t and excitation
energy 8, Eq. (33}, we have obtained the energy
spectrum of the s-wave bound states for given
values of P and n.

The d-wave condition, E l. (56a) can be reduced
to the form:
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- 16pc(c —1)(1+3p)}"*)/epc

where C—= 1.5164, and

(ee)

(60)

We note that a& also decreases monotonicaQy with
decreasing P; for P= —3, n~=( 2- C)/C =0.33.
Therefore, s-wave bound states exist above the
band for the total wave vector K less than the thres-
hold value If, = (2/s) cos 'a, . Their wave functions
are localized. The degree of spatial localization
decreases with 0.. At the threshoM value e„ the
wave function is spread out.

%'ithin the band, there are quadrupolar resonant
states with wave functions which have a damped .

oscillatory character. Such states are represented
by the broken line in Fig. 4 for p=0. 5. Note that
these states connect to the tip of the band at the
zone boundary. In the rest of the Brillouin zone,
however, they move to lower positions in the band
as P increases. As P approaches one, they become

FIQ. 4. Thoro-spin-deviation spectra for a simple-cu-
bic lattice for P = 2. The broken line in the band repre-
sents the quadrupolar resonant states. The solid lines
belovr the band represent the s-wave and d-wave ex-
change bound states.

a, = 0.OeS(1+ SP)/{1+P).

Note that n, & c. „. For p & —3 both e, and n, are
increasing functions of p. For example, at p=- s,
n, =n„=O; while for P=1, o,=0. 33, and o~=0. 186.
This impUes that as P increases, the exchange
bound state exists below the band over an increasing-
ly larger fraction of the Brillouin zone. %e also find
that the relative binding energy of these bound states
becomes stronger as p increases. In Fig. 4, we
show the energy spectra of these exchange bound
states by the thin solid lines for the case of P = ~.

In addition to the bound states below the band we
have found that in the small interval —3& p& p&,

where p&=c/(4- 7C) =-0.23, s-wave bound states
appear above the band for 1~ n &0.&&Q, where

c.&=-(~(I+7P)C+(I —ep)l+( f(1+7P)C+(1- ep)P

—lepc(c —1)(1+3P)P")/epc . (61)

Ka/2

F&G. 5. Tv'-spin-deviation spectra for a simple-cu-
bic lattice for P = —0.8. The thin solid lines represent
the exchange bound states above the band.

eigenstates and their dispersion relation is given
as

8 = 12I'"' (1 —cosKa) .
This energy is just three times the energy for the
case of the linear chain, Eq. (49), due to the fact
that ~ = 6 in the simple-cubic lattice, and z = 2 in
the linear chain. The character of these states is
exactly the same as in the one-dimensional case.
That is, it is degenerate with. the spin-wave mode
and is gapless at the zone center. It is a new
Goldstone mode of the system due to the SU(3) sym-
metry of the Hamiltonian for P= 1, see Appendix A.

(ii) —3 & p & —1. In this regime, there are no
bound states below the band nor resonant states
within the band. Above the band, there are doubj, y
degenerate d-itrave exchange bound states for e~
&at ~ 0, where n„= —n& if l o.„t & 1, and n„= 1 if
In„l &1, where n, is givenby Eg. (60). From Eq.
(60), we note that a~ increases monotonically with
decreasing p, until p—= —0.86 for which 1m~i =1.
This implies that the 4-wave bound states only
exist above the band for the total wave vector K
larger than some threshold value when p &-0.86,
while for p & —0.86 they exist over the entire Bril-
louin zone.

There are also s-wave bound states above the
band over the entire Brillouin zone when P& —0.36.
For —~ & p & -0.36, we find that s-wave bound
states do not exist over a small intermediate region
of the Brillouin zone. In Fig. 5 we show the
spectrum for P= —0.8. We see that the dispersion
curve of the d-wave bound states is rather flat.

IV. DENSITY OF STATES

The effect of quadrupolar interactions on the
elementary excitations can be seen in the spectral
density of states of the quadrupolar excitations.
These are two-spin-deviation excitations, m = 2,
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G2(i, i; j,j; t) =— i8(t) (A-(i, i; 0)A (j,j; t))~

where

A(i, i'; t) = s;(t) s; (t),

(62)

(62a)

and 8(t) is the unit step function. The expectation

that occur at the same site. In this section we will
show that the single-ion (quadrupolar) resonant
state is seen as a sharp peak in the density of
states. As one increases P, the linewidth of the
peak decreases and the peak moves to a lower posi-
tion in the band. At the zone center, the spectral
density of states of quadrupolar excitations may be
observed by Raman scattering. Mechanisms for
these quadrupolar excitations have been derived by
Moriya, Elliott and Loudon, and Thorpe.

To calculate the spectral density of states of the
quadrupolar excitations we introduce the Green's
function

value of the operators is taken over the ground-
state configuration of the system. (This Green's
function is of a more general form than will be
needed to study the spectral density of states of
quadrupolar excitations. It has the advantage that
one ean use the expressions we develop to obtain
the Green's function for two-spin-deviation excita-
tions at different sites. ) When i =i ' and j =j ' we
note from Eq. (3b) that A is related to the quadru-
polar operator, 53, as follows.

A(i, i) = 28 (i), (63)

and the Green's function for quadrupolar excitations
ls

G, (i, i;j,j; t) = —4i 8 (t) (n22(i, 0) s'2(j, t) ), .

As our system is translationally invariant, we
define a Green's function that has been partially
Fourier transformed

(64)
rj+r .,ri+r

where p~=r&, —r, and p;=r;. —r; represent the separation between the two sites at which the spin deviations
occur. By using the spin commutation relations and the identity Eq. (19), we find that these Green's func-
tions obey the following equation

I.2«'"(1+0)—&)G (t;, t ) 1"'"(1+—p)pc»(-'K 5) IG (t;, t +5 )+G (t, t 5')]-
e~

—l""' I" 5 6p, , (5 —5p, , Q cos~K & I' =4~&p;, 0 —1 ~p;, p, +~p;, —p; (65)

where

&(~)=(1+3p)G2(t;, P)-4pc»(-K p) 2(p; 0).
(65a)

The last term on the left-hand side of Eq. (65) is
the manifestation of the interaction between a pair
of spin waves with total wave vector K. Note in
the special case of p = 0 Eq. (65) agrees with Eq
(3. 6) in Ref. 10. By following the method used by
Thorpe, ' we solve Eq. (65) and obtain the expres-
sion for the quadrupolar Green's function G2(0, 0).
For a ~s-dimensional hypercubic lattice and for the
total wave vector K along the hypercube diagonal,
we find that

2 [(1+3p) Di —2(l + p) n D2]
r2"'(1+ P)n(a+ h D,)

where n = cos(—,Ka) and K is the magnitude of each
component of K.

The spectral density of states for the quadrupolar
excitations is related to the imaginary part of the
quadrupolar Gr«n's function G,(0, 0), (66).

21 (l) 1+pS(K, h) —= ImG2(0, 0; K, h) . (67)

A. Lmear cham

For a linear chain we obtain an analytic expres-
sion for the quadrupolar Green's function:

where

2n2(1 p)2 (t2 n2)g/2 a(t)
r»(i, p) ~(t)

(68)

b (t) = a2+a, t+a2t2 pa, t',
u(t) = a, t '+ a, t+ a, ,

a, = n'[(1 —5 p)'+ 16p'n'],

a, =2n (1+3p) (1- 5p) —8pn4(1+7p),

a2 = (1+3p)'+ 16pn'(2+ 3p),

a = —4(1+p) (1+3p),

a4 = (1+3p)'+ 2n'(1+ 10p+ 13p'),

(68a)

(68b)

(69a)

(69b)

(69c)

(69d)

(69e)

a2=n (1+3p)(1 —5p) —8pn (1+p) (69f)

In the special case of P= 0, the expression in Eq.
(68) agrees with Eq. (H. 20) in Ref. 19 by Wortis.
Inside the band, l ti & n, we find the density of states
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(a),2, ,

{5-

t -d
S =

K = 0{a~&}

~'(t) ~»'(I —P)' t!(t' ~')"'
w(t) =

t2tl(t) (V2b)

{0-

P={/2

I
I

1

p=p
I

~+
.r

1
N1 v(~2 t2)1/2 (72)

where u (t) =du/dt. The minus and plus signs in
Egs. (V2) are for below and above the band respec-
tively.

The density of states curves for the linear chain
are plotted in Figs. 6 and V. For non-interacting .

spin waves the density of states is given as

0
0

(b)

I

pat

t-d
S2
K ~ {20
{o~t/2 } 50

p ~i/2

-40

2

g/a z r"'(~+p)

and is shown in Fig. 6(a) by the broken lines. We
note that the interaction between spin waves dras-
tically changes the density of states even when no
quadrupolar interactions are present, i.e. , p=0.
As p increases the resonant peak becomes sharper
and lies at a lower position in the band. For P=1,
we note from Eels. (70) and (Vl) that the entire den-
sity of states is just one 6dunction.

0 0.5-

pap
pep

ipa „ /
t/2

P 2

05 t t 5
g/war"'(~. p)

-20
) -d P=-&/4
S= ) K=O{u=t)

O.e

-0.4 +

FIG. 6. Density-of-states curves for a linear chain for
p =0, 2, and 1; and for (a) G. =l, (b) a=2. The broken
lines represent the density of states for non-interacting
spin waves. The chain and so}.id lines are respectively
for the cases of 8 = 0 and 0.5. We note that the peak be-
comes sharper and lies at a lower position in the band as
p increases. For 8 =1, the density of states is just the
delta function shown by the arrow. In (b), there are also
arrows below the band representing the exchange bound
states. The length of an arrow represents the weight
associated with the bound state.

(b)
t —d P=-314
S = ) K=)69.4

(a=0.))
-60

(c)
) —d

S=)
P =-)/2
K =169.4
(0= 0.()

) 20-

-'0 2
I

states is

2~2(1 p)2 (t2 ~2)1/2/~g(t) (70)

80-

The density of states outside the band, I tl &t2, is
given as

-20
40-

Wt] 5t-t], (71)

where t; is the value of t for a bound state [4(t,) =0].
The weight of the bound state is given by

M(t) +2(y (1 —P) (t' —n )"
~'(t)

for the case when & (t,) = (d/2, /dt). .. is nonzero. I-f

& (t,) = 0 but the second derivative /2 (t,) is nonzero
we have

0.6 ) ).4
g/221'"{}+P}

0.5
g/22 I'"{{+P}

FIG. 7. Density-of-states curves for a linear chain for
(a) P=-4, o =1, (b) 8 =-4, 0. =0.1 (c) p=-2 a.nd o.
=0.1. The arrows outside the band represent the bound
states whose weights are represented by the lengths of
the arrows.
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g)=5(t —n ) (74)

for all n. This represents the quadrupole wave
mode for p= 1 and is shown by the arrow within the
band in Figs. 6. The bound states for a & 1 are
shown by the arrows below the band in Fig. 6b;
their length represents the weight of the bound
state. In Fig. 6(a) the divergence inthe densityof
states at zero energy is due to the fact that the
bound state touches the bottom of the band at the
zone center, see Fig. 2.

The density of states curves are tluite different
for negative P. At the zone center (n =1), the den-
sity of states within the band, Fig. V(a), is greatly
reduced when compared to the curves in Fig. 6a,
and there is no resonant peak in this case. The
bound state above the band takes on the finite weight
shown by the arrow in Fig 7(a.). Near the zone
boundary n = 0. 1, we find there is a very sharp
resonant peak in the band and a bound state below
the band for p= —0. 25, see Fig 7(b.). When the
quadrupolar interactions become more negative
[see Fig. V(c) for p = —0. 5 and a = 0. I], we note that
the resonant peak lies below the center of the two-
spin-wave band, i.e. , at t&0, and that the bound
state lies &bove the band.

B. Simple-cubic lattice

50-

20-

)0-

40-

30—

(b}

5-d
S=)
K *0{+sl)

P =&/2

P=&i2

S-dS*)
K a&20
(= )/2)

P=O

I

/~a z r"'(i.p )

For the simple-cubic lattice. the Green's function
for quadrupolar excitations propagating along a cube
diagonal, K=K(1, ?, 1), is given as

2(1+P)Do (1 + 3P)Di—l&
2 I t I 3F(1&(I+P)(&+bD )

where o. = cos&Ea, Do and D, are given by Eci. (53e)
(n=0, 1), and a and b are given by Egs. (42a) and

(42b). From Egs. (56b) and (57) we deduce that
only states with spherical symmetry (s-wave states)
contribute to the spectral density of states for quad-
rupolar excitations. To calculate the density of
states from Eg, (V5) we used the table generated by
Silberglitt 3 for the real part of Do and Baroody's
formula for the imaginary part of Do within the
band. Also we used the Chebyshev interpolation
method of Mannari et al. "to calculate D, and &D,/
~~ outside the band. By combining these numerical
tabulations we were able to calculate the density of
states for tiuadrupolar excitations Eq. (75), both
inside and outside the band for the simple-cubic
lattice.

In Figs. 8, we show the density of states curve
for Q. = 1 and n =0. 5 for P= 0, 0. 5 and 1. The
qualitative features of the resonant peaks are the
same as in Figs. 6. However, for the simple-cubic
lattice the density of states for non-interacting
spin: waves, has Van Hove singularities. These are
washed out by the interaction between spin waves
even in the case when p=0. 2~ In Figs 9, we show.

20-

10-

jl
~ P 0
I

o)
I.
) ~

~ 1

l;
Ii
t i
I

r &-qi
r

L

r. "1
0.5

@~ad r"'0.p ~

the density of states curve for e =1 and Q. =0.1 for
P= —0.5. The density of states within the band in
Fig. 9(a) is drastically reduced as compared with
that in Fig. 8(a), and the Van Hove singularities
remain. The bound state above the band takes on
finite weight.

In Figs. 10 we plot the weights of the s-wave

FIG. 8. Density of states curves for a simple-cubic
lattice for p=0, 2 and 1, for (a) o.'=&, and (b) o. =-,'. The
broken lines are for non-interacting spin waves. The
chain. and solid lines are for P =0 and 2, respectively.
The arrow represents the &-function peak of the density
of states at the quadrupole wave energy for p=1. %e
note that the Van Hove singularities for the non. -inter-
acting case are washed out even for p =0. The resonant
peaks are sharper for larger values of P and smaller val-
ues of o.
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1.2-
3-d
S =i
P =-I/2
K ~ 0(a &i)

—i.0

0.4" "0.5

0 2

gtazr"'(i tt)

3-d40- S=~
P =-)/2
K =(69.4
(a=O. I)

(b)
)i

30-

20-

- O. l

PIG. 9. Density-of-states curves for a simple-cubic
lattice for p=-2 and for (a) 0 =1, (b) 0 =0.1. The ar-
rows represent the bound states outside the band. We
note that the Van Hove singul. arities remain in the density
of states within the band.

We have studied the effects of quadrupolar inter-
actions on the elementary excitations of a spin-1
ferromagnet. The only effect of the quadrupolar
interaction on the spin-wave energy is to vary the

bound states for a simple-cubic lattice for various
values of n and P. We find for bound states
above the band that their weight for a given value
of P starts at zero and increases monotonically
with ct, see Fig. 10(a). For a given value of o. we
find that the weight W[t, (c.,P}] and the splitting of
the bound states off the top of the band increases
monotonically with decreasing p, see Fig. 10(b).
For the bound states below the band, and for given
value of P, the weight W[t,(n, P)] increases from
zero to a maximum value and then drops back to
zero as a goes from zero to the threshold value a,
where the bound state merges with the bottom of
the two -spin-wave "band. In Fig. 10(c), we show
this variation of the weight for P=0. 5. The qualita-
tive feature of the variation of the weight with cy

and P in a linear chain is the same as that in a sim-
ple-cubic lattice.

V. DISCUSSION OF RESULTS

size of its dispersion. However, in the energy
spectra of two-spin-deviation (m =2) states, we
have found that the presence of quadrupolar inter-
actions has a marked effect. The single-ion m =2
excitations, which we call quadrupolar excitations,
are in general mixed together with the two-ion ex-
citations. For the isotropic Hamiltonian the mixing
occurs unless, 8=1. This means that if we try to
propagate a qu3drupolar excitation in a solid de-
scribed by the Hamiltonian Eq. (1) for p& 1, it de-
cays into two-ion excitations. Therefore the quad-
rupolar excitations form resonant states within the
two-spin-wave band. These quadrupolar resonant
states have finite lifetimes which increase with P
and the total wave vector K. They are seen as dis-
tinctive peaks in the spectral density of states of
quadrupolar excitations within the band. For a
given value of the total wave vector K, the line width
of the peak decreases and the peak moves to a
lower position in the band as P increases. For a
given value of p, the peak moves towards the center
of the band and its line width decreases to zero as
the zone boundary is approached.

When P = 1 the total quadrupole moment of the
solid is a good quantum number, see Appendix A.
As we noted in Sec. II, the total quadrupole moment
of the solid is different for quadrupolar excitations
and two-ion excitations. Therefore the decay of
quadrupolar excitations is forbidden for P= 1 because
such a process does not conserve the total quad-
rupole moment of the solid. %e call the eigenstate
which describes the coherent propagation of the
quadrupolar excitations through the solid a quad-
rupole wave. The spectral density of states of
quadrupolar excitations has a &-function peak at the
quadrupole wave energy. W'e have also recognized
that for this special ratio of the coupling constants,
P= 1, the Hamiltonian possesses SU(3) symmetry.
This manifests itself in the excitation spectrum in
that the dispersion relation of quadrupole waves is
identical to that of spin waves. At the zone center,
K= 0, the quadrupolar excitations are propagated
through the solid with zero energy. This zero-en-
ergy mode is a new Goldstone boson which acts to
restore the SU(3} symmetry that is broken when the
ground state of the system becomes ordered.

Aside from the quadxupolar resonant states inside
the two-spin-wave band, we have found that the
bound states outside the band are also affected by
the presence of quadrupolar interactions. Depending
on the ratio of the quadrupolar coupling to dipolar
coupling P, these bound states exist either above
or below the band, or simultaneously both above and
below the band. The bound states below the band
are more strongly bound for larger values of p.
When P is sufficiently negative, there is repulsive
interaction between two spin waves, which causes
bound states to split off above the band. This split-
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(a) (c}
5-d
S=&

0.5
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0.2 0.4

3-d
S= I

FIG. 10. (a) Weights 8'associated with the s-wave
bound states as a function of e for P = —.

2 in a simple cu-
bic lattice. (b) The weights 8" (solid line) and the energy
splittings (dashed line) of the bound states above the band
as a function of P for n =1 (zone center) in a simple-cu-
bic lattice, (c) The weights 8" as a function of ~ for P
=2 in a simple cubic lattice.
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ting increases as p decreases, i.e. , p becomes
more negative. %e have also calculated the weights
of the spectral density of states of quadrupolar ex-
citations associated with these bound states. We
found that the d-wave bound states in a simple cubic
lattice do not carry any weight in this density of
states. However, the weight of the s-wave bound

state above the band increases monotonically with
decreasing p (p& 0) for a given value of K, and it
decreases monotonically with increasing K for a
given value of negative P. For the s-wave bound

states below the band, the weight increases from
zero to a maximum value and then drops back to
zero as P increases towards one, for a given value
of K. Thi.s weight behaves the same way if we fix
the value of P and let K increase toward the zone
boundary.

The zone-center density of states of quadrupolar
excitations can be observed by RMDan scattering.
From the location and line width of the peak as-
sociated with the quadrupolar resonant state within
the band, and the location and weight of the peak as-
sociated with the bound state above the band, one
can in principle determine the quadrupolar coupling
I' ' and dipolar coupling & simultaneously from

where

Darnel

(76)

We find that whenever p, =I'~+'/I", ~'= 1, a quadru-
pole wave is an eigenstate of the Hamiltonian, Eq.
(76). The dispersion curve of the quadrupole wave

may overlap with the two-spin-wave band, de-
pending on the relative magnitudes of the five cou-
p].ing constants I"'" Z' ' I' ' and P' '=P"' see-
Fig. 12(a). If I", ' deviates slightly from I',"', with
the other constants fixed, there exist quadrupolar
resonant states within the band. ' The lifetime of

the Raman spectra. This interpretation assumes
an isotropic Hamiltonian is appropriate to the sys-
tem being studied.

We have considered isotxoPic Hamiltonians to il-
lustrate the effects of high-degree pair interactions
on the elementary excitation spectra of ferromagnets,
although as we mentioned in Sec. I this is an
oversimplification. In real systems the pair inter-
actions are generally anisotropic, e.g. , for a cubic
system the quadrupolar interactions must be de-
scribed by at least two coupling constants. The
generalization of our present calculation to ferro-
magnets with pair anisotropy is straightforward.
Pink and Ballard' have studied the effects of single-
ion and pair anisotropy terms on the two-spin-wave
bound state spectra. In Appendix B, we study the
qualitative aspects of the spectra of quadrupolar
resonant states and quadrupolar waves of the Hamil-
tonian with pair anisotropy
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these resonant states decreases as IPi —11 in-
creases, and the energy of the resonant states is
shifted from the quadrupole wave energy by an
amount which increases with l P, —1 I. These quali-
tative features are the same for lattices of all di-
mensions, although the quantitative aspects do de-
pend on lattice structure.

In addition, in more realistic calculations of the
elementary excitation spectra of Jahn- Teller sys-
tem, such as the rare-earth vanadates and pnic-
tides, one should take into account orbit-lattice
coupling. Then there is a coupling of the phonons
to the quadrupolar excitations. This has been dis-
cussed by Elliott et al. ~4 for the vanadates and has
recently been found in PrA10, . ' Also, there is
spin-phonon coupling which produces anticrossings
in the elementary excitation spectra of Jahn- Teller
systems. 6 Finally, we have restricted our discus-
sion to the case of spin-1 ferromagnets. However,
there are many systems like the rare-earth vana-
dates which are antiferromagnets and where the ef-
fective spin of the magnetic ion is greater than 1.
Therefore it is also necessary to extend the present
calculation to systems with s &'1 and to antiferro-
magnets. %'e are presently working on these ex-
tensions and will present our results in future pub-
lications.
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APPENDIX A: SYMMETRY OF HAMILTONIAN-

&=EXI"'"(',j)&'(') ~ e (j) ~ (Al)

This Hamiltonian is written in terms of operators
e '„which induce unimodular (unitary) transforma-
tions in a space of dimensions 2s+1. These oper-
ators form a complete set of generators for an
SU(2s+1) continuous group algebra. They also
have been constructed so as to transform accord-
ing to the irreducible representations (l) of O(3)
or SU(2) under three-dimensional rotations. The
operators 6' define a Lie algebra and therefore
have mell-defined commutation properties. We
will use these commutation properties to classify
the eigenstates of the Hamiltonian (Al). I.et us de-
fine operators in momentum space as

6'(k)=- ~ pe '""6„'(i). (A2)

In terms of this operator the Hamiltonian (Al) is
written as

X=+p I'"( )ke'(k) .6'(-k), (A3)

where

P( )) (k) Q e))li(R) Ry) P(l) ( ')
(&-g&

The operators 6'„(k) of SU(2s+1) satisfy the com-
mutation relations,

[6'„(k), 6".(k')]=
( r+t '+i "=ocu)

pair interactions, ' it is not restricted to spin-1 sys-
tems. We consider the Hamiltonian

The following is a general discussion of the sym-
metry properties of Hamiltonians with high-degree where

(A4)

I lE f ltc"'!"„=(-)"-"""2([f][I'][l"])"' I
s s s m m' -m"

and [l]=2l+ 1, (:::Jis a 6 —j symbol and (:::)is a 3 —j symbol. The commutator of one of the generators
of the group with our Hamiltonian is

[e.'.(k'), X]= g g (-)"'C'„'„',„'„PI'")(k)e'. (k) 6'."(k'-k) .
( i+i '+I, "=0~@~

(A6)

In general these commutators of 8'(k=0) with &
do not vanish, therefore our K is not an invaxiant
of the group SU(2s+1), it does not have the maxi-
mum symmetry possible in this operator space.
However, it may be an invariant of a subgroup of
SU(2s+1). We constructed X so that it is always [e'(O). 6'(0), X]=0 or [S',3e]=0, (A6)

an invariant of SU(2) or O(3). We can readily show
with the commutation relation (A5) that

[e'„(0),X]=0 or [s, , X]=0
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while

2s

&=ELHI'gee'(t) 6'(i) (A8)

If we take into account that F;,. = 0, because there
are no interactions on the same site and that the
term 6'(i) ~ 8 (i) in G is just a constant, from Eq.
(A7) we find that [G, X]=0. For the Casimir opera-
tor the commutator

[6'„',{k'), G]=0

vanishes for all k', not only k'= 0. If we make the
additional assumption I';& = I' our X to within a con-
stant becomes the Casimir operator G; however,
this is not an interesting model because it is equiv-
alent to the molecular-field approximation and does
not lead to any dispersion in the excitation spectra.
Thus all we can say is that our special Hamiltonian
has SU(2s+ 1) symmetry for only k= 0 excitations
while the Casimir operator G has this symmetry for
all k,

where s'(0) =(1/v N)g; 6'(i), S, -=g, s, (i), and
S =& ~ S=S„+6„+s,. The s'„(0) are the generators
of SU(2) and s'(0) ~ e~(0) is the bilinear invariant or
Casimir operator of SU(2).

Whenever the Hamiltonian for a system has more
symmetry than the spatial or geometrical sym-
metry of the lattice, we say that the system has
dynamical symmetry. This additional symmetry
comes about because of a special form of the pair
interactions between particles or ions. For ex-
ample, the hydrogen atom 3C= p /2m —e /r has not
only O(3) symmetry but also O(4). The degeneracy
n of all levels with the same principal quantum
number n (different l, m) is explained by the O(4)
symmetry. With only O(3) symmetry there would
be no reason to have levels with different angular
momentum l degenerate.

In our case we consider only interactions with
SU(2) or O(3) symmetry, even though our ions are
placed on a three-dimensional lattice and realistic
interactions between ions are anisotropic. We can
contemplate additional symmetry whenever the in-
teraction constants I'"(k) assume special relation-
ships among themselves. For example if our range
functions I'"(k) are identical for all multipolar in-
teractions, i. e. , I'"(k)=-I'(k) for all t, we find

[6„',(0), SC]=0 (A7)

for all l'& 2s and —l'& m'& l'. Our Hamiltonian SC

is similar to the Casimir operator G (bilinear in-
variant) of SU(2s+ 1), i. e. ,

2s

G[SU(2s+1)]=+ 6'
1=1

2s

To label the eigenstates of a Hamiltonian one
uses the eigenvalues of operators which commute
with X. The only operators which commute with
the general Hamiltonian Eq. (Al) are & and S, ,
q=x, y, z, i. e. , G[SU(2)]and 6„'(0). As the 6' do
not commute amongst themselves, one chooses
only one component and as $C is rotationally invari-
ant, we call it S, . When X has some dynamical
symmetry there will be more operators which com-
mute with it, . e. g. , when all F"' are equal all
6„'(0), G[SU(2s+1)] and the Casimir operators of
the subgroups of SU(2s+ 1) commute with 3C. A
commuting subset of these operators provides ad-
ditional labels to specify the k= 0 eigenstates. of our
system.

Dynamical symmetry or anisotropy can be ob-
served by noting the degeneracies of k=0 levels for
the Hamiltonian Eq. (Al), i. e. , when special rela-
tions exist between the I'"(k) we expect that cer-
tain gaps between levels will disappear. There is
particular interest in degeneracies (or gaps as the
case may be) in the ground and low-lying states of
a system, and therefore we focus our attention on
the Goldstone theorem. This. theorem states that
for each symmetry operation of a Hamiltonian,
i. e. , [6',(@=0),R]= 0 there exists a gapless exci-
tation mode, the Goldstone boson 8', (k=0), which
acts on the ground state and restores a continuous
symmetry that has been broken by a phase transi-
tion. A system described by Hamiltonian Eq. (Al)
has at least one Goldstone boson [see Eqs. (A6)],
when it has. an ordered state which is not rotational-
ly invariant. This boson restores the rotational
invariance broken by the ordered phase. When ad-
ditional dynamical symmetry is present, new Gold-
stone bosons may exist in low-temperature excita-
tion spectra of ordered systems. These bosons re-
store the additional symmetry broken by the order-
ing. Conversely, viewed from the position of a
Hamiltonian like (A8) with additional dynamical
symmetry, the general Hamiltonian is dynamically
anisotropic and instead of a gapless excitation
mode, one may find gaps in the spectrum at k= 0.
This corresponds to generators s„'(0) which are no

longer symmetry transformations of 3C. There-
fore we can say that dynamical anisotropy is a pos-
sible origin of gaPs at k=Oin some modes of the
elementa~ excitation spectra of systems'described
by the Hamittoniam, Eq. (Al).

APPENDIX 8: QUALITATIVE FEATURES OF SPECTRA

In this Appendix, we present a qua, litative study
of the effects of the individual terms in the spin-1
Hamiltonian on the boo-spin-deviation spectra, ~

(B1)
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where

x'."= - r'."(-I) g [6'.(i)6'.(j)+6!.(i)6.'(j)],
(B2)

for l=1, 2 and 0&m& l. We also see that the z
component of the total quadrupole moment Q com-
mutes with Xo()) (I= 1, 2) and XI( ). However, it
commutes with $C& =-$C~(~) +X~( ) only when p) =- r) '/
I'&~' = 1. That is,

[q, X,'"(]=0 (f=l, 2),
[e,X'"]=0,

(B4)

and I'0 ' & 0. From the commutation relations
among the tensor operators O'„, Eq. (A4), we find
that the z component of the total spin 8, commutes
with 6'„" and hence X, Eq. (Bl), That is,

[s X())] 0 (B3) ~4(K)&=/ '""'( )'~g&=2/ '""o'(i)~g&,

is given as

8 (K) = 2 (z("" —('+'Q Oos(K ~ 5)),

(B10)

(B11)

This dispersion curve is shown by the thick solid
line in Fig. 11(b). The two-ion excitations are not
affected by the presence of Xz ' because

and whose amplitudes behave as 1 —5(R, 0) —5(R, 5).
The terms in XP) are proportional to (s', ) (s&),

and they propagate quadrupolar (single-ion m = 2)
excitations through the lattice, Therefore Xz ' pro-
duces a dispersion in the energy spectra for the
quadrupolar excitations of Xo. In the system de-
scribed by Xo+$C)( ), the dispersion relation for the
quadrupole waves with wave vector K,

and

[q, X,]=0 (B5)
X2N) Q y(i, g)s,. s, ~g&=0 .

f05
(B12)

only when P~= 1. Therefore we can always label the
eigenstates of $C by the number of spin deviations.
It addition, when p~ = 1, Q becomes a second label
for the eigenstates.

By solving the Schrodinger equation for one-spin-
deviation (m =1) states of the system described by
X in Eq. (BI), we find the dispersion relation of
spin waves is given as

g (k) = 8(r 1) + r(2) ) —(r(i) + r(2))Q cos(k C)

(B6)
We note that the dispersion in the spectra results
from Xi which contains the terms proportional to
s,'s&. $Cp) has no effect on m=1. states.

To see the effects of the individual terms 3C'" on
the two-spin-deviation spectra, we start from the
Ising term, $CO=-$CP) +Xo( ). The energy spectrum
is shown in Fig. 11(a). The thick solid line repre-
sents the quadrupolar (single-ion I= 2) excitations,
whose energies are given as

S,= 2sr,"), (a'I)

and whose amplitudes behave as ii(R, 0), where R
is the separation between two ions on which the two
spin-deviations occur. This energy level is N-fold
degenerate, where N is the number of ions in the
lattice. The thin solid line represents N neighbor-
ing-ion excitations whose energies are given as

8,= {as —1)ro" + (2g -3)ro', (ss)

and whose amplitudes behave as 5(R, 5}, where 5 is
the vector connecting nearest -neighbor ions. The
dashed line represents the ,'N(N —3) non-neig—hbor-
ing-ion excitations, whose energies are

g 2 (r(D I (8)) (B9)

The effect of X& on the spectra can be seen by
dividing it into two parts,

X,'-=X',"+$C',"/p,

= —r,'" Q Q [e,'(i}8',(j)+6!,(i) c),'(j)]
$-1,2 i,)

Q -=(1 —I/P))XP)

= -(r',"-r,"') [6',(i)6',(j)+ 0', (i)6', (j)].
(B13)

We note that

$C~=X, when P, = 1 . (B14)

Therefore, from Eq, (B5), we see that X& con-
serves Q and hence does not mix two-ion excitations
with quadrupole waves. However, 3C& consists of-
terms of the type s,'s&, and it mixes neighboring
and non-neighboring-ion excitations. Again, using
the commutation relations of 6', we find that

[x,', e', (K)]~ g& = o . (s15)
This relation implies that X~ does not affect the
dispersion relation of quadrupole waves, Eq. (Bll).
However, it does affect the two-ion excitation spec-
tra as shown in Figs. 12(a) and 12(b) for two dif-
ferent sets of the pair coupling parameters, 1'".
The cross-hatched areas in the figure represent
two-spin-wave bands and the thin solid lines rep-
resent exchange. bound states. The quadrupole
wave dispersion curves are represented by the
thick solid lines. We note in Fig. 12(a}, that the
energies of the quadrupole waves overlap with the
two-spin-wave band.

When we further include X&', Q is no longer a
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(a)

zz)r'"I

(a) &s

Z5

Zg

Zp

Z4—
0

K
2.B.

K
Z.B.

TWO-.SPIN- WAVE BAND

Ji ~7

I'IG. 11. a
3 (i)+3C(2) ~ ~ ~

a Two-spin-deviation spectra for K 0

p ~ The thick solid line represents the quad-
rupolar (single-ion w =2) excitations whose energies are
given as 8 = 2z F (~ )&= z p . The thin solid line represents the
neighboring-ion excitations with energy b2 = (2z —l)I'
+ (2z -3)r&2)

p ~ The dashed line represents the non-neigh-
boring-ion excitations with energy 8 =2z(F( F ') (b)3 p p

The two-spin-deviation spectra for & +X 2 . The thick
solid line represents the dispersion curve for quadrupole

~ ' 4 p 2 s a 5= z(Fpwaves, Pq, (gll). 64=2z(r"'-F" ) a d 6 =2 '

+
2 ). Note that the thin solid line and dashed line are

the same as in 11 {a).

Z4—
0

. K

good quantum number of the system. Therefore,
the quadrupole waves become single-ion bound
states outside the band and quadrupolar resonant
states within the band. The lifetime of these quad-
rupolar resonant states decreases as l P~

—1l in-
creases and the energy of the resonant states is
shifted from the quadrupole wave energy by an
amount which increases with I P~

—11. Further-
more, the exchange bound states gain a finite am-
plitude for two spin-deviations at zero separation.

b
In Fig. 12(c), we show the spectra for p -1 The

roken line in the band shows the energy of the
quadrupolar resonant states. The thick solid line
outside the band which connects to the broken line
represents the single-ion bound states.
case of Fig, 12(b), the dispersion curve of the
quadrupole waves lies completely outside the band.
Then the inclusion of R" only leads to single-ion
bound states.

lat i
The above qualitative features are the sa f

a trees of all dimensions, although the quantitative
aspects do depend on lattice structure.

APPENDIX C: SYMMEIY OF BOUND-STATE %PAVE

FUNCTIONS

In this Appendix, we study the symmetry of the
wave functions of two-spin-wave bound states for

FIG. 12. {a) Two-spin-deviation spectra for 3'- + + ' '

3,'&. The cross-hatched area represents the two-spin-
wave band. g&=b'3+2z(I'" +1"'2

[ and 8 =8 -2 ) F'
+7& I. The thin solid line below the band represerits
the two-spin-wave bound states, which have energy g at
the zone boundary. The fraction of the Briilouin zone
in which the bound states exist depends on the relative
magnitudes of the exchange parameters I'"'. The thick
solid line represents the quadrupole waves. (b) The
same case as &2(a), except for a different set f he o exc ange
parameters I' . (c) The two-spin-deviation s t fn spec ra or

or P&
- l. The broken l.ine in the band represents the

energies of the quadrupolar resonant states. The thick
solid line outside the band which connects to the broken
line represents the single-ion bound states. The thin

solid line below the band represents the exchange bound

states.

the simple-cubic lattice. From Eqs. (26a), (27),
and (28), we see that the bound state wave functions
are given as
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cos(p ~ R)[AD+2/, ~ p SAg cos(pea)]
&,~ 2 1'"(1+P)[t— &,=4,, cos(P )/3]'

where f satisfies Eq. (56a) or (56b) if the total wave vector K is along the cube diagonal, i. e. ,
K —+(1 1 1) and p= (p& p&, p&). By substituting Eq. (56a) into Eq. (52), we find that

(Cl)

Ap+ 2 Q(Ay+Ay +AS) = 0

(C2)MqoAO+Mqp(Aq+Ag+A3) =0 .
2aM, gO unless Eq. (56b) is also satisfied, Eq. (C2) has only trivial solutions. That is, AD=0

and A, +A&+A, =O. Therefore, the wave function Eq. (Cl) is written as

1 g cos(p, x+ p?$+ pas) Ki-1,2Ag[cos(p~a) —cos(paa)]
(C3)zI"'"(1+P)[t —a g. ..cos(p, a)/3]

This function has d symmetry in coordinate space.
By substituting Eq. (56b) into Eq (52.), we obtain

Mgo 6o.M~o —2Mia

Mgo 6QMio —2M)3

A0

A~

Ag

6aM„-2M„A,
This equation is satisfied if

A~ =AB=A3=A

Ap= —6@A .
Therefore, the wave function Eq. (Cl) is given as

A g cos(p, x+Pay+P~z)[Z&, .a.s cos(P, a) —3a]
X, p,p, zr'"(1+ P)[t -n g. .,...cos(p, a)/3]

This function has 8 symmetry in coordinate space.

(C5)

(C6)
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