
PHYSICAL REVIEW 8 VOLUME 12, NUMBER 1 1 JULY 1975

Bipolar anfl nondipolar interactions in LiTbF4

L. M. Holmes*
Laboratorium fiir Festkorperphysik, Eidgenossische Technische Hochschule, CH-8049 Zurich, Switzerland

J. Als-Nielsen
AEC Research Establishment Risy,

' DK-4000 Roskilde, Denmark

H. J. Guggenhei&
Bell Laboratories, Murray Hill, ¹wJersey 07974

(Received 16 December 1974)

The magnetic interactions in LiTbF4 have been studied in measurements of the quasielastic scattering
of neutrons from the paramagnetic crystal, Scattering data have been collected at a temperature
T = 18.6 K, which is 6.S times the Curie temperature of LiTbF4, and have been least-squares fitted
with an expression for the scattering cross section which includes, in addition to the dominant dipolar

coupling, two exchange parameters J l and J, describing the nondipolar coupling between nearest- and
next-nearest-neighbor Tb'+ ions, respectively. The derived exchange parameters are

J,/k = —0.26 + 0.09 K and J,/k = +0.05 + 0.10 K. Based on these parameters the total
interaction energy for nearest-neighbor ions is 4/3 dipolar and —1/3 nondipolar, and the nondipolar
interactions are less important for second neighbors. The interaction Hamiltonian is discussed, the
wave-vector-dependent susceptibility yT(Q) is derived in the mean-field approximation, and the dipolar

interactions are evaluated numerically using Ewald's technique.

I. INTRODUCTION

Recent work has shown LiTbF4 to be an inter-
esting example of a low-temperature Ising-like
ferromagnet. ' ' The Curie point T~ = 2.86 K is
easily accessible in pumped liquid helium, the
crystal structure is fairly simple (body-centered
tetragonal), and the material may be prepared as
large, reasonably perfect single crystals. Es-
pecially interesting is the fact that magnetic di-
polar interactions are strong. LiTbF4 is a model
system for studying dipolar effects in magnetic
ordering.

The purpose of this paper is, in essence, to
critically examine and test the validity of the last
statement. We shall be concerned in particular
with the form and magnitude of the magnetic inter-
actions in LiTbF4. The experimental technique
used is (quasielastic) neutron scattering. The
neutron data at a high temperature (T =18.6 K)
are compared to a theoretical expression based
on the wave-vector-dependent susceptibility yr(Q),
and the nondipolar, or "exchange, " contributions
to the near -neighbor interactions are thereby
quantitatively evaluated. The theoretical (mean-
field) expression for yr(Q) is also derived in this
paper, and the dipolar interactions are evaluated
numerically.

An initial report on portions of this work has
appeared previously. ' That report presented both
the wave-vector (Q) dependence of Xz(Q) at T
=88.8 K and the temperature (T) dependence of

the limiting Q —0 susceptibility. A long-wave-
length (Q= 0) singularity in )(r(Q) was reported
and ascribed, in a quantitative comparison with

theory, to the magnetic dipolar coupling. In the
present paper, the theory is given in considerably
more detail. Also, the wave-vector dependence
of the susceptibility has been remeasured iso-
thermally at a lower temperature and over a
broader range of Q values, in order to improve the
sensitivity of the data to the form and magnitude
of the magnetic interactions. In the following
paper' the crystal structure is investigated and

measurements of the spontaneous magnetization
are presented for temperatures T & T~ and, par-
ticularly, in the critical region T= T~. A detailed
description of the critical behavior of yr(Q-0) is
planned for a future publication. '

II. THEORY

For comparison with the neutron experiment we

shall be interested in the wave-vector-dependent
magnetic susceptibility )(r(Q) in the paramagnetic
state. This quantity describes the response of the
crystal (at temperature T) to an applied magnetic
field H(r) which is independent of time but which

varies spatially through the lattice. ' The spatial
variation is characterized by the wave vector Q,
e.g. ,

H(r) =H(0) cosQ r,
where r is an arbitrary position. H(r) induces a
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magnetization M(r) which varies with the field
wave vector Q in the crystal, and the amplitude
of the magnetization wave is defined as jr(Q)H(0).
Expressed more formally,

My =)t,(Q)Ho, (2)

where Mg and Hg denote the amplitudes of the Qth
harmonics of M(r) and H(r), respectively.

The susceptibility is a tensor quantity, but we
shall consider only the longitudinal component
)~'r'(Q). Only this component is relevant in LiTbF„
because the material is Ising-like at low tempera-
tures and can be magnetized only along the c di-
rection. '' (The coordinates x, y, and z are taken
along the tetragonal crystal axes a, a, and c, re-
spectively. ) We shall therefore drop the tensor
notation in much of the following and identify the
scalar )~r(Q) with the longitudinal susceptibility.
This quantity describes the response of the crys-
tal to a magnetic field along the spin axis. Of
course the wave vector Q may take on arbitrary
magnitudes and directions.

It is extremely difficult to evaluate yr(Q) the-
oretically, even for a relatively "simple" magnet
such as LiTbF4. One has generally to rely on
certain limiting approximations in making con-
nection with experiment. For example the critical
behavior is described in the long-wavelength (Q=O)
approximation at small values of the reduced tem-
perature (t =1 —Tc/T), and the high-temperature
behavior is described in the "random-phase ap-
proximation" at high values of t. The latter ap-
proximation will concern us here. It gives a for-
mula which is "asymptotically exact"' as t-1.
Fortunately, we were able to obtain data in LiTbF4
at t = 0.85, at which temperature the theoretical
approximation should be expected to be quite good.

The purpose of this section is to present the
theoretical expressions and numerical results
pertaining to )~r(Q) which are necessary for in-
terpreting the neutron experiments. The interac-
tion Hamiltonian will be discussed, the high-tem-
perature expression for yr(Q) will be derived, and
the magnetic dipolar interactions will be evaluated
numerically. The long-wavelength singularity in

yr(Q) will be considered. Finally, the effects of
superexchange coupling will be incorporated in the
theoretical expressions.

A, Hamiltonian

cited levels being very much higher in energy
(»50 K). The lowest levels form an effective
spin S = ~ pair with an exceedingly anisotropic
magnetic response. The principal values of the g
tensor' ' ' are g" = 17.8, g""=g" = 0. The crys-
tal may only be magnetized along the c axis, there-
fore, apart from a Van Vleck susceptibility due to
the excited crystal-field levels, and the Van Vleck
susceptibility, according to bulk susceptibility
data, ' is negligibly small [)~r'(Q =0) &0.01 y'r'(Q =0)
for T& 20 K]. Thus the Ising approximation is
very good indeed.

The crystal structure' "for LiTbF, is the same
as for the mineral scheelite, or CaWO4. The space
group is 14,/a, and the body-centered unit cell
contains four formula units. The Tb'+ ions are at
the positions (Fig. 1),

r, =(0, 0, —,'c,),
1 3

r2 (0 2 o
—co),

r. =(2a., 2a., o),
1 1

r4 (2 0»4co).
Positions 3 and 4 are obtained from 1 and 2 by the
body-centering translation (a,/2, a,/2, c,/2). In
the primitive unit cell, which has a volume of half
the tetragonal unit cell, only sites 1 and 2 need be
included. LiTbF, is therefore a two-sublattice
magnet. However, the Tb" sites are all magnetic-
ally equivalent, with point symmetry S„ in the
absence of an applied field.

The Hamiltonian must describe the interactions
of a given effective spin SR, -, , at the ith position

r

The effective spin S = ~, Ising formalism is ap-
propriate for the interaction Hamiltonian. This
may be seen from the form of the crystal-field
levels of the Tb" ions. ' The lowest levels are a
pair of closely spaced singlets (separation'
5=1.2 K), and only these levels are thermally pop-
ulated at temperatures below about 30 K, the ex-

FIG. 1. Tb3+ positions in the body-centered tetragonal
unit cell of LiTbF4.
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in the lth unit cell with all other spins in the lat-
tice. Including an applied magnetic field H'(r)
along the z axis, the Hamiltonian takes the form

X = —Q Q &R, -, , K"(8,+r; —8 —r,)Sg

+g"g gH (8, +F;)9-. .. +6 g S-, ,

(4)

The prime on the summation sign means "omit
the term for which the argument of K" vanishes. "
We include nondipolar (presumably superexchange}
interactions (4") and dipolar interactions (D"}in
the potential,

K"(8,+r; —8 —F&) =J'"(8,+r; —8 —F&)

+D "(8,+r —8 —F~)

(5}

D "(F}= 2(z-I s)' [&(~')'- Ir I']/Ir I' .

In the expression for K the term involving the
crystal-field splitting ~ is seen to be formally
equivalent to an uniform magnetic field applied
transverse (L) to the spin axis. We shall drop
this term in the following, for its effect on. the
high-temperature susceptibility is negligible. In-
deed, its effect on gr(Q) in the critical region is
also expected to be small, "although one can make
the argument with perhaps less rigor in that tem-
perature range. It is fairly easy to calculate
yr(Q) from Eq. (4) for a system of noninteracting
spins (K"= 0). The result for & = 0 is a simple
Curie law,

Xr =(g'*V s)'/4&~,

field theory, which gives a high-temperature ap-
proximation to the susceptibility. Neglecting the
terms in & as discussed above, the mean-field
equations take the form"

g))), +;)=),' (H'(R, +F)+
Pa

xg IP (')'+)F; —)) —r,) g()T +r,))

M„(r) = p(8, +F;) a(F 8) —-r, ), (10a)

p(B, +r)= dr M( )F (10b)

Note that the units of M„(r) are those of magneti-
zation (magnetic moment/volume). The magneti-

zation function describing the distribution of mag-
netic moments ori sublattice i is

where p(B, +F;} is the net magnetic moment in
the applied field on the Tb" ion at position R &+&;,
and g~ is the susceptibility per ion of the noninter-
acting system, as given in Eq. (7), and where
H'(8, +r;) may be taken from Eq. (1), with

H(0) II[001]. As there are two ions in the unit cell
of LiTbF, (i or j = 1, 2), there are therefore 2N
coupled equations to solve, where N is the number
of unit cells.

The Fourier-transform technique facilitates the
solution of the equations. %e first pass over to a
continuous representation in real space, replacing
formally the system of magnetic point dipoles at
the Tb" sites by a spatially varying moment den-
sity or magnetization function, M(r). For a given
site, the moment density may be defined with the
help of the Dirac & function d(F) as

while the result for & &0 involves the hyperbolic
tangent of &/2kT. Holding g"=const. , the ratio
of the susceptibility for & &0 to that for & =0 is
given by the expression

(2kT/&) tanh(&/2k') .

M, (r) =g M„(F),

and for the crystal as a whole,

M(r) = P M;(r) .

(10c)

(10d)

Thus, the finite splitting & decreases y„z from Eq.
(7) by an amount which increases from zero at
high temperatures to, e.g. , 8% at T=&/k, which

would be j..3 K in LiTbF~. Above T=10 K, the
corrections to ))' or due to 5 &0 are less than 1/o in

LiTbF~, and therefore are quite negl. igible com-
pared to the effects of the interactions among the

Tb ' ions.

B. X (Q) at high temperatures

An expression for ))'r(Q) may be obtained from
the Hamiltonian in Eq. (4) with the help of mean-

The Fourier transform of M(F) is

I = V ' d' ye '~ 'JI/I r

Mo = +M; o (12)

where V is the (large) volume of the crystal (equal
to N times the volume of the primitive unit cell).
Using Eqs. (10'), we find
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where

y-x P e (-i (R(+ri (p(R +r )
1

From Eq. (9),

M; Q=y', V ' e Q "~"'H'R, +r,.

(13)

8,.(Q) = 8.*,(Q) . (20)

Thus two parameters, the real quantity 8»(Q) and
the complex quantity 8»(Q), govern the wave vec-
tor dependence of the susceptibility at a given
temperature. These parameters are essentially
Fourier transforms of respectively the intra- and
intersublattice interactions in the crystal.

At long wavelengths (~ Q~ =0), the imaginary part
of 8»(Q) is negligibly small,

(I [8.,(Q)l ) - =. -@'[(9")'—(0')'] . (»)

xlc"(R, r; —R„—rz) p(H, +F;() (14)

The first term inside the large parentheses in

Eq. (14) is found using Eq. (1) to be N/V times the
Fourier transform HQ of the applied magnetic
field:

~-=y ' d'~e 'o'a'(r) . (15)

The second term in the large parentheses may be
simplified by applying the constraints of lattice
periodicity. Introducing generalized Curie-Weiss
temperatures

8,. (Q) =(1/2k) p'e ' ' ~"'( '& K"(R, +r; —r~)

(16)

in Eq. (14), we find

( o-(lV/Q XrHo+ g [8;(((Q)/T] ~x o . (17)

Note that 8;&(Q) in Eq. (18) may in general be
complex. This is because the Tb" ions are not
situated on the centers of inversion in the crystal
lattice. However, the ions on a given sublattice
i form a Bravais lattice, and 8;;(Q) is therefore
real. One can also show that

Thus the 2N-coupled equations have been reduced
to only two in Eq. (17). These may easily be solved
for M, g and M, g, and the susceptibility evaluated
from Eqs. (2) and (12). The result, expressed on

a per ion basis, is

X',/X, (Q) = 1-Re [e„(Q)+ e„(Q))/T
—Irm [8„(Q)]/T)'/

11+Re [8„(Q)—8„(Q)]/T). (18)

Under these conditions Eq. (18) reduces to the
simpler form,

x&/x, (Q) =1 —e(Q)/T, (22)

with

e(Q) =Re[e„(Q)+e„(Q)] . (23)

Even for finite Q, Eq. (18) reduces to Eq. (22) at
high temperatures (where, in fact, the mean-field
approximation is "good"), and also for wave vec-
tors along certain high-symmetry directions, e.g. ,
parallel or transverse to the spin axis.

C. Dipolar calculations

The dipolar contributions to 8;,(Q) in LiTbF,
may be evaluated using Ewald's technique. " In
this technique the slowly converging series in Eq.
(16) is converted into two other series which con-
verge more rapidly than the original. One of
these is evaluated in the direct lattice, the other
in the reciprocal lattice. Ewald's technique facil-
itates the carrying out of a long-wavelength ex-
pansion"' "' appropriate to Eq. (22) and allows for
rapid numerical evaluation of 8,","(Q) for arbitrary
wave vectors.

It is convenient to introduce a new set of param-
eters A,~(Q), which are related to the dipolar part
of 8;,(Q) as fol low s:

el')'(Q) =-X'r TA;~(-Q) (24)

These new parameters are chosen to be analogous
to the tensor quantity A (Q) of Ref. 16. Our pa-
rameters are a, generalization of A*'(Q) to the
situation in which there is more than one atom in
the unit cell, and, in fact, A(J(Q) =A"(Q) if i =j.
The analytical definition of A;;(Q), by analogy with
Ref. 1.6, is as follows:

A;; (Q) = lim A;& (Q, r), (25)

e„(Q)=e„(Q) . (19)
where

A center of inversion is situated midway between
sites 1 and 2 and on the line connecting the two
sites. It follows that 8„(Q) and 8„(Q) are com-
plex conjugates of one another,

(26)

The prime on the summation means "omit the
term with R&+r; —r& = 0." The quantities A;;(Q)
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are seen to be independent of the size of the mag-
netic moments, but dependent on the lattice struc-
ture and parameters. The units are those of
(length) '.

An additionally useful set of parameters A'J'(Q)

may be defined as

&g'(Q) = Q &;g(Q) (27)

These linear combinations of the A;.;(Q) are ap-
propriate to the long-wavelength limit Eq. (22) for
)(r(Q). The parameters A&'(Q) in LiTbF, are in-
dependent of j near Q = 0, and are related to 8(Q)
in Eq. (23) as follows:

8(Q=O) = —yr TRe[A&'(-Q)]g, . (26)

However, there is another reason for introducing
these parameters, and that is because they are
useful in checking the dipolar calculations. This
may be seen as follows. Suppose we start with a
cubic unit cell and put a basis of atoms at, e.g. ,
the origin and face centers. Then the calculated
A", (Q) must be independent of j and equal to the
A*'(Q) of Ref. 16 for a primitive fcc lattice. This
point is considered further in Appendix B.

Proceeding now with the calculations, we start
from Eq. (26) and apply Ewald's technique to ex-
press A';&(Q) in a more rapidly convergent form.
The resulting expression is rather complicated and

is given in Appendix A, Eqs. (Al)-(A9). A sin-
gularity of the form (q'/IQI)' is apparent from the
h =0 term of Eq. (A2). Using Eqs. (27) and (26)
together with the results in Appendix A, we find that
near Q = 0 in LiTbF„8'"(Q) may be written as
follows:

These results are somewhat altered from the con-
stants A, to A.4 quoted in an earlier publication, ' "
which were based on older values for the lattice
parameters. The uncertainties are due mostly
to the uncertainty in g". The uncertainties in the
lattice parameters are small, and the lattice pa-
rameters are expected to remain relatively con-
stant at temperatures below 100 K.

Extending our considerations to finite wave vec-
tors, we start now from the equations for A;&(Q)
in Appendix A. A computer program based on
these equations wa, s written to evaluate A;&(Q) for
arbitrary wave vectors in LiTbF4, The quantities
8,'&'(Q) were then evaluated with the help of Eq.
(24). The results which are relevant for this paper
are given in Fig. 2. Here we consider wave vec-
tors Q along the spin axis Q =(0, 0, q, ) or perpen-
dicular to it Q =(q„O, 0). For these limiting cases
(which are the ones investigated experimentally
in LiTbF, ), the general expression Eq. (16) for
)(r(Q) reduces to the simpler form in Eq. (22).
Thus, in Fig. 2 we plot the dipolar part of 8(Q) a.s
defined in Eq. (23) as a function of wave vector. If
Q is applied along the z axis, 8""(Q) remains al-
ways negative, but varies smoothly between —4.5 K
(in the long-wavelengths limit Q-0) and —2.2 K
For Q applied transverse to the z axis, 8'" varies
from +4.0K (in the long-wavelength limit Q-0)
and —3.1 K [e.g. , for Q midway between the origin
and the (200) reciprocal-lattice point]. The pat-
terns shown in Fig. 2 repeat, of course, indef-
initely through the reciprocal lattice.

The long-wavelength singularity in Eq. (29) yields
a different value for 8""(Q-0) depending on the
direction in which the origin Q space is approached.

8'"(Q=0) = —c,(q'/IQI)'+c, (q')'+c,
+ c, I Q I'+o((q")', (q')', . . . ) . (29)

The constants C, to C, may themselves be ex-
pressed as Ewald series and have been evaluated

in LiTbF, with the help of a computer. Taking

5.0—
~(000)

LLI

LiTbF (200)X

g"=17.8 +0.1

from Ref. 1, and, for the lattice parameters,

a, = 5.161(3)A

co = 10.873 (6) A

(3o)
t(3 0

C, =8,50+0.10K,

C, = 11.81 + 0.13K A',

C~ =3.97 +0.04K,

C = —5.40 + 0.06 K A

(32)

from a crystallographic study at T = 100 K (follow-
ing paper), we find

D
-5o + (000)

I

2.50 0.5 1.0 1.5 2.0
WAVE NUMBER Q (A ")

FIG. 2. Calculated dipolar contributions to @{Q)xn

LiTbF4 ~ The curves shown here repeat indefinitely
through the reciprocal lattice. Note that 8{Q=0) is mul-

tiple valued for an infinite crystal.
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The nondipolar or superexehange pRrt of the
interaction potential in Eq. (5) cannot be evaluated
analytically, in contrast to the dipolar part, at
least not to a high enough degree of accuracy for
our purposes. We resort to the usual trick of in-
corporating unknown "exchange parameters" in
the formalism, with the idea of determining these
parameters empirically from the data. Fortunate-
ly, the parameters so determined turn out to be
small compared to the dipolar coupling in LiTbF4.

Superexchange coupling has its origins in elec-
trostatic energies associated with the overlapping
of single-ion electronic wave functions. " The cou-
pling path is presumably from Tb'+ to Tb" via F
orbitals, and the coupling is expected to fall off
rapidly with increasing distance between Tb" ions.
In LiTbF~, ea,ch Tb' ion is at the center of a near-
est neig-hbor (nn) shell containing four Tb" ions
(shell radius 3.75 A), a next-nearest-neighbor (nnn)
shell containing four Tb" ions (shell radius 5.18 A),
a third-neighbor shell containing eight Tb'+ ions
(shell radius 6.40 A), etc. We shall allow for nn

and nnnexchangeparameters only, which we iden-
tify by the notation J, and J„respectively. Com-
bining Eqs. (5) and (16) and considering the known

crystal structure, we find, for the exchange con-
tributions to 8,&(Q), the following expressions:

He[8/,"(Q)] = (28:"„)cos(~ c,Q') [cos(2aoQ')

+ cos(-,'a, g')],
1m[8;," (Q)] = (-,'8".".) sin(-,'c,Q') [cos(-,'a, Q")

—cos( —,'a, g')],
Be[8;",(Q)] =(—,8„'„"„)[cos(aors") +cos(a,q')],
1m[8;,"(Q)]=0,

(33)

8'" =2J /k

8'„"„„=2J,ja .
(34)

This is apparent in the curves in Fig. 2. These
results obtain fox an infinite sample of LiTbF~.
In a real crystal (e.g. , a sphere of diameter 1.),
the results are accurate when Q is sufficiently
large that many wavelengths of magnetic field are
contained within the sample (i.e. , for IQI»2v/L).
In the neutron experiment to be described below,

gr(Q) data were obtained for o.o5 A '+IQI+2 A '.
For this range of IQI values, the sample "ap-
peared" infinite, but the minimum I QI was suf-
ficiently small to accurately probe the long-wave-
length singularity in gr(Q) (cf. Fig. 2), and the
maximum IQI was sufficiently large to cover a
significant part of the 8(Q) curves.

D. Nondipolar interactions

Thus, 6'„"„ is the amount by which the pax amag-
netic Curie temperature 8(Q =0) is increased due
to nn superexhange coupling, and 8„'"„„is the cor-
responding quantity for nnn superexehange cou-
pling. We may expand Eqs. (33) about Q =0 to find,
considering the definition Eq. (23),

8'*(Q=0) =(8:*.+ 8.'"..) —(—.'.".) 8:".(@')'

—(-,'.".) (8:".+ 8.'.".) [(0")'+(q')']+ ~ ~ ~ .

(35)

The total 8(Q=O) is given of course by the sum of
Eqs. (29) and (35). Comparing the two equations,
one can easily show that unless the condition

(36)(J', +4 J,)/k & —1.6 K

is fulfilled, the peak in 8(Q) will move away from
Q = 0 into the Brillouin zone, in qualitative dis-
agreement with the experimental findings.

III. EXPERIMENT

Crystals of LiTbF, were grown from the melt
using a modified Stoekbarger technique. " The
material appears colorless and optically trans-
parent. For the neutron measurements a single
crystal was ground to a sphere of 7-mm diameter
and mounted in a helium cryostat for control of
the temperature down to 1.2 K. In previous experi-
ments we had noticed R tendency for the crystals
to flake apart in regions of inhomogeneous strain,
e.g. , at the interface between sample and glue in
a conventional mounting arrangement. To elim-
inate this problem the sample was held in the
present experiments by means of two spring-
loaded, bowl-shaped, aluminum caps.

This paper is concex ned with the quasielastic
neutron scattering from I iTbF, over a range of Q
values at a single temperature 7.'= 18.6 K. The
data were taken in a three-axis spectrometer on
the Danish Reactor DH-3 at Risf. No inelasticity
in the scattering was detected, to within the re-
solution width of 0.1 meV, in selected initial scans
at various wave vectors and temperatures. The
resolut:ion of the analyzer was relaxed to 3 meV
in carrying out the actual data, scans at T =18.6 K,
and the spectrometer was set for elastic scattering.
This arrangement discriminRted against transitions
to the higher crystal-field levels (at energies &13
meV) and resulted in a relatively low background
count rate. Neutrons of energy 41 meV were
selected by the graphite monochromator for the
experiment, this energy being close to the peak
in the flux distribution obtainable from the reactor.

Under the conditions described above, the quasi-
elastic approximation to the scattering cxoss sec-
tion is applicable. For magnetic scattering from
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LiTbF4 this takes the form"

o(Q) = o'[I —(@'/I Q I) ']f-'(
I Q I ) X,(Q)/X', ,

where Q is the wave vector transfer

Q=k, -k,

(37)

(38)

xr(Q+r„, ) =x,(q) . (40)

The geometrical factor [1—(Q'/~Q~)'] in Eq. (37)
is nonvanishing for q ~~ [001], and so measurements
around r„o were used to study Xr(q) for q parallel
as well as transverse to the spin axis.

IV. RESULTS AND ANALYSIS

In Fig. 3 the results of two large-q scans at
T = 18,6 K are presented. At this temperature the
data are considerably more sensitive to the inter-
actions among the Tb" ions than were the pre-
liminary measurements in Ref. 3 at T = 38.8 K.
The nuclear peaks (e.g. , at v„, and 7„,) would

be far off scale in Fig. 3 and have been omitted
from the diagram. Also omitted are a few selected
points &e.g. , near q = (0.3, 0, 0)A '], at positions
where the count rate was anomalously high, due to
—,
'

A, , —,'X, . . . , contamination of the incident beam as
well as multiple Bragg reflections. We are left,
nevertheless, with some 80 data points which may
be used in determining the form and magnitude of
the interactions in the material.

The three sets of curves in Fig. 3 represent
successively higher-order approximations to the
scattering cross section. The nonmagnetic back-
ground count rate was taken to be Ca = 400, this

of neutrons scattered from wave vector k, to k, .
The Tb" magnetic form factor f( ~ Q ~) in Eq. (37)
is known to high accuracy from recent studies"
of the ferromagnetic compound Tb(OH), . Thus,
apart from the over-all scaling factor n, which
is independent of Q and T, the scattered intensity
provides a direct measure of the susceptibility
ratio xr(Q)/x'r for comparison with theory in, e.g. ,
Eq. (18).

The geometrical factor [1—(Q'/~g~)'] in Eq. (37)
has its origins in the form of the magnetic inter-
actions between the neutrons and the magnetic mo-
ments in the crystal. No magnetic scattering is
present for wave vectors along the spin axis in an
Ising magnet. Scans with @~~[001]in I.ITbF, there-
fore provide a means of estimating the nonmagnetic
background count rate.

Defining the deviation of Q from reciprocal-lat-
tice vector 'F2pp by

q =Q —r20o, (39)

we note from the constraints of crystal symmetry
that J,/k = —0.26+0.09 K,

J,/k = + 0.05 + 0.10 K, (41)

where the states uncertainties are derived from
projections of the standard deviation ellipsoid on
the appropriate parameter axes. In the fitting
procedure the data were weighted according to
the Poisson uncertainty of the corresponding
intensities. Changing the weighting factors to
unity did not shift J, and J, beyond the stated un-
certainties, and the fit was equally insensitive to
+ 10/q changes in the value used for Ce.

V. DISCUSSION

The derived J, and J, may be compared with
other estimates of the nondipolar interactions in
LiTbF, . The temperature dependence of the sus-
ceptibility provides, through the Curie-Weiss
temperature, a measure of the algebraic sum of
the interactions in the material. Defining

8'= lim [e(q)]q

we find, from Eqs. (16), (23), and (29),

e'= c +e"'
tot

(42)

(43)

where 8',~' is the total nondipolar contribution to
80

value having been determined from a separate scan
with Q along the z axis. The curves in Fig. 3 were
least-squares fitted to the data. Fit No. 1 shows
the results of neglecting the interactions among
the Tb' ions. The susceptibility ratio in Eq. (37)
was set equal to unity, and only the scale factor
was optimized to n = 2375. The information about
magnetic interactions is contained essentially in
the difference counts between fit No. 1 and the
data. In the next approximation (fit No. 2) dipolar
interactions, as des cribed in Sec. II C, were in-
cluded in the expression for Xr(Q). Again, o,'was
optimized, this fit giving o. = 2420. The dipolar-
only approximation is quite good, a fact which
had been noted previously' based on less precise
data. Nevertheless, the difference in counts be-
tween the minimum and maximum of the upper
set of data is overestimated by fit No. 2, and this
leaves room for improvement by including non-
dipolar interactions.

In the third approximation, near-neighbor
"exchange" interactions were included in the ex-
pression for xr(Q). Three parameters, the scale
factor n and two exchange parameters, J, and

8, (cf. Sec. IID), were allowed to vary freely.
The resulting fit No. 3 is seen to be improved
over the dipolar-only approximation. The derived
values for the parameters are o. = 2440+15 and
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In the model used for fit No. 3,

Ef„" = 3(J, + J,)/k .

(44)

(45)

Experimentally, 8' was determined from neutron
scattering data (e'= 3.72 + 0.20 K) in Ref. 3, and
from bulk magnetic susceptibility data (8'= 3.60
+ 0.10 K) in Ref. 1. Combining these numbers with

the calculated dipolar constant C, in Eqs. (33), we

obtain

e',." = -0.25~0.20K

from the neutron data and

8'„~1' = -0.37 + 0.11 K

(46)

(47)

from the susceptibility data. From Eqs. (41) and
(45) we find

8',.", = -0.42*0.13 K

from the present results, to be compared with
Eqs. (46) and (47).

The relatively low accuracy in the numbers
quoted in Eqs. (41) and in Eqs. (46)-(48) is a
manifestation of the fact that the nondipolar inter-

actions are simply not very important in LiTbF4.
This is true for Ef,",P, which is only 10/o of C„
and it is true as well for the individual exchange
parameters. Let the dipolar coupling of a pair of
nn spins [cf. Eq. (6)J be D„and let D, be the cor-
responding quantity for nnn spins. Direct calcula-
tion yields

D, /k = + 1.07 + 0.01 K,

D~/k = -0.71 + 0.01 K. (49)

Comparing with Eqs. (41), we find, for the ratios
of exchange to dipolar parameters

J,/D, = -0.24+0.10,

Js/D, = -0.07a0.15. (5o)

Thus, the exchange coupling is only -25% of the
corresponding dipolar interaction for nn Tb" ions,
and it is smaller for second neighbors.

VI. CONCLUSIONS

This paper has presented new information re-
lating to the form and magnitude of the magnetic
interactions in LiTb F,. The mean-field approxi-
mation to the wave-vector-dependent susceptibility
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gr(Q) has been derived and the dipolar interactions
have been evaluated numerically. Singlet-singlet
effects for the non-Kramers ion Tb" have been
considered and shown to be unimportant at high
temperatures (&10 K). Experimental neutron scat-
tering data have been obta, ined at T = 18.6 K and
analyzed in terms of the theoretical expression
for gr(Q), including, in addition to the dipolar
coupling, two "exchange" parameters 0, and J,.
The exchange parameters have been evaluated
empirically [Eqs. (41)] and found to be considerably
smaller than even the nearest-neighbor dipolar
coupling alone [Eqs. (50)]. Our earlier conclusion
that LiTbF4 forms a model system for the study of
magnetic dipolar interactions has therefore been
reinforced and made quantitative in this work.
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APPENDIX A: EWALD'S METHOD IN LiTbF4

The analytical procedure used in applying Ewald's
technique to evaluating dipolar summations has
been amply described elsewhere, '4 and will not be
reviewed in detail. Here we present for reference
purposes, and in outline form only, the results
for LiTb F4.

As described in Appendix A of Ref. 16, and in
Ref 14, the quantities A';,*(Q}may be converted
from Eqs. (25) and (2e) into the following form:

&i;(Q) = ni;(Q)+ Pl;(Q)+ l;y(Q), (Al)

in which the quantities on the right-hand side are
defined in terms of summations over the direct and
reciprocal lattices. The first term, n",, (Q), is a,

summation over all reciprocal lattice vectors"
ht

(Q'+ C}'
~~~ (Q) = — G e 'Oa ' 'ij-

IQ+ Qnl ]Q+ Qal'

(A2)

where v„ is the volume of the unit cell in the direct
lattice, R is the "Ewald parameter" to be chosen
for rapid convergence of the series (see below},
and r;j is a vector connecting sites i and j in the
unit cell:

2

8',; (R, + r;, ) = R lim, H (A l R, + r;& —r l),
f ~0

(Ae)

and, for general (,

2 g2H(()= ~ dye '
7T

(A7)

The remaining term in Eq. (Al), y';,'(Q), is eval-
uated differently for r;j = 0 and r;j c 0. For r;j
e 0, y,",(Q) has the same form as P';&(Q), but with

R, =O,

y', ,'.(Q)= H'„(r,-, )e'o' 'ii if r;, w0.

For r;, = 0, y';,'(Q) reduces to a real constant,
t

Rey';,'. (Q) = -(4R'/3&m)
if r;, =0.

(A8)

(A9)
lmy';,'(Q) = 0

For large R, and Q„,

H s, R(R )
e-2 lRil

whereas

/lQ l)
e-lo„l"4a'

(A10)

(A11)

The expression (Al } is independent of Jt, but,
from (A10) and (All) it is seen that Eqs. (A2) and

(A5) converge more rapidly for ft small and large,
respectively. In practice R is chosen as a com-
promise to ensure reasonably fast convergence of
both summations.

The expressions (Al) to (A9) are generally valid
and not restricted to the special structure of
LiTbF4. Implicit in the formulation, however, is
the assumption that the z component of the g tensor
is the same for all ions in the unit cell.

APPENDIX B. CHECKING THE CALCULATIONS—

CUBIC LATTICES

An expression for A, (Q), analogous to Eq. (29)
for B(Q), may be obtained from the equations in
Appendix A in the long-wavelength (Q= 0) limit,

& i' = a, (Q'/]Q I)' —(a, —a, )(Q')' -a, -a.( IQi)'

+ o(Q [(Q")'-(Q }'l, (Q')', . . . ). (»)

P (Q) = —g H'.."(R, +;,)
" " "*', (Ae)

l &o

where

r = r--r.ij a j
For arbitrary F„

G (()= 4re (' i't )

The quantity P';,'(Q) is a sum over all nonzero
vectors in the direct lattice,

(A4)

The notation here in terms of the constants a;,
i= 1, 2, . . . , 5, parallels that of Ref. 16. The
coefficients a„(a,-a,), etc. , are real and inde-
pendent of j in LiTbF4. The inequivalence of the
two Tb" sites shows up first in terms of order
Q'[(Q")' —(Q') ]. Comparing with Eqs. (28) and

(29), we see that
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TABLE I. Coefficients in the long-wavelength expression for A,"(Q)
in cubic lattices.

Lattice
symmetry

Unit cell ao
parameters bo

co

Atoms
unit cell

Coordinates
of basis
atoms

ai
a~ -a~
a3
a4

Case 1

(0, 0, 0)

12.5664
-0.4945

4.1888
0.1648

sc
Case 2

(0, 0, 0)
(0, 0, —,')

12.5664
—0.4945

4.1888
0.1648

Case 3

(0, 0, 0)
(-,', 0, 0)
(0, —,, 0)
(0', 0, —.)
(—', -' 0)
(0, —,', —,')
(-,', 0, —,')
(2* 2. 2)

12.5664
-0.4945

4.1888
0.1648

bcc

2/v 3
2/v 3
2/W3

(0, 0, —,')

16.3242
0.9644
5.4414

-0.3215

fcc

W2

v2
v2

(0, 0, 0)
(0 2 2)
(-,', 0, —,')
(—', —', 0)

17.7715
1.0058
5.9238

-0.3353

C; = X~Ta;, i= 1, 3, 4,

C, = X'rT(a, —a,). (82)

a~ —3a3 . (84}

Each of the four constants in Table I was evaluated

After the computer program for calculating the
constants C; in LiTbF, was written, it was a sim-
ple matter to distort the unit cell so as to generate
lattices of simple cubic (sc), body-centered-cubic
(bcc), and face-centered-cubic (fcc) symmetries.
The constants, a„(a,—a, ), etc. , could then be
evaluated for comparison with Table I of Ref. 16
and with Ref. 15. The calculated values are given
in Table I. Note that the nearest-neighbor distance
is unity for each of the lattices considered.

For a given cubic lattice the coefficients a; are
theoretically constrained by the relations"

a, —a, = 3a, (83)

separately for each lattice, and the resulting
values a,re seen to satisfy Eqs. (83) and (84) very
accurately.

The computer program was written in such a
way that the unit cell could be tetragonal and could
include more that one atomic site. These two
aspects of the program were tested for lattices of
over-all sc symmetry, as shown in columns 2 and
3 of Table I. The calculations gave the same re-
sults for each of the three sc cases shown, and
these results agree with those in Table I of Ref.
16.

The numerical results for the fcc 3nd bcc lattices
in Table I are in disagreement with those quoted
in Table I of Ref. 16, but this discrepancy has
been traced to a misprint in Eq. (18}of Ref. 15,
from which source Table I of Ref. 16 was in part
prepared. " Thus the results in Table I are correct
and confirm the validity of the computational
technique.

*Work partly performed while on leave from Bell Labo-
ratories as a guest scientist at AEC Research Es-
tablishment, Risg, Denmark. Research at ETH,
Zurich supported by the Schweizerischer Nationalfonds
zur Forderung der Wissenschaftlichen Forschung.
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