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The dynamics of a randomly diluted quenched Heisenberg ferromagnet have recently been analyzed by
several authors. Within an effective medium type of approach, the correct site aspect of this problem is best

given by the recent work of Harris et al. Their theory, which introduces spurious degrees of freedom for the
nonmagnetic vacancies and then projects them out by the use of an appropriate pseudopotential, however,

works adequately for K vectors out to about halfwayto the zone boundary and for low and intermediate

concentrations of the nonmagnetic vacancies. For large vacancy concentrations, their results for the magnetic

response leak over into the negative-frequency region. Also in their theory the spin-wave stiffness becomes

complex for relative vacancy concentrations of order 49%%uo. Here we present a new efFective-medium approach
to the study of this problem. We avoid the use of additional degrees of freedom for the vacancies by workir'g

directly with the equations of motion for the magnetic spins. EfFective-medium ansatz is introduced through

the use of a generalization of the path coherent-potential-approximation approach introduced by Brouers et al.
in their study of random electronic alloys. For low and intermediate vacancy concentrations, our results are
found to be of comparable quality to those given by Harris et al. However, unlike in their work, the first

three frequency moments of the response are preserved exactly in our work. Moreover, on comparison with
"exact" results —obtained via Pade procedures making use of numerically computed frequency moments —we

find that our theory continues to yield qualitatively reasonable results even when the vacancy concentration is

large, e.g., 60% in a simple-cubic lattice.

I. INTRODUCTION

In recent years much effort has been devoted to
the task of describing the low-temperature dynam-
ics of Heisenberg spin systems with substitutional
disorder. The most rewarding theoretical frame-
work for this purpose has been found to be the co-
herent-potential approximation (CPA). We present
here yet another CPA approach to the problem.
Because an adequate review of the current status
of this field can be had by reading Harris et al. , '
Theumann, Tahir-Kheli, 3 Jones, and others, '
in the following we only give a description of the

present work.
The purpose of this paper is to present a CPA9

theory of t;he randomly diluted ferromagnet;x- s, io-i3

which attempts to achieve two objectives: (i) A

reformulation of the problem in such a way that the
spurious degrees of freedom associated with non-
magnetic (empty) sites are not invoked at all and

(ii) improvement in the quality of results for larger
E .vectors and for larger concentrations than that
given by the Harris et al. CPA procedure. ~ In a
matrix formulation of the equations of motion for
the Green's functions in a simple-cubic lattice, we

avoid the unphysical vacancy response by employ-
ing a random-phase-approximation (RPA)-like de-
coupling of the magnetic spin Green's functions.

An important difference between the present
work and the work of Harris et al. ' is that by avoid-

ing the boson representation, we sacrifice our abil-

ity to write the Hamiltonian for the dilute ferro-
magnet in terms of nonlocal perturbation potentials
produced by vacancies. This implies that the ef-
fective medium cannot now be defined by means of
nonlocal effective potentials at every site of the
lattice. We have therefore to apply an alternative
formulation of the CPA that is not based upon the
multiple scattering theory for a perturbation po-
tential, but instead is a generalization of the "path
method" in the locator formalism. '4

We describe briefly in Sec. II the general formu-
lation of the problem and the effective medium. In
Sec. III we discuss briefly the generalization of the
path method and in Sec, IV we derive the self-con-
sistent equations together with their solution in the
dilute limit. Frequency moments of the response
are discussed in Sec. V. Numerical results for
the magnetic response, along with concluding re-
marks, are presented in Sec. VI.

II. FORMULATION: PRELIMINARY CONSIDERATIONS

We consider a simple-cubic lattice consisting of
N lattice sites. On these sites we randomly dis-
tribute xN Heisenberg spins. Here x is the mag-
netic concentration, and x(1. Making the assump-
tion that the exchange interaction between any pair
of magnetic atoms is independent of the presence,
or the absence, of other magnetic atoms in the

neighborhood, we can write the system Hamilto-
nian as
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c = —~ C»cy J» )Q'» ' O') (2. 1)

dg»
Ice =~ gg «cg «(ct —c«)

n
(2. 2)

Here we have explicitly invoked the fact that the
magnitude of spin is —,'. Moreover, we have as-
sumed a saturated ferromagnetic ground state.
Thusp

Here we introduce two simplifications. First, we
assume the spatial range of the exchange interac-
tion to be limited to the nearest-neighbor separa-
tion, i.e. ,

J», z= J,. »
=J if sites i and j are nearest neighbors,

=0, otherwise.

Second, we restrict ourselves to considering the
case where the spins are of magnitude —,

' (in Dirac's
units), As will become clear in the following, the
truncation of the range of J» &

simplifies our work
nontrivially. Qn the other hand, the restriction to
spin —,

' is not essential and the treatment is readily
extended to the general spin case.

Variables c„c& in Eq. (2. 1) are the random-oc-
cupation variables such that c» =1 if the i site is
occupied by a spin o», otherwise c» =0. We note
that owing to the presence of these variables, the
Hamiltonian in Eq. (2. 1}is dependent upon the par-
ticular configuration specifying the distribution of
xN magnetic spins upon the N sites. In thermal
equilibrium, however, the properties of the sys-
tem are determined entirely by the system temper-
ature, the magnitude of the magnetic concentration
x (we shall assume that the random distribution of
the magnetic atoms has been "quenched" in}, and
the parameters of the Heisenberg exchange Ham-
iltonian, i.e. , J, and the spin magnitude.

The original form of the coherent-potential ap-
proximation was proposed to treat the effects of
random local potentials in binary alloys. The
problem becomes more complicated in the case of
a disordered ferromagnet because the presence of
an impurity, i.e. , an empty site, in an otherwise
uniform ferromagnet with nearest-neighbor inter-
actions produces a nonlocal perturbation that ex-
tends to the first z neighbors of the impurity. It
has therefore been recognized that the correct CPA
approach to disordered magnets should take into
account the exact form of the nonlocal perturba-
tion. ' The present approach consists in avoiding
the use of the boson representation by working di-
rectly with the BPA equations of motion for the
spin operators relevant to zero temperature, i.e. ,

. spin and occupation variables nof; referring to site
n .Because Eq. (2. 2), and any further equation of
motion obtained therefrom, does not involve non-
magnetic sites, the spurious vacancy response is
automatically suppressed without the introduction
of a pseudopotential.

Second, because of the absence of an explicit
perturbation potential in our formulation, we are
led naturally to choosing an effective-medium
formalism which, unlike the usual CPA theories,
is not based upon multiple scattering theory.

To make these ideas precise, we commence our
task by first defining a suitable effective medium.
When this is done, we formally remove one of the
effective-medium spins, placed upon site i say,
and replace it by a "random" spin c,o». This pro-
duces a perturbation which extends to the first-
neighbor shell of the site i.

%e define first the Hamiltonian of the frequency-
dependent effective medium,

x"'(E)= -P 8 ', (z)s, s, .
»sj

(2.4)

As usual, the effective medium is isotropic and
translationally uniform-i. e. , all sites i are oc-
cupied by effective-medium spins S», and the ex-
change integral, 4)I'&(E) depends only upon the sepa-
ration i R» —R& I and the complex frequency E. Be-
cause we assume the effects of a spin impurity to
extend to the nearest-neighbor she11, it is there-
fore sufficient to restrict the spatial range of the
effective-medium exchange integrals (which, of
course, are in general complex) to a distance equal
to twice the nearest-neighbor separation. Note
that this is the largest separation between any two
members of the seven-site cluster formed by the
given central site and its six nearest neighbors.
Moreover, because within such a cluster there are
only three different types of intersite separations,
we can make do by explicitly considering only three
types of effective-medium exchange integrals, i.e. ,

i&(&)

~
& J(E} ~3(E} ~f

I
~~ —ft~

I

= &8 (2' 5}

f,(@ u ~ft, -lt, ~=2~, .
Here &, and && are vectors connecting first- and
second-neighbor sites, respectively.

It is convenient to study first the properties of
the effective medium. Because we expect eventu-
ally to approximate the thermodynamic behavior
of the random magnetic system by that of the uni-
form effective medium, we expect the equality of
the magnetizations for the two systems, i.e. ,

2&ncnn = ce~n ~
T=0

(2. 8) (Sf) =Z P(c)(clef)'=(coact)
(c)

whenever 0„ is either a c number or it contains & seft(y) (2.6)
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where j„(E)are as defined in Eq. (2. 5) and

J, (E)=8"'(T)j,(E), p-=1, 2, 3

b, o(E) = [E—6ji(E) —12J2(E) —6Js(E)]

(2. 8)

(2 9)

[Note that J~(E), etc. , are related to the energy-
dependent, effective-medium exchange and are not
to be confused with the actual exchange integrals
J, &, etc. ] Because the effective medium is trans-
lationally invariant, it is convenient to Fourier
transform Eq. (2. 7) to inverse lattice space, i.e. ,

g-„(E)=[4" (E)+6Jg(E}r-„+12J,(E)~-„+6J)(E}r,-„] ',
(2. 10)

where, measuring the unit of length in terms of the
cube edge,

eff(E) g +eff(E) e&K (f-j&'
N t (2. 11)

y- = ~~)e'"'& = —', [cosK„+cosK,+cosK,],
(2, 12)

-=E$ '" '2=-, [6(y-)'-1 —y,-„].
6p

Having thus defined the effective medium, we
turn to the description of a path method, 4 which
will enable us to derive the conditions necessary
for the identification of the effective-medium prop-
erties with those of the actual random system
(when the later is in thermodynamic equilibrium).

To facilitate algebraic manipulations and to help
specify the appropriate path-method ansatz for the
problem in hand, in the following we will indicate

Here the angular brackets, without the superscript
c, signify a thermal average in the effective medi-
um; we shall explicitly specify this averaging pro-
cedure later. P(c) is the probability weight factor
associated with configuration (c) over which the
configuration-dependent canonical average ( ~ ~ ~ )'
is taken. Summing such averages over all the con-
figurations, as done on the right-hand side of Eq.
(2.6}, gives us the thermal average for the actual
random system. Such an average is, here and
henceforth, denoted by ( ~ ~ )r.

Clearly, the right-hand side of Eq. (2.6) is
equal to —,'x at T=O, whenever the random magnetic
system achieves a fully aligned ferromagnetic
ground state. Hence the parameter S"'(T=O) is
equal to the magnetic concentration x.

To study the frequency-wave-vector-dependent
response in the effective medium, i. e. , pz(~), we
introduce the corresponding effective-medium
Green's function, and note its RPA equation of mo-
tion:

3

Zi,'y(E) =~o(E)«, —~o(E)++ J.(E)Ãl,"„(E),
0 =1

(2. 7}

j((E)=k[J+A(E)1 . (2. 13a}

(b) Next we consider the interaction between the
. central site i and members of the effective medium
outside the first-neighbor shell. As is generally
accepted, the philosophy of CPA-likee and path-
type' methods is to assume a limited spatial range
of perturbation caused by the removal of an effec-
tive-medium atom and its subsequent replacement
by an actual random atom. In line with this phi-

by a Greek subindex, u, P, . . . , the positions of
the first neighbors of the site i, while a subindex
s will indicate any atom in the cluster, i.e. , s de-
notes either n or i.

We remind ourselves here that so far we have
achieved a description of the uniform effective me-
dium. Moreover, we also know the exchange pa-
rameters of the actual (random) system. Yet, if
we are to proceed with the analysis related to the
imbedding of an actual spin, or an actual vacancy,
on an arbitrary site within the medium, we have
to specify what the exchange interactions between
the random spin and the medium are. Indeed, we
have to further address ourselves to the question
of how the exchange interactions between any pair
of the six members of the first-neighbor shell (of
site f) are modified by the presence of a random
spin on the central site.

Unfortunately, the existing work on the path CPA
method" does not offer any guidance in this matter.
The reason for this is clear. Whereas in the lit-
erature the path method has previously been ap-
plied only to the case of alloys with diagonal, on-
site, random interactions-for which it is not nec-
essary to specify the interaction between the ef-
fective medium and the actual (random) atom —in
the present study both the diagonal and the off-di-
agonal interactions are random. Moreover, here
the diagonal part of the interaction is also depen-
dent upon the environment of the atom in question-
a situation which is not envisioned in the usual
works on alloys.

Therefore, it is necessary to make an appropri-
ate specification of these interactions:

(a) Regarding the interaction between the random
spin c&o, and its first-neighbor she11 of coherent
(effective medium) spine 8, we argue as follows:
If any of the coherent spins S were also replaced
by another random spin, then the exchange interac-
tion between the two spins would, of course, be
equal to J. Similarly when the site i also has a
coherent spin g~ rather than a random oriet the
corresponding exchange between it and its neighbor
is j,(E). Hence, it is reasonable to assume that
the interaction that obtains between a random spin
c, a& and its neighboring effective-medium spin S
is equal to j,(E), which is given by the average of
the two situations, i.e. ,
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(2. 13b)

losophy, here we assume the range of perturbation
not to extend beyond the nearest-neighbor distance
from the central site. Of course, in a more de-
tailed and careful treatment, one may want to ex-
tend the spatial range of such a perturbation, but
within the present approximation scheme, where
we embedonly one random spin, rather than sever-
al in a compact cluster, this does not seem war-
ranted. Therefore, we conclude that a reasonable
choice for interactions between the random spin
and members of the medium outside the neighbor-
ing shell is to assume that they are the same as
they would have been if no random spin had been
substituted at the central location i.

(c) Next let us consider the choice of interac-
tions between any two members of the six spins in
the first-neighbor shell, Clearly, there are two
different types of configurations for any such pair.
First, there are pairs of sites which are noncol-
linear with the central site, e.g. , sites (1, 0, 0) and

(0, 1,0), if the central site is denoted as (0, 0, 0).
Second, there are collinear pairs, e.g. , (1,0, 0)
and ( —1, 0, 0).

Before we proceed further with the examination
of what an appropriate choice of the interaction be-
tween the former and the latter type of pairs of
sites should be, we hasten to emphasize that even
though both these types of pairs are separated by
distances larger than the neighboring separation,
1, they both involve the presence of the perturbing
random site at the center of the shell. Hence, both
sites of each of these pairs are seithin reach of the
assumed range of the perturbation placed at the
central site.

A useful way of looking at the occurrence of
jz(E) and j~(E), i.e. , the larger-range exchange
integrals within the effective medium, is as follows:
In the absence of the perturbing random spin at
(0, 0, 0), j2(E) between, say, the pair (1, 0, 0) and

(0, 1,0}may be thought to be communicated via the
two possible paths (1, 0, 0)- (0, 0, 0)- (0, 1, 0) and
(1,0, 0)- (1, 1, 0)- (0, 1, 0). (Note, all other paths
are longer than these two. ) Now, when a perturb-
ing potential is interposed at (0, 0, .0), cutting the
former of the two paths, it is reasonable to assume
that as a result the interaction between (1, 0, 0) and

(0, 1,0) is reduced to half its usual strength within
the medium; i.e. , it becomes j2(E}such that

ja(E) = a ja(E) ~

jl(E) =o . (2. 13c)

In the above, we have dwelt in some detail on the
choice ofj ~(E). We feel this to be fully justified,
since no a Priori guidance in this matter is avail-
able in the existing literature. Because the vari-
ous Green's functions referring to the cluster (cen-
tered at i) involve one or more effective-medium
spins, therefore they can be obtained quite simply
from the following two RPA "time derivatives":

=Z-,'[J+j (E)](2(8'&«o,'-2«(o', &
8')

++j f',.'(E)(2&8:&«~~ - 2cI(o l&'8:).n8s

(2. 14a)

i ~,
" =2[&+4(E)](2«(cl&'8; —2&8'&«of)

+ Q ~2jp(E)(2(88&8'„2(8 ~&S)'))

+ Z j",'.(E)(2&8.*&8' —2&8' &8:}
n4s

(2. 14b)

[Note that these equations make use of the ansatz
(2. 13a)-(2.13c}.] The last terms in Eqs. (2. 14a)
and (2. 14b) are sums over sites outside the near-
est-neighbor cluster. (Recall that the subscript s
refers to any of the seven sites of the cluster, and
a, P, etc. , to any of the six sites in the first-
neighbor shell of site i}.

In what follows we shall assume the system tem-
perature to be zero. Hence we shall write

2(Sa &
8stf (y 0)—Segf

2«((F f&
= . « (2. 14c)

From Eqs. (2. 14a)-(2. 14c) we obtain the following
compact expression for the RPA equations of mo-
tion for the energy Fourier transform of the com-
posite Green's function in the cluster:

Finally, let us examine the interaction between
sites of the type o and —c., e.g. , between (1,0, 0)
and ( —1,0, 0). Here, the relevant shortest path is
unique and it goes via the central site (0, 0, 0). Thus
when the medium spin is abstracted from this. loca-
tion-and a perturbing random spin substituted, in-
stead-it i.s reasonable to assume that the corre-
sponding interaction is cut off altogether, i.e. ,
that it becomes j~(E}such that

g;„(E)=g;(E)5,„-r', (E)P &,'(E)g.„(E)—g', (E)g~, '„(E)g„,.(E),
Q n~s

(2. 15)

a.„(&) g' (@)& g' ()))=(&~.(&)).i.„l@-)+.Z &a)&)))s„,.(@)) ))' (&)g &",'.(@))-,....(@):.
84-e ) n~s

(2. 16)
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Here the subscript 8 denotes either the central
atom i or one of the six atoms a in the shell. Also,
as defined in Eqs. (2. 5), (2. 8), and (2. 14c), we
have

J ef f (E) Sen
~

ef f (E) (2. 17a)

The notation for primed exchange integrals is simi-
lar, i.e. ,

J,'(z) = s"'q I(z) =-,' [s'"J+J,(z)],
J2(z) = S'"Sp(z) = .S' Sp-(z) =

2 J2(z)

(2. 17b)

(2. 17c)

g'. (E) = [~.'(E)",(E)] ',
where &p(E) is as defined in Eq. (2. 9) and

&&(E) = J (E)—(c&/2$"')[S"'J'+ Js(z)]

+ 2Jp (E) + Jp(z) . (2. 2O)

We observe from Eqs. (2. 19) and (2. 20) that even
though the shell sites u are occupied by the medi-
um spins S, owing to the nonlocal character of the
exchange interactions, the shell locator g (E) is
modified by the presence of a random spin c,a, at
the center.

[Compare Eqs. (2. 13a) and (2. 13b). ] The remaining
notation, in Eqs. (2. 15) and (2. 16), referring to the
central and shell-site locators, is as follows:

g', (E) = (c,/S"') (~ (E)+3[J,(Z) —S"'J]}'
(2. 18)

(2. 19)

III. FORMULATION: GENERALIZED-PATH METHOD

g... (E) =g.'(E)5.„-g.'(E) Z J.',.-(E)g.-„(E)
S

—g.'(E)g J,'„(E)g.„(z) . (3. 1)

Note that s refers to any atom in the seven-atom
cluster and J, , (E) takes the values

We now begin the formulation of a generalized-
path CPA procedure, referred to in the preceding
sections. The present format of this procedure is
necessarily different from that used by Brouers et
gl. and by Brouers and Ducastelle' for two basic
reasons. First, unlike in these works, we need to
consider here both the off-diagonal randomness as
well as the nonlocal character of the diagonal ran-
domness. Second, even if differences in the char-
acters of the potentials for the two problerps were
not present, our present formulation would still be
in the nature of a generalization of the works re-
ferred to in Ref. 14, because in our work we take a
proper account of the crystal symmetry of the lat-
tice, whereas Brouers et gl. dealt with it in an
approximate fashion, and also we do not introduce
any decoupling approximation for the occupation
variables of the clusters.

We start by combining Eqs. (2. 15) and (2. 16) in
a compact expression:

I Jg(E)

J.', (z) = J,'(z)

I J,'(z)=o

if s =i and s = u, or vice versa

if s = o.'and s =P& —n, or vice versa
I

if s = a and s =- u, or vice versa

(3.2)

and moreover J;f'„(E) and J„(E)are as defined in

Eqs. (2. 17a)-(2.17c).
The last term in Eq. (3. 1) connects an atom s in

the shell with the effective medium outside the
shell. Therefore, it is clear that a diagrammatic
expansion of g, , (E) will sum the terms shown in

Fig. 1(a), which in turn can be resummed to give
the integral equation shown in Fig. 1(b), i.e. ,

g„, (E) =g.'(E)&.„
—g,'(E)Z [J.'„-(E) H. .. ~ (E)]g.-„(z).

(3.3)
In this equation, we note that the only sites which
are explicitly mentioned lie mitfzin the seven-site
cluster. This is quite a remarkable situation be-
cause all our previous relationships have involved
references to sites outside the cluster. Because
this situation has been brought about through the

introduction of H, , ~ (E), let us, therefore, look a
little more carefully at this quantity.

. The quantity H, , ~ (E) is shown in Fig. 1(c) and

sums all the paths that leave site s, go outside the
shell, and come back to the site s . The functions

H, , ~ (E) are completely determined by the effective
medium, which is isotropic and also translationally
invariant; hence they depend only on the relative
distance lA, —B,"I. Taking into account the sym-
metry of the simple-cubic lattice we have only five
different values for H, , (E):

(Hpp(E) if s = s = i

~Hp(E) if s=s'=n

H„, (E)= H, (z) if s (s )=i and s (s)=o.'(3.4)

Hp(z) if s (s )=o.' and s (s)=PS —o,

( H, (E) if s (s') = n and s' (s) = —o .
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Equation {3.3) is similar to the set of equations
derived by Brouers et g1. and Brouers and Duca-
stelle, except that in their case only Ho(E), Ha(E),
and H~(E) appear, as they consider only nearest-
neighbor hopping. Also they approximate H, , (Z)
by an average form that does not reproduce the
complete crystal symmetry. %e avoid this approx-
lIIlatloll by wl ltlng Eq. (3.3) 111 a co111pact matr1x
form and by usi, ng the crystal symmetry group to

simplify the equations.
%e introduce VxV matrices, whose rows and

columns are labeled by the central site j and its
six neighbors distributed in pairs of opposite sites.
We can then write Eq. (3.3):

g =[i+g H] g

00

0

0

0

-'-g;, I(E) gi, i(E) gl, i(E) gi, a(Z) g$, 8(E) gI ~
8(E) gI, 3(E)

g (E) 4

(E)

g= ga &(E)

g {E) ~ ~ '~ 4

(E) 0 0

(E) 0 0

(we denote by dots the remaining matrix elements; they can be easily identified by inspection),

gI(E) 0 0 0 0

o g', (z) o o o o o

o o g', (z) o o o o

g = 0 0 0 ga(E) 0 0

o o o g', {z) o o

o o o o o g,'(z) o

0 0 0 0 0 g 3(E)

{3.8)

H00(E)

H, (E) H, {Z)

H, (z) H, (z)

H, (z) H, (z)

H, (E) H, (z)
(3.8)

Ho(E) H, (E)

H, (E) H, (E)
Here a horizontal arrow indicates that the relevant matrix element is equal to Hz(E) +82(E). On the other
hand, a vertical arrow denotes that the indicated location has a matrix element equal to H, (E)+J,(E).
Finally, g';(E) and g'(E) are as given in Eqs. (2.18) and (2. lQ).

We note that all the matrices on the right-hand side of Eq. (3.5) have the general form
SHOO Pl g Pl y 82y Sl j PAL j PBg
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therefore they can all be block diagonalized by
means of a unitary transformation U as described
by %olfram and Callaway. ~ By introducing the
matrix

S'"[~ (z) +3(Z, (Z) —S"'Z)]

0

0

~10 0 0 0 0 0

0~ O 0 0 0 2d

Ga-S 0 0 0 M

U= 0 c 0 5 0 e -d
0 a 0 —5 0 e -d
0 e 0 0 5 -c -d
0 a 0 0 -b —c -d'

with a '=v6, b '= v2, e=~, d '= v12, we obtain
trom Eqs. (3.9) and (3.10}:

(3.17)

[Note, that while transforming go, we made use of
the relations (2. 16) and (2. 19) which defined the
various components, i.e. , g, (E) and go (E), of this
matrix. ]

We can see from Eq. (3.17) that because (c,)'
=c;, therefore (P)2 =P. Hence the matrix P is a
projection operator over the two states of occupa-
tion of the site i. %e emphasize that it is the pres-

0 mp

0 0 0 0

0 0 0 0

SS' +S 8' 8

mp 0 0

0 mp 0

0

0 ~ (3.11)
n

S m S' + W V y V
Sl I 8III 8 l

0 0 0 Gm, 0

0 0 0 0 0 m„

-W -X--&--~, + e ~ e
8 " m 8'

where M, is a 2 x 2 matrix,
+ aJ

n
S

-"&"~n- ~ +8" m S'

Slpp

, W6m,

v 6rPt

(3. 12)

8 8
3$Q' + ~ ~ + IVV~

8

m, =mp+sn3+4m3,

'PPl p
= 'PB p Ql 3 y

Alp +Vis 2Sg2

p, =[(I) '+P 8,]'I,
g„=[&,'(Z)+e, (z)+a„(z)]-', q= p,d-(3. 15)

where «, (Z) is as given in Eq. (2.20),

%'e shall use this notation throughout the remainder
of this paper. Moreover, because under the unitary
transformation U all the matrices reflecting sim-
ple-cubic crystal symmetry transform to give the

same type of structure as given in Eq. (3.11),
therefore we shall henceforth use the corresponding
notation without mak1ng any expllclt mention there-
of„Transforming the Green's-function matrix
given in Eq. (3.5) under the unitary transformation
(3. 10), after some algebraic manipulations we are
led to the following results for the various corn-
ponents of g~:

FIG. l. (a) Diagrammatic expansion of g8,~.(E), ac-
cording to Eq. (3.1) in. the test. (b) Integral equation for
gs,~.(E). (c) Diagrams which contribute to H~, ~.(E). In
(a)-(c), a single continuous line with an arrow represents
the bare locator referring to one of the atoms of the
cluster. Double lines with an arrow denote the Green's
function g~„.(E), and a broken line with an. arrow repre-
sents the effective-medium locator Qp(E). A single wig-
gly line stands for the in-shell interaction of the form
J~,8.(E), while a double wiggly line represents the factor
Hg gs(E) e F1naOys the effective interactions of the form
J &,~~(E) are represented by crosses subject to the condi-
tion that either 5 or j may be a member of the cluster but
E and j are not simultaneously members of the cluster.
Note that as in the text, sites labeled by s are members
of the cluster while 6 Al indicate sites in the me
dlum
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ence of P in an RPA description of the equations of
motion, in contrast to the spin-wave formalism,
which makes unnecessary the introduction of a
pseudopotential in the formulation.

The components of the matrix H~ are similarly
obtained from Eqs. (3.8), (3.12), and (3.13), and
we get

Let us introduce the matrix notationg ' for the
set of 49 matrix elements g,',f,', (E) arranged and
labeled in an analogous manner to the matrix ele-
ments of g, given on the right-hand side of Eq.
(3.6). Then the corresponding block-diagonalized
matrixg~ is readily found. The relevant elements
are

and

Hoo(z)

v 6 [j((z)+Hg(z)]

&6[j((E)+Hg(E)]

H, (E)
(3.18)

gag-[~-1(z)1 gett ]-1

~„"'=[4(z) H„"'(z)]', n=f, -d

where

(3. 22)

(3.23)

H, (E)= Ho(E)+ Hs(E)+ 4 [Hg(z) + J'2(E)]

H,(z)= H,(z) —H,(z), (S. 19)

Hg(E) =Ho(z)+Hg(E) 2 [Ha(z)+ ja(E)]

Hop(E)

~6[jr(z)+%(z)]

We[j,(z)+ H, (z)]

Hef t(z }

[Confusion between the matrix H, and one of its
components H, (z) should not arise. ]

Our next task is to express the components of
H~ in terms of the effective-medium Green's func-
tions. Using Eq. (2. 7}, the relevant equations of
motion for g~„',(E), referring to sites within the
cluster, are readily obtained:

(s. 24)

(z) = Ho(z)+ HI(z)+ js(z)+ 494(z)+ ja(z)],
(s, 25)Hp~ (E)= Ho(E) Hg(z) ——jg(z)

Kg (E)= Hp(z)+Hg(z)+ jg(z) —2Hg(z) —2 jg(E) .
By comparing Eqs. (3.24) and (S.25) with Eqs.

(3. 18) and (3. 19), and taking into account the defi-
nition of j',(E) and jz'(E) given in Eqs. (2. 17b) and
(2. 17c}, we can write

(3.20) H. =P:"-~.=(g,"') '- ~,'(Z)1- ~. , (s. 26)

The primed sum g„', occurring in the last term on
the right-hand side of Eq. (3.20), indicates a sum
over sites n which are outside the seven sites of
the cluster. [To avoid notational confusion, it
should be mentioned that the spin referring to the
central site i in Eq. (3.1) was an actual random
spin, whereas in Eq. (3.20) the entire cluster con-
sists of the effective-medium spins. ]

Observing the structure of Eq. (3.20) we readily
conclude that it is similar to that of Eq. (3. 1),
which referred to the composite Qreen's functions.
The only differences are that in (3.20) we have
the effective-medium locator ho(z) and the effec-
tive exchange j,'f,', (E), whereas in Eq, (3.1), cor-
respondingly we have the cluster atomic locators
g, (z) and the primed exchange interactions j,',, (E).
Hence, in complete analogy with the derivation of
Eq. (3. 3), we get

H,(z)=H;"(z) j,(z)=(z,"') '- ~0'(E) ji(z) ,

(s. 27)
H.(z)=Hl"(z) j.(z)- j,(z)=(gl") '- ~'(E)

+jg(z) —jg(z) (s. 28)

where

b~=
—v6[j (E)—S' j]

-'v 6[j (z) —s"'j]
2ja(z)+ js(z)

and

g =. [V +P(g ) ]P (3. 30)

(s. 29)

By introducing Eqs. (3.26}-(3.29} into Eqs. (S. 14}
and (3.15), we get

g,.' (z)= ~(z) 5....—~.(z)g [j.",.'-(z)

H..."(E)]z."-' ..(z) . (3.21)

The important point to note here is that the same
set of parameters H,„.(z) occur in Eqs. (3.3) and

(S.21). [See Fig. 1(c) for a diagrammatic repre-
sentation of these quantities. ]

~,=[i„(g„"')']', q-=p, d .

In the above we have used the notation

v, =(K) '-P[~'(z)T+~, ] .

(s. 31)

(3. 32)

From Eqs. (3. 16), (3. 17), and (3.29) a more ex-
plicit expression for V, can be obtained, i.e. ,
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(S' ' —c&) no (E)+ 3S' ' [J1(E)—S' 'J] —2v 6 c& [J1(E)-S"'J]

——,
' &6[J,(E ) —S"'J] e&(E) —2J,(E) —J,(E)

(3.33)

where e,(E) is the same as in Eq. (2. 20). Explicit
expressions for V„are found more readily, i.e. ,
we get

V, = J,(E)—(c, /2S"') [J,(E)+S"'J]
+ 2J,(E)+ 2J,(E),

V„=J1(E)—'(c, /2S' ') [J (E)+S'11J]+3J (E)

(3.34)

(3.35)

The foregoing equations, i. e. , Eqs. (3.29)-
(3.35), can now be used to write down explicit ex-
pressions for the configuration-dependent Green's
functions for the cluster.

Because we are using the irreducible representa-
tion, all these Green's functions are specified by
the 2x 2 matrix g, and the p and d components, g„.

It is clear that in order to derive self-consistent
relations for the basic unknowns of our theory, i.e. ,

J„(E), we have to carry out a configurational
average-of these configuration- dependent Green's
functions —over the two modes of occupancy of the
central site i. This task is undertaken in Sec. IV.

(g„)'=o=x(Z„(E)—(1/2x) [Jx+J,(E)]+(g,"') ' j '

~ (1-x)[Z„(E).(g:") '] ', n= J, d . (4. 1)-
For simplicity here we have introduced the notation

IV. SELF-CONSISTENT EQUATIONS

The concept of configurational averaging was de-
fined explicitly in Sec. II [see the right-hand side
of Eq. (2. 6)). Because, the set of equations (3.30)-
(3.35) depend upon the occupancy of only the cen-
tral site i, we can perform the configurational av-
eraging by computing the values of the quantity being
averagedfortwocases, c; =1andc; =0, separately
and then by wei. ghting those values according to the

probability factors x and 1 —x, respectively. In
this manner, using Eqs. (3.23), (3.31), (3. 34), and

(3.35), we get for T = 0, where S" = x,

+(1 —x)[ V, +I'o(g,"') '] '&o. (4. 3)

Note that the projection operator I' defined in Eq.
(3. 17) is a unit matrix for the case of magnetic
occupancy of the central site, i.e. ,

(4. 4)

Similarly, when c;=0,

(&)., =o
-=&o =

0 1
(4. 5)

Regarding the matrices Vo and V, ln Eq. (4. 3),
these are readily seen to be

vo = ( v.).;=o

xylo'(E) + 3x[J',(E) —xJ']

—ov 6[J,(E) —xJ] J',(E)
(4. 6)

Boo

V1 = ( V.)c,=i =

v6B1 B,
where

Boo = —(I —x)n, o1(E}+3x[J,(E) —xJ],

B1——2 [J1(E)—xJ],
B,= J,(E) —(I/2x) [J,(E)+xJ].

(4. 7a)

Having derived expressions for the configurational
averages of the irreducible components of the

transformed Green's function, i. e. , having deter-
mined (gr) =o, we now have to give some thought to
the problem of interpreting the significance of these
expressions and to transforming them into an ap-
propriate form suitable for numerical computation.

First, let us address ourselves to the fact that if
we were to require a complete equality between the
configurationally averaged Green's-function ma-
trix, i.e. , (gr) =, and the effective-medium
Green's-function matrix g z", then we would have

the following three relations to satisfy self-con-
sistently for all energies E:

Z,(E)=J,(E)+ 2 [J,(E)+J,(E)],
Z~(E) = J1(E)+ 3Jo(E)

(4. 2)
(4. 8)

(4 9)

In effect, therefore, the three self-consistent
parameters of our theory may be considered to be

J1(E), Z (E), and Z (E).
Next, we deal with the 2x2 matrix quantityg,

given in (3.30). Its configurational average is
similarly straightforward to obtain and we get

(g, )'='=x[ V, +(g',")-']-'I',

If this could be done, then we would have carried
the (presently generalized) path CPA philosophy to
consummation. Unfortunately, we notice very
readily that while Eqs. (4, 8) constitute two, lin-
early independent, scalar relationships, Eq. (4, 9)
is a matrix relationship involving another three
matrix elements.

This state of affairs elicits at least two reactions.
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One is, quite obviously, that we made an error in
our basic formulation because we should have
somehow introduced five self-consistent (complex)
potentials, rather than only three effective-medium
exchange integrates. The second reaction is thatbe-
cause we formulated our problem in terms of an effec-
tive medium involving a set of coherent-exchange inte-
grals —the set was seen rather naturally to have only

three members, J„(E),'p, =. 1, 2, 3—we should carry
this analysis through by sticking to this philosophy.

In the present work, we have limited ourselves
only to the latter of the two reactions. The more
general formulation remains of interest and, at
least at the time of this writing, we have plans to
explore its possibilities, As is, however, clear,
the present work is self-contained in its philosophy
relating to isotropic coherent exchange integrals
acting within a bilinear Heisenberg exchange model.
And because its extension to the five-variable
scheme seems necessarily to entail a change in the
bilinear interspin exchange-integral format, we
feel reassured about our. present formulation.

In light of the above remarks, our next task is to
evolve a single self-consistent condition from Eq.
(4. 9). This is done quite naturally by requiring the
identity of the traces of the two matrices given in
Eq. (4.9), i.e. ,

Tr(g, ) = = Trg,'". (4. 10)

—eff
S

J6T,
(4, 1 la)

where

The three conditions defining our CPA, i.e. ,
Eqs. (4. 8) and (4. 10), in their present form, i.e. ,
that contained in Eqs. (3.22} and (4. 3) for Eq,
(4. 10) and Eqs. (3.23) and (4. 1) for Eq, (4. 8), are
rather formal. In order to do computations we
have to recast them in appropriate, explicit form.
Such recasting is straightforward but tedious. Such
recasting is straightforward but tedious. Therefore,
for brevity, in the following we record only the
most useful of the intermediate states in this pro-
cess. First, let us deal with Eq. (4.10). We get

T0 J6T,

Also,

where

'+( — )
2 3

(4. 12a)

Ag 800+ Te/TR

A0 = W6(B, —T,/T„),

A, =B,+T0/Ts,
(4, 12b)

A4=T„[J,(E)7„+T,] ', Ts=T 0Te—6(T,) .
Unlike Eq. (4. 10}, Eq. (4. 8) is quite simple,

l, e. ,

(1-yaK)TK(E)
eff-

& K
(4. 13)

g0" -=Tv= —~- [1+y0K- 2(yK)']TK(E) . (4 14)

T0+T, = [x/Q(E)] [T0+T, + (B,+B00}Ts ]

+(1 —x)T,[T,+T„J,(E)] ',
where

Q(E) = 1+ 12B4 T4+B00T0+B,T,

(4. 16a)

+TR(B00B,—6Bi) . (4, 16b)

[Note that B00, B~, B, are the same as defined ear-
lier in Eq. (4. 7b). ]

Having thus achieved an explicit statement of the
self-consistent conditions, our next task is to
specify what to do with them.

From the relationships (4. 12a)-(4. 14}, we are
able to determine the trace of the matrix g"', i.e. ,

Trge44 Tr(g)re0

Using these simplified expressions for g'„", we
readily find those for (g„) =0 [i.e. , by combining
them with Eq. (4. 1)].

Utilizing Eqs. (4. 11a}-(4.14), we finally arrive
at the following three relationships involving the
statedunknowns J;(E), Z~(E), and Z0(E) of our theory:

Z„(E)=![J,(E)+xJ)
—(Z„(E)—(1/2x)[J,(E)+xJ])T„Z„(E), q =p, d

(4. 16)

1 Y
T = —ZT"(E)0 ~ ~ . K

K =(Z;, ,&"+g(g...)r'=7T0 . (4. 17)

Tg = —~yaTK(E),
K

T. = g ~ 6(yK}'TK(E),
1M

K

T„-(E)= [E-Z-„(E)]',
&K(E) = 6J,(E)yK(yK -1)+ 3Z,(E)(1-y, K)

+ 3Z„(E}[1+y0K-2(yK)0],

(4, 11b)

F40)(E) ge44T (4. 18)

By generalizing the usual single-site CPA philoso-
phy, the effective medium determined in the present
work is thus seen to lead to g0 a,s the Green's func-
tion of basic significance. Recalling the presence
of the factor S'ff in the denominator in the definition
of our Green's functions [see Eqs. (2.9)-(2.19)],
it is convenient to introduce the notation
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r(K,E) =S"'v-„(E)=x~-„(E) . (4. 19)

The magnetic response function Px(o)) is thus given
by the expression

1
p), (td) = ——lmI'(K) tt) + is)

6» 4tQ W

and the density of states by the relation

P(&) =@~Ps(tt))
1M

(4. 20a)

(4. 20b)

Ji(E) = J+ bg(E)+0(1 —x) (4.21)
Zo(E) = J+ no(E)+0(1 —x'), g =P, d

where we expect 4, and 4„ to be of the order 1-g.
It i.s convenient to introduce the notation

E),= lim(q„), X=-O, l, s,p, d (4. 22)

[compare Eqs. (4. lib), (4. 13), and (4. 14) for the
definition of r„] such that E„are the effective-medi-
um Green's functions for the pure ferromagnet,
l, e, )

Z, = —~ [E- 6J(i -y-„)]-1

1 g —,'[1+y -- 2(r5']' P - E —6J(1-yg

(4. 23)

etc.
The foregoing statements refer to the pure case,

i. e. , x = 1. This, therefore, constitutes the zeroth-
order result.

For arbitrary value of the magnetic concentra-
tion x, the solution of the coupled equations (4. 15)-
(4. 16b) is nontrivial and can only be carried out
numerically, For small impurity concentration,
i. e. , when 1-x«x, analytical calculations, in
various orders of the small parameter 1-x, may
be possibl. In particular, to the first order in
1-x the calculations are straightforward and we
present them below.

It is clear that when@= 1, i.e. , there are no
empty sites, the system reduces to the case of a
nonrandom, uniform Heisenberg ferromagnet with
isotropic nearest-neighbor exchange J. Thus, in
the limits = 1, the effective rnediurn is identical to
the pure system and we have

J,(E)= Zo(E) = Z„(E)=J,
Jo(E) = Jo(E) = 0

Near this limit we look for Taylor-expansion type
of solutions for Jo(E), p-=1, 2, 3. Equivalently, for
1-x«1 we write

To find the first-order result, we first iterate
Eq. (4. 15) to the next stage by using Eq. (4.21).
We find

&„(E)=,'[n,-(E)+(1-x)J]+T„(E), q=p, d

where

T„(E)= —(1-x}J[l+JE„], g=p, d (4. 25)

&g= ——,'[&,(E)+ (1-x)J]+0(l -x)'
&.=-.'[~,(E) —(1-x)J]+0(1-x)o . (4. 2V)

Because SX, X-=OO, 1,s, is dominantly of order
1-x we can write Eq. (4. 16a) as

tt)P) "ltt"n+t"-I q( t.mt=t+ t-)t+ ~ ~ . t4. )8)
1 Q

Here we have utilized the following relationship
among the pure-case Green's functions for a sim-
ple- cubic la,ttice:

EP', —6Ei = —Fi/J (4. 29)

Next, we deal with Eq. (4. 16b). Using Eq. (4.2V)
we get

,Q(E)-x=(1-x)+ 12BiEi Bo+E o+&oQs+0(l

(4. 30)
After some algebraic manipulations, Eqs. (4.27),

(4.28), and (4. 29) yield the following result for
&~(E):

~,(E) = 12J'(1-x)J,/[1 —EZ,]
+ (1-x)8+0(l-x)

Now combining Eqs. (4. 11b) with Eqs. (4.21),
(4. 24), and (4. 31) we find that in the limit of small .

vacancy dilution

[&x(E)] '=E- Ex(1) -fTx+ 3To '(1-yox)

+ 3To(E)[1+rEK—2(rx)'l], (4 32)

Ex(1)= 6J(1-rx)

T' tt X)E tt)(t+ t zz-=—
0

and To(E) and To(E) are the same as in Eq. (4. 25).
[Compare Eq. (4. lib). ]

The T's defined above are recognized as being the
corresponding P, d components of the T matrix re-
ferring to the impurity potential of an isolated,
l e» t R singles vacancy

To determine h, (E) we have to deal with Eqs.
(4. 16a) and (4. 16b). introducing the expressions
given in Eq. (4.21) into Eq, (4. 7b), we first evalu-
ate g, X =-00, l, s:
Eoo= —(1—x)(E- 6J)+ 3[&i(E)+(1-x)J]+o(1-x)',

(4. 26)
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(4. 3V)

where in expressions (4. 36) and (4. 3V) the quantity
is the strength of the pseudopotential introduced

to take account of the spurious spin-wave degrees
of freedom associated with the empty sites in these
formulations, %e see readily that upon resonance,
the Elliott-Pepper result agrees with ours, while
the Harris et al, ~ result does this in the limit

~ (i.e. , the limit in which the spurious degrees
of freedom mentioned above should be completely
suppressed).

Another interesting detail that emerges from the
above analytical calculations is the behavior of the
low-frequency, long-wavelength response in the lim-
it of low vacancy concentration. The generally ac-
cepted result, correct to the order 1 -x, for the
response is that it is like that of an undamped spin
wave, ie, when [ K I- 0, with energy stiffness Do(»)
such that

&o( )/&, (I) = [~;«=~;)/E»(l)]i»i-0
=1- (1-»)A,.-O(1-~)', (4. 36a)

In the literature, e.g, , Izyumov, exact results
for T&(E) and T~(E) are available. Our results,
given in Eqs. (4. 25) and (4.32), agree with these,
giving us some confidence in our three-parameter
path, CPA schematization. Next, it is interesting
to examine the 8-symmetry component of the T
matrix, i.e. , T„-, given in Eq. (4. 34). In the lit-
erature, this quantity has been obtained by at least
three different authors. The eaxliest result known
to us %as obtained by Izyumov, who found it to be
equal to T„"'-", where

T-""=(1—~)[ER(1)]'/[E(1—E&o)] (4 35)

At resonance, i. e. , E=E»(l), this is clearly equal
to our result [see Eq. (4. 34)]. On the other hand,

Elliott and Peppery as quoted in Harl lg et Ql, y are
supposed to have found instead the expression

S
T-.'"', h-

I

s(sx) )
&0[z»(1)1' 2E (1) E [E-E»(1))'

T» = (I-x) EZ +2E»(l) E+-
(4. 36}

while Harris et al. ~ found the result y@~"~"~),

A„=(2/Z) T,(Z= 0) —1=1.5316 .
Here we used Eq. (4.25) and the fact that E~ at
E=O is =-(1.5164-0.2571)/6J, i.e. ,

(4.40)

It is satisfying to be able to reproduce the known
results in the small-vacancy-concentration limit.

V. FREQUENCY MOMENTS

An accepted lore of the self-consistent effective-
medium theories is that the number of exactly pre-
served frequency moments provides a useful gauge
of their accuracy. On the other hand, the exact
preservation of only a few of the frequency mo-
ments cannot per se be considered to be of any
great intrinsic value sirice one knows that even
when two given functions have an identical finite
number of frequency moments, they can, in pxin-
ciple, differ arbitrarily from each other. ~5

Yet, because self-consistent theories are con-
structed to represent the dynamics of the actual
random systems through the choice of appropriate
effective media, one traditionally expects them to
reproduce several of the lowest-order frequency
moments exactly. Exact preservation of the high-
er-order moments is, however, often not achieved,
in practice, for the notorious misrepresentation
of the band-taibng effect~6. by effective-medium
theories also concomitantly causes the higher-
oxder frequency moments to be seriously under-
estimated. In the same vein, we might add that if
any of the effective-medium theories are found to
be exact to any given order in some appropriately
chosen small parameter, e.g. , 1 -x in the present
scheme, and also 1/» if one is working with arbi-
trary eoordinations number s, then g/E the fre-
quency moments are reproduced exactly to the ap-
propriate order in terms of the relevant small
parameter. For instance, because our theory has
been seen to be reliable in the small impurity con-
centration limit, we can expect it to reliably re-
produce frequency moments to the order 1 -x.

Let us define the pth, E-dependent frequency
moment of the response function as

A„=-i.532 . (4.38b) pg QP (d 40 (5.1)

a,(x) . Zit(z)
&0(I) Pai-6 E;(1)

~-~g(o)

()- () (4. 39)

Our computation for the parameter A„proceeds
as follows: Because

therefore,

&»(&)
„d&o

( ), Imz &0 (5.2)

[See Eq. (4.20a) for the definition of p»(v). ] Be-
cause~

1(K,E) =S"'~-„(E)
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oo (P)

r(K,E)=+ —,

pap
(5.3)

(m ™) = x(2(1 —x)xJE-„(1)+ [xE"„(1)]'], (5.4)

(m„'")„„,=x(2(i -x)x(2+ Sx) Z'E-„(1)

+ 4(1 —x)x2JZx(1) + (xER(1}]),
where Ez(1)is the same as defined in Eq. (4.33) and
x is the concentration of the magnetic atoms.

A formal expansion of rz(E}is obtained from Eq.
(4. 11b) as follows:

(E) g Fz(E)]" (5.5)

where Zx(E) is itself given by the high-energy ex-
pansion

The procedure for calculating the exact moments
for the diluted ferromagnet was described in detail
in a previous paper by one of us, and the first few
terms of the expansion for the exact Green's func-
tion have been given in Eq. (S.20) in Harris et al. 's

1 ~

paper, s.e. ,
(p)(m- ) ~, =x,

(m"')„,=x'ER(1),

m =I x
R R

m (2) (L(0))8x x L (1&

m'-~'=(L' ') x+2xL- I' '+xL-'

(5.8}

The values of the first few moments are obtained
by introducing the expansion of Eq. (5.3) into Eqs.
(4. 11b), (4. 13), (4.14), etc. , and by expanding in
a high-energy series the self-consistent equations
(4. 15)-(4.16b). The resulting algebra is extreme-
ly tedious. Finally we obtain

= (m$)~g~g for v = Oy l~ 2)

(n)

Z-„(E)= (5.6)
na

LP =6~i"'Wxb K-1)+SZp '(1-VaK)(n)

+ SZP'(1+ y~-„- Pay-„'), (5.7)

and where J~", S„",g=P, d, are the coefficients
of E» in a high-energy expansion of J&(E) and Z„(E),

Pj do

By introducing Eq. (5.6) into Eq. (5.5) and re-
membering the S"'occurring in Eq. (5.2) we get

m'-" =x,
K

2.0
UJ

fw

E
I

I.O—

)( tf

f

X = 0.7
K =(IZO, IW, Ire)

FIG. 2. Response,
i.e. , -ImI"(K, E) for E
= u + 0. 06 i, is plotted as
a function of co for mag-
netic concentration x
=0.7. K is along (k, k, k)
direction and the given
results are for 0= 4 ~.
The heavy continuous line
shows the pade-moment
procedure, i.e. , the so
called "exact, " results
while the light continuous
line gives the results ob-
tained by Harris et al.
(Ref. 1). Our results are
shown as crosses.

0,
0 0.5 1.0
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m-' =x([xE-(1)] +4@ (1 -x) J'[E-(1)]2

+ 2x(1 —x)[2x+ 3]Z'E-„(1)).

Upon comparing Eqs. (5.4) and (5.9), we find
that our theory exactly preserves the first three
moments of the spectral density while the'fouxth
moment, i.e. ,

~~&" = (m„'") „,+ 2x'(1 —x)'Z'Eq(1), (S.10)

is in error by a term proportional to (1-,'s)@' 4s
mentioned earlier, the preservation of evwg-
higher-order frequency moments to this 'Afar of
accuracy can be reliably anticipated.

Finally, for the sake of completeness, let us add
a word or two by way of explanation of thk-signifi-
cance of the first few moments.

Clearly the conservation of rn-„'' imply'8 th8, t the
weight of the total magnetic response is being taken
into account correctly. [Quite naturally, ':there-
fore, it is equal to the magnetic concentration, -k. ]
m-'~', on the other hand, refers to the cerate'r of
gravity, i.e. , the mean location of the maximum
of the response. Moreover, it implies .that: in the
limit E-~, the effective-medium para~Mes m4
the same as given in a virtual-crystal t0' cC 4,6
approximation, 1.e. ,

Z, (E) = xZ,
g «oo

(5.11)

This result therefore is expected in any moderately
reasonable mean--field approximation. Thus the
first nontrivial frequency moment which frequency-
independent mean-field theories, e.g. , the vir-
tual-crystal approximation, do not preserve is
nz'~ . '

Also, because this is still a low-order mo-
ment, it is not too sensitive to the details of the
band-tailing phenomenona. ~ Thus, it is encourag-
ing to find its exact preservation, especially since
the best and the most reliable CPA theory to date, '
given by Harris et al. , does not conserve this mo-
ment for their best value of the pseudopotential,
i.e. , for 4=~.

VI. RESULTS

%'e shall conclude thxs paper by presenting in
this section the various results of the numerical
computations referred to in Sec. IV. Because the
results for the low-impurity-concentration limit,
i.e. , 1-x«1, have already been des.cribed, we
shall begin by describing the results in the inter-
mediate-concentration regime.

A. Response at intermediate dilution: x=0.7

Harris et al. have supplied a set of spectral
weight functions, i.e. , the imaginary part of
I'(R, E) calculated at E=&u+i 0.06, in units such

0.8
X = 0.7
K = (I/2, I/2, I/2)

0.6

E

OA
)&

PIG. 3. Same as in Pig.
2 except that here k=2 ~.

0.2

I

2.0
I

40
I

6.0 8,0
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GI5—
Q=Q7
K-(WO, W4,SW) - 12

1.0

O. I

ILI

$r

E
I

0.8

06

FIG. 4. Same as in Fig.
2 except here k=~~ 7t.

OA

0,2

0
0 l.o 2D 5D 40 ao 70 8,0 9.0

0
100

that the exchange constant is equal to 1 or, in other
words, when the total bandwidth for the pure fer-
romagnet is 12. Clearly, in the limit that 0.06 can
be considered to be vanishingly small compared
with 12, these spectral weight functions are sim-
ply the frequency-wave-dependent magnetic-re-
sponse functions, i.e. , they are equal to irpK(~),
which embody all the needed information regarding
the magnetic excitations in the system.

In Figs. 2-7 ue have plotted - Iml (K, E) for

g=. ~y;(}'.@Bi, or what we shall henceforth refer to
as! ths! xesgonse, for x=O. 7, against ~ for several
values of K. In these figures we present, in ad-
dition to our own results-which are plotted as
crosses-the corresponding response calculated
by Harris et al. —as a continuous solid line-and
the "exact" results generated by the Pade proce-
dure based on the first ten numerically computed,
exact frequency moments by Nickel —drawn as the
heavy continuous line.

O. l 5 —3.0

0.1

E

—2.0

FIG. 5. Same as inFig.
2 but for k=7t..

—1.0

0
0 40 8.0 9.0 10.0



0.8

LLj

&"0.6 FIG. 6. Response for
magnetic concentration g
= 0.7 for K = (&, 0, 0). The
curves are identified in
the same may as in Fig. 2.

0.2

0
I.0 2.0 30 4Q

Looking along the (k, j'p, 0) diagonal we see that
for 0= 4g, our results are distinctly worse than
those of Harris et al. (i.e. , as compared with the
exact-moment-procedure results), whereas half-
rvay along the diagonal, i.e. , k = ~g, the mean-

square deviation between our results and the exact'3
results (henceforth to he referred to as our MSD)
is only about twice as large as the Harris et aE.
MSD. However, the situation is now shifting in our
favor. Indeed, at 4= —'„g our results are over-

PIG. 7, Response for
x=0.7 for K=(m, x, 0).
Curves are identified as
in Fige 2e

O.I

0
0

I

I.O
I I I

2.0 3.0 40 5.0
I

60 &.0
0

CLO
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0.9-

E
M

I

0.6-

0.5-

X= 0.5
I

~ I
f o

I
( ~

i

i

I

pIG. 8. Response for
various K values for mag-
netic concentration. x
= 0.5. The three curves
on the extreme right are
for K = (7t, &, &), while the
middle three curves refer
to K= (2 ~, ~ ~, ~ 7i). The
curves at the left-hand
corner are for K = (&, 0, 0).
Here the heavy curves are
the exact, Pade-moment-
procedure (Ref. 12) re-
sults; the continuous light
curve gives ogx results
while the dash-dot curve
gives the results of Ref, l.

0 l0

whelmingly superior. (See Fig. 4. ) Even at the
diagonal zone edge, i.e. , k=g, our MSD is only
about a fifth of that of Harris et al. (See Fig. 5. )

Thus along the diagonal our score over all is
better than (or, more conservatively, about the
same as) that of Harris et al. 's theory. This we
consider to be no mean feat, because the theory
presented in Ref. 1 is the best CPA work to date
applied to the sited-diluted ferromagnet.

Looking in other symmetry directions we find
about the same situation. At (v, 0, 0), i.e. , Fig.
6, the Harris et al, MSD is about a half or so of
that of ours while the opposite is true at (v, v, 0),
i.e. , in Fig, 7.

B. Response at x=0.5

When the vacancy concentration reaches the level
of 50% of the total, the response is seriously
damped. Although the moment calculations' do
not converge as rapidly for x =0.5 as they do for
x=0. 7, they are still very reliable, as evidenced
by their close correspondence with another exact
numerical procedure used by Harris. ~7

In Fig. 8 we have plotted the response for vari-
ous values of K for x=0. 5. Here our results are
given as the light unbroken curve while Harris
et al. 's results are presented as broken curves;

the exact-moment-procedure results are again
plotted as beany continuous lines.

2.O- 4&

2.l4

+)
4y

l.5-

X*0.5
K "- (I/4, I/4, I/O)

l.o i.
lal

l

c

Jl
o.5 &

+

+

+

2.0 4.0 6.0 8.0 IO.O

FIG, 9. Response for x=0. 5 along K=(k, k, k) for k
The heavy continuous line refers to the moment-

generated exact results (Ref, 12) while the crosses (given
wherever the two sets of results differ) indicate our re-
sults, The scale factor (along the ordinate) is unity for
the curve on the left, 10 for the middle curve, and 100
for the right-hand curve.



0.4-
X%0.4
K & (3/4, 3/4, 3/4

lLl

0.2—

O. l

6.0 8.0

FIG. 10. Response along K= (k, k, k) for k =4~. The
magnetic concentration here is 0.4. The curves are
identified in the same way as in Fig. 2. The cross-
hatched area indicates the weight of the heavy curve at

0, (See Ref, 12 for its description, )

We notice that near the zone edge, i.e. , K= (g,
v, v), our results closely resemble the exact ones
(except for a small shift in the peak to a higher
frequency). Indeed our MSD here is more than an
order of magnitude smaller than that yielded by
Harris et al. 's theory. Moreover, their response'I

visibly leaks into the negative-energy region. (Note

that because the response is being measured slight-
ly off the real axis, some leakage is to be expected,
but its magnitude should be such that on the plotted
scale it should be barely visible. )

Looking at the group of curves for K= (~v, ~v, kv)
and K = (v, 0, 0) we find that both the present theory
and the Harris et al. CPA perform about evenly
over most of the frequency scale, except at m=0,
where our theory behaves somewhat better. (See
Fig. 8. )

To test our results against the exact ones for
their high-frequency detail, we have chosen a
figure given in Ref. 12 (i.e. , its Fig. 4 with its
n=l). In our Fig. 9, the response at K= —,'v(1, 1, 1)
is plotted for x=0.5. For clarity, the scale is
increased by a factor of 10 for intermediate fre-
quencies and a factor of' 3.00 for large frequencies.
We find that except for a minor difference, i.e. ,
the heights of the responses which occur in a very
narrow range around the maximum, the two sets
of results (ours are given as crosses whenever they
do not fall on the exact resuits) are in surprisingly
good agreement. Only at large frequency is the
departure between the results visible. (Note that
our results do terminate before the exact ones
even though we do not record them for ~&9. This
is in accordance with the ubiquitously observed
poor representation of band taihng effects by
effective-medium theories. ) A source of some
satisfaction to us is the fact that this set of
xesults, i. e. , Fig. 9, is for "small" values of K

X ~0.4
K ~(I,

O.R—
Ii
tI
f

I

FIG. 11. Response at
K=(&,~, ~) for &=0.4.
The continuous solid curve
gives the Pade-moment-
procedure results for the
(5, 5) Pads while the
dashed curve gives the
corresponding exact re-
sults using the (4, 4) Pade.
Our results are shown as
crosses.

0
0 6.0 8.0

I

IO.O
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1.0

2.0-

0
O.I

K = {k,k, k)

0.2 0.3 0.4 0.5
k

0.6 0.7

4.0

2.0

0.8 0.9 l,0

+1
y *

- 0.5

FIG. 13. Top section
shows the results for the
ratio of the positions of
the main response peak
for various magnetic con-
centrations x i, e. , Eg(x),
to that in the pure sys-
tem, i.e. , Eg(1), for K
=m(k, k, k) as a functionof
k. The top curve refers
to x=0. 9, the middle one
to x=0.7, and the bottom
one to x=0.4, The con-
tinuous lines refer to the
results of Hef. 1. Our
results for x=0.9 are
indistinguishable from
those given in Ref. 1.
For x=0.7 our results
are not recorded for k
& 0, 6 for the reason ex-
plained in the text. Again
the crosses indicate our
results for k&0. 6, The
lower section of this
figure gives the results .

for the hal. f-width of these
peaks (determined at half
of the maximum height).
The lowest curve refers
to the case x= 0.9 while
the middle curves refer
to x=0.7. For x=0.4
only the results of Ref. 1
(continuous l.ines) are
given for all k; Our re-
sults are recorded for
k&0. 6. (For x=0.4 our
result is indicated as a
curve with dashes and
crosses).

termediate-vacancy-concentration case, our EK (x)
lies somewhat lower than that obtained in the work
of Harris et a/. for k& ~g. Around the middle of
the zone, i.e. , k-2g, the results coincide, while
for k& &7r our results lie higher.

The behavior of our theory for the large-impuri-
ty case, i.e. , x=0.4, is quite different from that
of Ref. 1 for k&0.6g or so. Here, our results in
general show two peaks. The one at the low-fre-
quency end tends to dominate in height for smaller
k valises. However, its location is a slowly vary-
ing function of k. As such, we have not plotted our
results for these k values. For k~0. 6g, the high-
freguency peak (in our results for the response)
begins to dominate quite distinctly and we can
therefore plot these results in the given context.
The location of the peak, i.e. , EK(x), is however
somewhat smaller than that given by Harris et al.
for k&0. 72', while the reverse is true for k-0. 72'.
Thus for large vacancy concentrations our results

have begun to differ, rather substantially, from
those of Ref. 1.

In the bottom section of Fig. 13 we have plotted
half-width of the corresponding peaks in the re-
sponse. (This half-width is measured in units of
J and is taken at half-maximum value of the re-
sponse. ) For @=0.9 (lowest curves) our results
(given as crosses) mirror closely those given by
Harris et al. except for the fact that our widths
are somewhat larger. For x=0.7, (the middle
curves) the behavior of the two sets of results is
similar but the relative increase in the widths,
over those given in Ref. 1, has become larger. On
the other hand, for the large-vacancy case the
structure of our results has become visibly dif-
ferent (see the top curves). Our results for x=0.4
are plotted as a curve with crosses and long dashes.
For k~0. 55m, the Harris et al. results show a
monotonic decrease as k increases while our re-
sults attain a maximum for k-Q. S3g.
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the small-frequency end. These osci1lations arise
entirely due to the approximations involved in our
numerica1 computations and they get damped down
for larger randomness, i.e. , when x is reduced,
and the curves became smooth. We notice that the
weight of the curves generally shifts towards the
smaller-frequency region as the impurity concen-
tration is increased. (Compare also Ref. 3. ) In
the bottom half of the figure, for the sake of com-
parison we give our results (as continuous lines)
along with the Harris et al. results (as broken
lines, whenever they differ from our results). For
x=0.9 our results are almost identical with Harris
et al. [the fact that their results do not contain the
undulations (referred to above) in the small-fre-
quency region is completely immaterial because
they are an artifact of our approximate computa-
tional procedure]. For x = O. V differences between
our results and those given in Ref. 1 are be-
ginning to be apparent. Our results show a
tendency toward putting greater weight towards

MAGNETIC CONCENTRATION ~
FIG. 14. Long-wavelength, i.e. , I K I 0, spin-wave

stiffness is given as a function of the magnetic concentra-
tion. The continuous dark line gives the results of R,ef,
1. Our results, wherever they differ, are given as
crosses. The percolation-theory Monte Carlo results of
Ref. 5 are indicated as circles.

0.4-

03-

Next, in Fig. 14, we plot the magnitude of the
long-wavelength, spin-wave stiffness coefficient
Do(x)/Do(l) as a function of the magnetic concentra-
tion. Our results are given as crosses, the re-
sults of Ref. 1 as continuous lines, while the per-
colation-theory-Monte Carlo results are given as
circles. %Ye find that our results closely agree
with the other two for small, i.e. , ~0.2, concen-
trations of the vacancies. For 0.5&x(0.8, our
results are in fair agreement with the percolation-
theory-Monte Carlo results. Note that below
about @&0.52 the Harris et a/. results break down

completely. When the impurity concentration is
as large as 60%, i.e. , x=0.4, our result for
Do(x)/Do(l) is almost twice that given by the per-
colation-Monte Carlo procedure. We feel that
this, i.e. , 60%, specifies the largest impurity con-
centration for which our theory is giving qualita-
tively useful results.

The sum of the response over the entire Bril-
louin zone-which would give the total density of
states vp(~) if we had used the limit c-0 in E= ~
+ ie [see Eq. (4. 20b)] but which is only approxi-
mately equal to xp(ap) because we are using the
approximation e = 0.06—i.e. , —Iml' '(e+ 0. 06i),
is plotted in Fig. 15. The top half of the figure
gives the results obtained in the present paper.
For small impurity concentration, e. g. , x=0.9,
the density of states shows minor oscillations at

02-

O. I

- - - - Harris et al
ours

toz-

9.0 12.03.0 6,0

Fig. l5

FIG. 15, Density of states, i.e. , -ImI' {E)for E
=(d+0. 06i, is given for various magnetic concentrations
x. The top section refers to our results only, In the
bottom section our results are given as solid lines, while
the Harris et a/. results are indicated as broken lines
{wherever they differ visibly from ours). For low con-
centration, e. g, , x = 0.9, the undulations near the low-
frequency end are a result of the approximate computa-
tional procedure used here.
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a lower-frequency region. For large vacancy
concentration, i.e. , x=0.4, the differences be-
tween the two sets of, results have become quite
substantial. In particular, here the Ref. 1 density
of states have visibly leaked into the disallowed
(negative frequency) region.

Finally, in Figs. 16-18 we display the behavior
of J,(E), J~(E), and the complex effective stiffness
coefficient D(E), where

0.02-

O,OI

~ ~
~ ~
~ ~

~ ~

~ ~

~ ~

~ ~

5 ~

D(E) = J,(E)+4 f J~(E)+J~(E)], (6. l) LLj

lim l" „=D(E),Z„-(E)
(6. 2)

IKi 0
—yx

as a function of the frequency &u. We note that J, (E)
completely dominates the other two coherent ex-
change integrals, except in the very-large-impuri-
ty-concentration region, where the "effective" num-
ber of magnetic nearest neighbors becomes small.

E. Remarks

-O.OI

EAL Jt2 (E)

We conclude this paper by noting briefly that here
we have presented an alternative procedure for
achieving a CPA-like approximation for describing
excitations in a randomly diluted Heisenberg ferro-
magnet. The accuracy of the results of this pro-
cedure is fully comparable to that of Ref. 1, in the
small- and inter mediate-vacancy-concentration
regimes. For large vacancy concentration, i.e. ,
0.6~x&0.4, our results seem tobe of superior
quality to those given in Ref. 1 (which is the best
CPA work to date). Also, in terms of low-order
frequency-moment preservation, the present work

I.O-

I

5.0 IGO

Fig. l7

FIG. 17. Same as in Fig. 15 except these results are
for J2(E) and moreover for the sake of clarity the various
curves are identified in the right lower corner of the
figure.

gives a better performance than Ref. 1.
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