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The Bernoulli potential in a superconductor is calculated using the Gorkov equations. General expressions for
the potential are derived. In the high-x limit, the expression reduces to the result of the two-fluid model

augmented by a term due to the spatial variation of the order parameter. The temperature dependence of the

potential is computed, in the case of clean superconductors, for various values of v, and, in the case of impure

superconductors, for ~ = oo.

I. INTRODUCTION

E = —(n, /no)(m/2e)Vva, (2)

where n, is the superfluid density and no is the total
fluid density.

Calculations based on the BCS model have been
made by Adkins and Waldram, ' and Rickayzen. 6

Adkins and Waldram showed that band structures
may have important effects on the Bernoulli poten-
tial. However, for a spherical Fermi surface,
their result agrees with Eq. (l). Their calculation
was for 7.'=O'K, but they indicated that at higher
temperatures, especially near T„ the variation of
the order parameter with the current plays an im-
portant role. This feature is borne out by the pres-
ent work. Rickayzen extended the calculation to

In a superconductor, the chemical potential in-
creases with the supercurrent because of the kinetic
energy associated with it. In the steady state, any
spatial variation of the chemical potential must be
compensated by a corresponding change in the elec-
tric potential so that the electrochemical potential
remains constant throughout the superconductor.
Hence a uniform current in a superconductor re-
sults in an electric field, analogous to the Bernoulli
pressure variation associated with the nonuniform
flow of a classical Quid. Such an electric field has
been measured in a number of experiments. ~'2

This Bernoulli field was first predicted by Lon-
don, ' who using the model of a charged superQuid,
showed that the electric field is given by

E = —(m/2e) vv,', (l)
where v, is the superfluid velocity. This equation
was later modified by Van Vijfeijken and Staas,
who took into account the normal fluid component.
They obtained the result

include temperature dependence, but he assumed a
constant order parameter. Both works are per-
formed in the local limit.

Time-dependent Ginzburg-Landau equations have
also been used in the calculation of the Bernoulli
potential. Jakeman and Pikev obtained an expres-
sion which differs from Eq. (2) by a factor of 2.
They also took into account of the Thomas-Fermi
screening, but because the screening length is ex-
tremely small, this has negligible effect on the po-
tential, although the electric field and the charge
distribution near the surface of the superconductor
are modified. Rieger' explicitly calculated the
spatial variation of the order parameter, but his
result is different from the other works.

In this paper, we treat the problem using the
BCS-Gorkov theory. We consider a superconductor
with a spherical Fermi surface. In Sec. 0, expres-
sions for the Bernoulli potential are obtained. In
Sec. III, we show that in the local limit, our ex-
pression reduces to Eq. (2), augmented by a term
resulting from the spatial variation of the order pa-
rameter. In Sec. IV, the Bernoulli potential in-
duced in a semi-infinite superconductor by an ex-
ternal magnetic field is calculated. Numerical re-
sults are obtained for clean materials with &=0.1,
1, and 10, and for high-& materials with various
values of the mean free path.

II. EQUATIONS FOR THE BERNOULLI POTENTIAL

We start with Gorkov's equations for a super-
conductor in a static magnetic field. It is conve-
nient to use a gauge in which the order parameter
is real. The vector potential in this gauge is iden-
tified as the superfluid velocity, 9 i. e. , v, =eA/m
[in an arbitrary gauge, v, =(eA+VW)/m, where 2W

is the phase of the order parameter]. Gorkov's
equations may now be written as (h =c = 1),
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~i~, —(1/2m) [iV —mv, (r)]'+ ey(r)+ (u S(r)
—a(r) - i(g, - (1/2m)[i%+ mv, (r)]3+eg(r) + p, /

Here ~, =(2l yl)vk~T, I is the identity matrix, and
—ep is the self-consistent Coulomb interaction

(~) I' dg, 8 58 r
(6)

It turns out that this is exactly the electric poten-
tial one would measure in the metal. In this calcu-
lation, therefore, we are treating the Coulomb in-
teraction in the Hartree approximation, while the
phonon-mediated interaction is treated in the usual
manner.

A perturbative solution to E(l. (3) may be written
down immediately. Writing

~(r) =&o+& (r),
p, ~(r) = eP(r) —g me~(r),

a d defining the Fourier transform

(7)

(3)

G((A)i~ r~ r') =
I

{ )s {- )se'"' "
G(&(i, p, p')

(9)
we obtain (suppressing the variable ro, )

G(p, p')=(2~)'~(p-p')G'(p)+PG"'(p, p'), (1o)

&&G'(P)A(k )G'(P -k ) ~ A(k )G'(p').
(11)Here

"0(-) 1 g I- ( ()Tu)

2 ~ ~) $q+ioW, '

A(k) = ' . (13)
p v, (k) —p, (k) —h, (k)

&,(k) -p v,(k)- p, ,(k)

As usual, $p =P /28$ —p, Wg = ((()(+4()), Tg (I = 1,
2, 3) are the Pauli matrices, u=(0, 60, ~,)/W, and
the condition div V, = 0 is assumed.

For the problem of the BegnouQi' potential, we
need only calculate 6'~' and G'3', and it is easily
seen that both p.

the calculation of 6+', we may replace A by
(p vs)~s.

To take into account the effect of impurities, we
have to make the following replacements in E(l. (12):

where ~ is the scattering time. Furthermore, we
have to evaluate the various vertex corrections to
Eg. (11). Considering only s-wave scattering,
there are no corrections for the individual v, ver-
tices (but there is an impurity bridge across the
two v, 's in G("). From G'", we obtain the usual
relation between the current density j and vs,

'o

j (k) = —Q(k)noev, (k),

q(a) = ~),r p - )"(","- ),
3 "1F(x)=, —+x tan-'x-1 .2x

~

x

The changes in the density and the order parameter
are given by the self-consistency equation

( —'&n(k)

( (1/V)~, {k)1
+0 3

=)' )' Z Z f 2 ~ G7'(~i, i, i-&), (»)

where V is the BCS interaction constant and 6&
'

is the first column of G'"'. Substituting Eq. (11)
into Eg. (21) and correcting for impurity bridging,
we find that all the corrected quantities M satisfy
the equation

g 3p
M=M, + f,o'(p)MG'(p —Pc), (22)

where Mo is the uncorrected matrix (both M and Mo
are matrices independent of p) and N(0) is the den-
sity of states at the Fermi surface. As the Bern-
oulli potential is of the order & me, and it is well
known" that near T„h,- mv', p/60, we mast there-
fore calculate the various coefficients up to order
&()/p, i.e. , we have to keep the first two terms in
the expansion of the density of states about the
Fermi surface, Thus

(23)

In general,

QPg (dg = Q)gag

+0 lli~aL0 labor $

'gg =1+1/2v'Wg,

{14)

(15)

{16)

~Ab

Mo= aoI+ho '7' .
We may solve E(l. (22) by writing

M=aI+b ~ 7 .

Substitution in Eq. (22) yields
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i 1a=a +——(b u)
2p, 27'

6' bo ~»( bo

2Fr
tan ( v~k

Zg = (1/arw, )I».

(27}

(28)

i 1 i(1 -I»)
Coll+

(1 ~ )2 (bo&& u) (28)

Evaluating the various Mo in Eq. (21) and using
the above formulae, a lengthy but straightforward
calculation gives the following results:

d'
I!n(k) = RN(0)(e( (17)

2 S,(k) ——,v„(t()v.,(f -t( lÃqq(q, k- f)),
d'q v„(q) „(K q-}II„(qk, -q)

(av)' u(k)

where we have used the replacement

1 1' ',~ w, x(0)v '

and with p = k —q, n a unit vector, vz = Fermi velocity,

~ dPo(aw&+W )(
&&y(q, p) =4&ksT ~ p &(g((d&, q, p),

ra oo l

i ~) &k T M ~ ~)I $9((dl) q) p } ~$9(+1~ q p)[1 -d))(+0/Wl)]

(29)

(31)

(32)

~W~ 1-'Z WWr=- l k rt l l

dA(n) 4W~+vaz(n q)(n p)
' '[4W' v'(n )'][4W'+v'(n )'] '

dQ(n) 12W, +vz~[(n q)~+(n ~ q)(n ~ p)+(n p) ]
&&((d&, q, p)=

4 ! J[ 4W2va(, q)2][4W2 v2(n, p)2][4W2 va(n, k)2]

From Eq. (6), we get

—e(t)(K) = (4ve'/k')5n(k) .

(34)

(s5}

(s8)

(37)

Since the Thomas-Fermi screening length AT+=1/8vN(0)e is extremely small (of the order of interatomic
spacing), we have k XTz«1. Eq. (29) therefore becomes

e((t)(K) = — v„(q)v, &(k —q)K„(q, k-q) — ' -- b,,(k). (38)

III. THE LOCAL LIMIT

To make contact with the two-fluid model, we
consider a clean superconductor in the local limit
where. the various quantities do not vary appreciably
over distances of the order $0- Nvz/k»T, In this.
case, we have v-~ and Wr»v~k, so that

n,
Q(k) =vk»T Q ~=—',

r--- &Sr no
'

e(t)(r) =——' mva(r) — a Aq(r) .
a no

' ai(, I)IO V
(4o}

The first term on the right-hand side is just what

one would expect from the hydrodynamic model

[Eq. (2)]. The origin of the second term may be
traced to the shift in chemical potential due to the

pair interaction energy. To see this, we note that
the chemical potential p, in the superconductor dif-
fers from the normal state value p, & by an amount

which defines the superfluid density n, . Also

K,q(qp) = ,(n, /no)5, ~ .

1
4 —P» = -

4 ~(0)y
—'Y(T) d (41)

Eq. (38) then becomes, in real space,
Here y(T) is a function which goes from 2 at T= 0
to 1 at T = T„but these finer details are omitted
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in our calculation. In the absence of other fields,
a spatial variation of 4 must be compensated by a
change in density so that p, remains constant, i.e. ,

O= —5n+ " 5a, (42)

5n=2K(0) —
H( )~

5d . (48)

~ ho(2W1+ W, ) 1
Z;~(q, p)=wksT ~

g= e g

This is just the contribution we find in Eq. (29),
and it agrees with an expression derived by Adkins
and Waldram. 5

For the case of arbitrary mean free path but
still in the local limit, we find

q(k) =wk, r g '- = q(r), - (44)

IV. SEMI-INFINITE CASE

As a concrete example, we consider the geometry
of a superconductor occupying the half-space x~ 0
and determine the Bernoulli potential arising from
the nonuniform Meissner current induced by an ex-
ternal magnetic field in the y direction.

Assuming specular scattering at the boundary,
then for a solution valid in the region x~ 0, we may
wx'lte do%'n M33Pvvell s equation ln the form

o A(x) = 2Ho5(x)+4wj (x),dx

and extend the superconductor to occupy the whole
space by means of a reflection. Here Ho is the
magnetic field at the surface. Prom this we obtain
the standard result

( )
(2e/m)Ho
k'+Z(k} '

E(k) = (4w n.e'/m) q(k) .
K(r)5,-q,

OO 2 2&o ~(d &o &

W'W W 2W 6l-"- eo

H(T)5, J, —

D(k) =wkar Q --ow[1+op (T)k ]

= D(T)[1+o go(r)ks],

""=8(P)~ w'w

%e obtain, therefore,

(46)

(4V)

(48)

E1luations (80} and (38) then yields an expression
for the Bernoulli potential.

This calculation may be carried out analytically
in the local limit. In this limit,

It{k)= (4w n. e'/m) q(r) = 1/X'(r), (58)

2Q,Q-

p(o)
fg(ol

IO.O

ep(r) =IF(r) 2 mao(r) — O -- —61(r), (49)

-2p
C T j [d'e/(2 )']v.(q) v.(& -11)

1 1+-,'4o(r)k

C(T) = 6aoH(T)/D(T) . (51)

Close to T„C(T) reduces to Gorkov's impurity
function

5.0-
4.0-

5.0-

2.0 "

C(r, ) = x(1/.)

Vg(3), (2E+1) (2l+1+1/2wk T,7) '

and $ (T) becomes the Ginzburg-Landau coherence
length

5'(r) = ~o(ww/&o)' X(1/1 ),
and E11. (50) is exactly what one would obtain from
the Ginzburg-Landau equation. In particular, for
high-z materials, $ k «1, so that Eg. (50) gives

IO ——

0.5 "

Q' 4

i

0.2
I

Q,4
l

0.6 0.8

&i(r ) = —{2u/8&0) X(1/1) m~,'(r ),
which is a result we have referred to in Sec. II.

Fja. l. Bernoulli potential relative to the temperature-
independent result of the tv'-fluid model as a function of
T/T, . n = 0. 888k o/l.
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Hc

" {((t(o) (—=const. ) a*0 suit of the two-fluid model, i. e. , Eq. (2),

((t~(0) = Ho/Swnoe, (66)

I.O

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 /Tc
1.0

which defines the penetration depth A.. Hence

e,(x)= —H, e "~",eX

and Eq. (60) gives

FIG. 2. Bernoulli potential in. clean materials {o =0)
with the field Ho kept at a constant fraction of H, {T). The
ordinate is in arbitrary units.

which is independent of temperature.
We note that although the coefficient B(T) di-

verges as (T, —T) ~ when T approaches T„ the
Bernoulli signal actually goes to zero because the
critical field vanishes like T, —T. This is demon-
strated in Figs. 2 and 3. This divergence of B(T)
is in agreement with the thermodynamic result of
Rickayzen. 6

Equation (62) is valid for arbitrary «only near
T„and for a wider range of temperature in the
case of materials with sufficiently high values of

For the general case of arbitrary x and arbi-
trary T, {jt(0)has to be computed numerically. The
results for clean materials (r=~) with «= 0. 1, 1,
and 10 are shown in Fig. 1. The factor 1/N(0) V
has been chosen to be 5. The broken curves are
obtained from Eq. (62) for the limit «=~, the low-
er one being for the clean limit v= and the upper
for the dirty limit 7 = 0.

In Fig. 2, the Bernoulli potential with the field
Bo kept at a constant fraction of the critical field
H, (T) is plotted as a function of T. The ordinate
is in arbitrary units, normalized to 1 at T = 0'K.
For the two-f)uid model, this is just a plot of
Ho(T)/Ho(0). Figure (2) is for clean materials
with various values of z.

The scheme of Fig. 3 is the same as Fig. 2.
But here the plots are for materials with a =~ and
various values of the impurity parameter c{= 1/

a, {x)=-- "C{T{—Il)
3&0 m

1 sty W2 ~ lt)
1 —2/«'

«(T) = Z(T)/g(T) .

(60)

(61)

&{ {((t(O~ (
o = const. )

l.2- Hc(T)

l.o

«(T,) is just the Ginzburg-Landau parameter «.
Eq. (49) then gives the Bernoulli potential. In

particular, the potential at the surface (relative
to a point deep inside the superconductor) is given

by

H'„«(T)
~ ) 6

' (T)-&2N(0)V '

0.8

0.6

A(T) =-+- —~2 1 S~~

3 3S~~ ' (63)

wk' T
( )

' tt D st+s ~s g (64)

0.2

S„„(T)= (vt,T)""g
t 0 g g

(66)
0.2 0.4 0.6 0.8 l.O c

This may be compaxed with the corresponding re-
FIG. 3. Bernoulli potential in materials with K =~ and

with Ho kept at a con.stant fraction. of H, {T).
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2mksT, 7=0. 882)0//, where (0 is the BCS coherence
length and f = e& 7 is the mean free path.

Figures 2 and 3 bring out some prominent fea-
tures of our results. The structures shown should
be easily observed in experiments. Vfork with
clean high-~ materials should then provide a ready
check on this theory.
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