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Results of variational calculations of the surface profile and energy of the free surface of liquid helium are
presented. The trial wave function is taken to be a product of two-body Jastrow factors and one-body factors.
We performed the numerical computations using Monte Carlo techniques. The obtained suface energy is
0.21'K/A' compared with the experimental value of 0.27'K/A. i. The density profile is found to have a very

weak layered structure near the free surface. A scheme is proposed and carried out to test the consistency of
other approximate microscopic calculations of the surface profile and energy. We also suggest that
experiments be considered to probe the surface structure.

I. INTRODUCTION

Recently, many attempts' ~ have been made to
construct a theory of the free surface of 4He. This
simple inhomogeneous system already poses a sub™
stantial challenge to theorists to build a model for
an inhomogeneous, strongly interacting quantum
system. The task is, of course, only a first step
toward dealing with more complicated and more
interesting inhomogeneous systems like quantum
vortex lines, atomic rearrangements around ions
and neutral impurities, thin films, and excited
states of all these systems. In the present article,
we restrict ourselves to the problem of the free
surface.

Assessments of earlier papers'~ have been made
in recent publications4 7 and, therefore, we confine

.our review to the latter. Roughly they fall into one
of two categories, namely, phenomenological and
variational treatments. In the first category,
Regge and Padmore and Cole proposed different
local energy functionals and, not unnaturally, came
to different conclusions about the density profile,

,the first exhibiting oscillatory behavior and the
second showing monotonic behavior. Since neither
approach has been derived from any microscopic
theory it is very hard to judge their merits. The
only possible case where one can test these theories
against exact calculations is the system of quantum
hard spheres confined to a channel. In that case,
the calculated ' density profile exhibits a pro-
nounced layered structure. We presume that ap-
plication of Padmore and Cole's theory to this case
would give results rather like those predicted by
the weakly interacting Bose-gas model which pro-
duces results in qualitative disagreement with the
exact results. On the other hand, Regge's approach
will produce results qualitatively similar to the
exact results. In the second category of theories
variational calculations are performed in an ap-

proximate fashion. Shih and Woo and Chang and
Cohens made very similar approximations to relate
the two-particle correlation function for the in-
homogeneous system to the bulk two-particle cor-
relation function at a suitable scaled density. Hav-
ing made this approximation, it is possible to start
the computation with a given density profile rather
than a given variational wave function. (See Sec.
IV for details). Another point worth mentioning
about these calculations is that though it is easier
to perform the calculation by prescribing a given
density profile, it is also easy thereby to introduce
unnecessary curvature into the single-particle fac-
tors in the wave function and thus raise the energy
of the system.

The purpose of the present calculation is to pre-
sent variational calculations without invoking any
additional approximations. Hopefully we can thus
focus our attention on the merits of the trial wave
functions, and perhaps in so doing gain some in-
sight as to whether any improvements are called
for.

A variational calculabon similar to the present
one has been carried out for quantum hard spheres
in a channel. In that case the results of Monte
Carlo numerical integration of the Schrodinger
equation are available. While the results of the
variational calculation show a definite layered
structure in the density profile, it is not nearly
as pronounced as that revealed by the exact calcula-
tion. We therefore anticipate that application of a
variational calculation to the present case would
give an adequate qualitative description of the struc-
ture near a free surface and that any structure
found is likely to appear enhanced in an exact treat-
ment.

In Sec. II the model and the method will be ex-
plained. Results of the variational calculations will
be reported in Sec. III. A check on the consistency
of the approximate-integral-equation approach '
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The special boundary condition on the wave function
g arising from the presence of the free surface is
that g-0 for any I z~ I-~. The trial wave function
we have investigated is of the form

(
2'g =20 ' [2(&i) =20222)l (/2p ((2~)j (2)

where (0 = exp(- —,gg&) with u(r) =(1.16@/r)' taken
from the ground-state calculation for the uniform
system. ~

Two different forms for the function h(z) were
chosen,

(i) h, (z) =(1+exp[k(l zl —z,)]}' (3a)

1
I zl «0

(ii) h(, (z) = (3b)
2(1+exp[a(l zl —z,)']}-', z, &

l
zl.

It is clear that zp controls where the free surface
will be located and k (and q) determines its width.

Let Ep and E& be the ground-state energy per par-
ticle of the uniform system and the present case,
respectively, then the surface energy E, (which is
equal to the surface tension at T=O) is given by

E, = N(E2 —E())/A, (4)

where A is the total surface area.
The single-particle density function p, (z) is de-

will be presented in Sec. IV. Our conclusions are
given in Sec. V; we believe that the recent work
based upon approximate integral equations is seri-
ously inconsistent and the resulting density profiles
are not convincing. Our own results for the sur-
face energy show reasonable agreement with ex-
periment and reveal a weak oscillatory structure
in the density profile near the surface. Further
numerical and laboratory experiments are needed
to accurately determine the surface structure.

II. MODEL

The system is composed of N particles interacting
through a pairwise Lennard-Jones potential. In our
simulations, we work with a thick film with two sur-
faces. This is thought to be the simplest way to
simulate a free surface for self-binding liquids
without complicating the calculation by introducing
a substrate. Periodic boundary conditions are im-
posed on the two directions (x and y) parallel to the
free surfaces.

The Hamiltonian of the system is given by

fined as

( )
NJ ((),(r2, rz, ~ ~ ~ r„)(f rm ~ ~ ~ dr„

(5)

Given a trial wave function defined in Eqs. (2)
and (3), the energy and the single-particle density
function can be computed without any further ap-
proximation by standard Monte Carlo methods.
To get an accuracy in energy of about 1%, it is
sufficient to generate a random walk with 10 con-
figurations. However, to obtain sufficient accuracy
in the density profile, it is necessary to carry out
several independent runs each consisting of about
a million configurations. The number of particles
used was either 256, 512, or 1024. It turns out
that the structures that we are particularly inter-
ested in are more or less indistinguishable in these
three cases.

We choose p, the average density in the interior
of the film to be p =0. Spp, the density at which the
Lennard-Jones potential with the given form of u

gives the minimum energy for the bulk system.
This ensures that the material on the interior of
the film resembles bulk helium as closely as pos-
sible. An effective width of the film I., is defined
by the relation p =N/AL, .

III. RESULTS

Of the two trial wave functions given by Eqs.
(3a) and (3b), a lower energy is found if h, in
E(l. (3b) is used. The surface-energy found is 0. 21
+ 0. 01 'K/A for the optimal parameters k = 0. 3/o,
s p

=
& I, —sp = 3.0 o, and y = 2 for N= 512. The val-

ues (luoted in Refs. 5 and 6 are 0.26 and 0. 29 'K/A,
respectively. However, direct comparison of
these numbers is not very meaningful since either
a different average density or a different potential
was used. It is worth emphasizing that the percent-
age difference of our surface energy as compared
to the experimental value (0. 27'K/A~) is 25/o. This
is similar to the percentage difference (16%) be-
tween the variational ground-state energy (- 5. 9 'K)
and the exponential binding energy (-7.16 'K).

The density profile calculated from wave func-
tions with parameters giving nearly the same ener-
gies all exhibit a rather weak oscillatory behavior
near each free surface. In Fig. 1 we show such a
density profile for a rather thick film (- 19 o wide)
where the two free surfaces are so far apart that
one can reasonably assume that they behave inde-
pendently of each other. On both free surfaces,
one can clearly identify at least a weak first peak.
Regge's phenomenological treatment4 also pre-
dicted a similar oscillation in the density profile,
though his estimate suggested a much larger rip-
ple. The surface thickness (defined as the interval
of density profile between 90% and 10/o of p, the
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IV. TEST OF AN APPROXIMATE-INTEGRAL-EQUATION
APPROACH

. (2) it is easy to derive the fol-Given g, in Eq, , i i
exact integral equation in the Bogolyubov,

Born, Green, Kirkwood, Yvon B

V'p (r) =pi( r) V't+ d r ' p2(r, r') V, u(r, r»Pia& -Pi

'g th two-particle correlation func-where pz(r, r ) is e o-
tion.

~ ~ ~

and 6 an approximation is made
make Eq. ( a(6) a closed equation between p, (r an

t(r). The approximation is to write

pz(r, r') =pi(r) p, (r') ge (~ r —r
~ & p+if z(r r')), (7)

(2) to calculate the single-particle '
yi le density function

z} without further approximation. Wen We followed
k 'f n inconsistency is intro-this scheme to check i any

'

of the approximations made
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low-energy-electron-diffraction (LEED) experi-
ment would serve as a better probe into the densi-

ty profile near the surface, since electrons tend
to interact mostly with surface atoms.
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