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Results of variational calculations of the surface profile and energy of the free surface of liquid helium are
presented. The trial wave function is taken to be a product of two-body Jastrow factors and one-body factors.
We performed the numerical computations using Monte Carlo techniques. The obtained suface energy is
0.21°K/A? compared with the experimental value of 0.27 °K/A2 The density profile is found to have a very
weak layered structure near the free surface. A scheme is proposed and carried out to test the consistency of
other approximate microscopic calculations of the surface profile and energy. We also suggest that
experiments be considered to probe the surface structure.

I. INTRODUCTION

Recently, many attempts'™" have been made to
construct a theory of the free surface of *He. This
simple inhomogeneous system already poses a sub-
stantial challenge to theorists to build a model for
an inhomogeneous, strongly interacting quantum
system, The task is, of course, only a first step
toward dealing with more complicated and more
interesting inhomogeneous systems like quantum
vortex lines, atomic rearrangements around ions
and neutral impurities, thin films, and excited
states of all these systems. In the present article,
we restrict ourselves to the problem of the free
surface.

Assessments of earlier papers!~® have been made
in recent publications*~" and, therefore, we confine
our review to the latter. Roughly they fall into one
of two categories, namely, phenomenological and
variational treatments. In the first category,
Regge* and Padmore and Cole’ proposed different
local energy functionals and, not unnaturally, came
to different conclusions about the density profile,
.the first exhibiting oscillatory behavior and the
second showing monotonic behavior. Since neither
approach has been derived from any microscopic
theory it is very hard to judge their merits. The
only possible case where one can test these theories
against exact calculations is the system of quantum
hard spheres confined to a channel. In that case,
the calculated®® density profile exhibits a pro-
nounced layered structure. We presume that ap-
plication of Padmore and Cole’s theory to this case
would give results rather like those predicted by
the weakly interacting Bose-gas model*® which pro-
duces results in qualitative disagreement with the
exact results. On the other hand, Regge’s approach
will produce results qualitatively similar to the
exact results. In the second category of theories
variational calculations are performed in an ap-
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proximate fashion. Shih and Woo® and Chang and
Cohen® made very similar approximations to relate
the two-particle correlation function for the in-
homogeneous system to the bulk two-particle cor-
relation function at a suitable scaled density. Hav-
ing made this approximation, it is possible to start
the computation with a given density profile rather
than a given variational wave function. (See Sec.
IV for details). Another point worth mentioning
about these calculations is that though it is easier
to perform the calculation by prescribing a given
density profile, it is also easy thereby to introduce
unnecessary curvature into the single-particle fac-
tors in the wave function and thus raise the energy
of the system,

The purpose of the present calculation is to pre-
sent variational calculations without invoking any
additional approximations. Hopefully we can thus
focus our attention on the merits of the trial wave
functions, and perhaps in so doing gain some in-
sight as to whether any improvements are called
for.

A variational calculation® similar to the present
one has been carried out for quantum hard spheres
in a channel. In that case the results of Monte
Carlo numerical integration of the Schrédinger
equation are available.® While the results of the
variational calculation show a definite layered
structure in the density profile, it is not nearly
as pronounced as that revealed by the exact calcula-
tion. We therefore anticipate that application of a
variational calculation to the present case would
give an adequate qualitative description of the struc-
ture near a free surface and that any structure
found is likely to appear enhanced in an exact treat-
ment,

In Sec. II the model and the method will be ex-
plained. Results of the variational calculations will
be reported in Sec. III. A check on the consistency
of the approximate-integral-equation approach®?
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will be presented in Sec. IV. Our conclusions are
given in Sec. V; we believe that the recent work
based upon approximate integral equations is seri-
ously inconsistent and the resulting density profiles
are not convincing, Our own results for the sur-
face energy show reasonable agreement with ex-
periment and reveal a weak oscillatory structure
in the density profile near the surface. Further
numerical and laboratory experiments are needed
to accurately determine the surface structure.

II. MODEL

The system is composed of N particles interacting
through a pairwise Lennard-Jones potential. In our
simulations, we work with a thick film with two sur-
faces. This is thought to be the simplest way to
simulate a free surface for self-binding liquids
without complicating the calculation by introducing
a substrate. Periodic boundary conditions are im-
posed on the two directions (x and y) parallel to the
free surfaces.

The Hamiltonian of the system is given by

H=-21_‘, %v%%;} V(T -1, (1a)
here

V() =4eg[(0/ 7% - (0/7)P);

€,=10.22°K, 0=2,556 A. (1b)

The special boundary condition on the wave function
Y arising from the presence of the free surface is
that - 0 for any |z;|-. The trial wave function
we have investigated is of the form

N
l/’ﬁ‘/’lo(zt):‘/’oexP(- 1/22 t(z,)>, @)

where 9 =exp(—3 3 u;) with «(»)=(1.160/7)° taken
from the ground-state calculation for the uniform
system, !

Two different forms for the function %(z) were
chosen,

(1) hy(2) ={1 +explk(| 2| = 2)] }* (3a)
(id) 7y(2) {1’ Izl<zo (3b)
11 zg)= R

’ 2{1 + exp k(| 2| = 2) I}, 2< |2].

It is clear that z; controls where the free surface
will be located and % (and ¢) determines its width.

Let E; and E; be the ground-state energy per par-
ticle of the uniform system and the present case,
respectively, then the surface energy E, (which is
equal to the surface tension at 7=0) is given by

Es=N(Et "EO)/A; (4)

where A is the total surface area.
The single-particle density function p,(2) is de-
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fined as
pl(z)=Nf ‘pi(;’n Ty, '..Fn)dfa""d;n‘ (5)

Wel 1)

Given a trial wave function defined in Eqs. (2)
and (3), the energy and the single-particle density
function can be computed without any further ap-
proximation by standard Monte Carlo methods, %13
To get an accuracy in energy of about 1%, it is
sufficient to generate a random walk with 10° con-
figurations. However, to obtain sufficient accuracy
in the density profile, it is necessary to carry out
several independent runs each consisting of about
a million configurations, The number of particles
used was either 256, 512, or 1024, It turns out
that the structures that we are particularly inter-
ested in are more or less indistinguishable in these
three cases. .

We choose p, the average density in the interior
of the film to be p=0.9py, the density at which the
Lennard-Jones potential with the given form of «
gives the minimum energy for the bulk system.
This ensures that the material on the interior of
the film resembles bulk helium as closely as pos-
sible. An effective width of the film L, is defined
by the relation g =N/AL,.

III. RESULTS

Of the two trial wave functions given by Egs.
(3a) and (3b), a lower energy is found if %, in
Eq. (3b) is used. The surface-energy found is 0. 21
+ 0,01 °K/A? for the optimal parameters % =0. 3/0,
Zy=3L,-2,=3.00, and =2 for N=512, The val-
ues quoted in Refs. 5 and 6 are 0. 26 and 0. 29 °K/A%
respectively. However, direct comparison of
these numbers is not very meaningful since either
a different average density or a different potential
was used. It is worth emphasizing that the percent-
age difference of our surface energy as compared
to the experimental value (0.27 °K/A%) is 25%. This
is similar to the percentage difference (16%) be-
tween the variational ground-state energy (- 5.9 °K)
and the exponential binding energy (-7.16 °K).

The density profile calculated from wave func-
tions with parameters giving nearly the same ener-
gies all exhibit a rather weak oscillatory behavior
near each free surface. In Fig. 1 we show such a
density profile for a rather thick film (~ 19 o wide)
where the two free surfaces are so far apart that
one can reasonably assume that they behave inde-
pendently of each other. On both free surfaces,
one can clearly identify at least a weak first peak.
Regge’s phenomenological treatment? also pre-
dicted a similar oscillation in the density profile,
though his estimate suggested a much larger rip-
ple. The surface thickness (defined as the interval
of density profile between 90% and 10% of p, the
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FIG. 1. Density profile of the free surface of liquid
helium calculated variationally, ¢=2.56 &; § is the mean
density in the film, p=0.9 (measured equilibrium
density).

average density in the interior) is about 20 (i.e.,
about 5 A).

IV. TEST OF AN APPROXIMATE-INTEGRAL-EQUATION
APPROACH

Given ¥; in Eq. (2), it is easy to derive the fol-
lowing exact integral equation in the Bogolyubov,
Born, Green, Kirkwood, Yvon (BBGKY) hierarchy,

pu(n) =py (D) VE+ [T puF, F) Ve ulF, T, ©)

where p,(T, ') is the two-particle correlation func-
tion,

In Refs. 5 and 6, an approximation is made to
make Eq. (6) a closed equation between p,(7) and
t(7). The approximation is to write

po(F, ) =0y () 01 (F) g5 (| F = 7' [ Pere(F, 7)), (7)

where ggz(7; p) is the pair correlation of the corre-
sponding uniform system at a density p. Three
somewhat different forms of pe; were proposed,
namely,

(1) pets(z, 2") =[py(2) py(2)] 12, (8a)
(1) pets(2, 2’) =2[py(2) + py(2")] , (8b)
(iii) pese(2, 2') =pylz(2+ 2")]. (8c)

In Ref. 6 it was reported that (8c) gives a poorer
estimate of E; as compared with (8a) or (8b), which
give essentially the same result, We have also
checked that in solving Eqs. (6) and (7) for ¢ from
a given py(2), there is little difference whether one
uses (8a) or (8b). We will pick (8a) to be combined
with Eqs. (6) and (7) for the following discussion.

From Egs. (6), (7), and (8a), given a p,,(2), one
can solve for #,(z). We now use this #,(z) in Eq.
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(2) to calculate the single-particle density function
p4(2) without further approximation. We followed
this scheme to check if any inconsistency is intro-
duced as a consequence of the approximations made
in Egs. (7) and (8a). Values of gg(»; p) for 0<p
=<p, which are needed in Eq. (7), were obtained
from Monte Carlo calculations. Then, given
p14(2) = (L +e*°%/9) ) we solved for #,(z) from Eqgs.
(), (7), and (8a). With this input into Eq. (2),
we computed both the surface energy and the densi-
ty profile. The surface energy was found to be
20% higher than our previous estimate. The densi-
ty profile p,(2)/p, h%(z)=e'4, and the input p,(z)
are plotted in Fig. 2. Three comments are in order
First, pronounced first peaks near each free sur-
face are present in the final p,(z) as compared with
the originally assumed p,(2). This is a clear in-
consistency in the approximate treatment. Sec-
ondly, we notice that the #,(z) obtained shows con-
siderable curvature, which in turn is responsible
for raising the estimate of the surface energy.
Finally, the fact that the interior density has
changed is not an inconsistency. With the fixed
number of particles used in the Monte Carlo, the
redistribution of density near the surface forces
a change of interior density.

In Fig, 3, results similar to those shown in
Fig. 2 are given for a film whose thickness is 3
that of the former. The departure of the average
interior density from unity is much larger, since
a larger fraction of the particles are displaced into
the surface region. It is striking that the surface
peak is present and has almost exactly the same
height as in the thicker film. This suggests very
strongly that the surface peak will persist largely
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FIG. 2. Dotted curve is the average density profile
which forms the starting point for the approximate
treatment embodied in Egs. (6), (7), and (8a). Dashed
curve is the function ¢, calculated from Eqs. (6), (7),
and (8a) using the dotted curve as input. Solid curve
is the density profile calculated variationally from ¢,.
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FIG. 3. Dotted curve is the average density profile
which forms the starting point for the approximate treat-
ment embodied in Egs, (6), (7), and (8a), Dashed
curve is the function ¢4 calculated from Egs. (6), (7),
and (8a) using the dotted curve as input. Solid curve is
the density profile calculated variationally from #4.
These results are for a film % the thickness of that in

Fig. 2.

unaltered as one passes to a very thick film. The
final density profiles shown in Figs. 2 and 3 have
not been smoothed.

We believe a very useful analogy for the rela-
tionship between £(2z) and p,(2) is that between #(7)
and gg(7) in a variational calculation for a uniform
system. In such a calculation, it is well known
that a smooth monotonic #(#), representing strong
short-ranged repulsion, will lead to an oscillatory
gg(7), and furthermore, it is not hard to find a
u(7) which gives a gg(7) which agrees well with the
experimental results. ' However, if one were to
choose instead a smooth monotonic gz, and then try
to find u(#7) through a similar approximate scheme,
it is inevitable that a «(7) with considerable curva-
ture will result, For this reason it is generally
believed that varying «(7) is more practical then
varying gg(#). This analogy thus leads us to sug-
gest that for the free-surface problem, varying
#(z) instead of p,(2) is likely to markedly improve

the situation.
It is regrettable that we have not been able to

precisely establish the difference between the ap-
proximate p, (Eqs. 7 and 8) and the more accurate
ps calculated by Monte Carlo methods from the
variational trial function used in this paper. Since,
presumably, the significant differences are con-
fined to the surface region, good statistics for the
three-dimensional function p,(7;, 7;) would be very
time consuming to accumulate. This task would be
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more appropriate as part of the exact calculations
of the surface profile now in progress.

V. CONCLUSIONS

We have presented a series of variational cal-
culations to study a large class of wave functions
as well as to examine carefully some recent micro-
scopic calculations. The basic conclusions are
sixfold:

(i) The surface energy found from most of these
methods is in reasonable agreement with the ex-
perimental result,

(ii) Our current results suggest a very weak
layered behavior in the density profile at a free
surface, This differs markedly from the results
found in Refs, 5-7.

(iii) The previous calculations®=7 are based on a
monotonic density profile and are, without doubt,
subject to the criticism that if the same approaches
were adopted in the narrow-channel problem they
would lead to entirely incorrect results.

(iv) There is a serious internal inconsistency
in the approximate treatments contained in Refs. 5
and 6.

(v) We believe that there are, therefore, con-
siderable difficulties in attempting to close p;(7)

a priovi in problems with any geometrical com-
plexity. On the other hand, we know that wave
functions must always be chosen to be as smooth
as the geometry allows and that this kind of choice
leads to nonobvious consequences for p;.

(vi) We draw the reader’s attention again to
Figs. 2 and 3 which represent calculations of films
whose thicknesses differ by a factor of 2, but whose
surface profiles are almost the same. We conclude
that we have attained a regime in which size effects
on the surface profile are small,

Of course, our treatment, being variational in
character, has to be tested against an exact treat-
ment to verify that the results reported here are not
an artifact of the trial wave functions assumed. Our
experience in the channel problem suggests that the
structures found in variational calculations tend to
be reinforced in an exact calculation, which in turn
suggests that this might also be the case for the
present problem,

We hope that the present work and the exact re-
sults we shall shortly have available will arouse

the interest of experimentalists., We would very
much like some experimental data on the surface

profile, This is important, since so many differ-
ent theoretical approaches, with all their inherent
deficiencies, are able to give reasonable estimates
of the only experimental datum at 7=0, namely
the surface energy. Inour view, a neutron dif-
fraction like the one reported recently by Kjems,
Passell, Taub, and Dash,!* or a light scattering
experiment might be a good choice, Perhaps, a
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low-energy-electron-diffraction (LEED) experi-
ment would serve as a better probe into the densi-

ty profile near the surface, since electrons tend
to interact mostly with surface atoms.
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