
PHYSICAL REVIEW B VOLUME 12, NUMBER 1 1 JULY 1975

Density profile of a quantized vortex line in superfluid Heft
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The relative-density amplitude profile of a quantized vortex line in He II is calculated from a
generalized Gross-Pitaevskii (GP) equation. The ordinary GP equation is a Hartree nonlinear

integrodifferential equation for the order parameter of an interacting system of bosons. The
generalization is made by replacing the two-body potential in the average field by a local T matrix,
which is calculated from a realistic interatomic potential for helium. In configuration space the T
matrix is similar to the potential, except in the repulsive region where it is much softer. The only

adjustable parameter in the generalized GP equation is the condensate fraction for which a theoretical
value of 0.10 and an experimental value of 0.024 are used. In all cases the density profile is a

0

monotonically increasing function with an effective core radius of from 3.7 to 4.7 A.

I. INTRODUCTION

One of the most remarkable developments in the
microscopic theory of superfluidity was the pre-
diction by Onsager' and Feynman' that vortices
in He II should be quantized. The argument' is
based on the single-valuedness of the condensate
wave function, ' and the quantum of circulation is
shown to be h/m, where h is Planck's constant
and m is the mass of the atom. Vinen' made the
first attempt to observe quantized vortex lines
using a vibrating wire. Although his results were
indicative of vortex lines quantized in units of
h/m, the later results of Whitmore and Zimmer-
mann' confirmed that vortices are indeed quantized
in integer multiples of h/m. By the nature of their
apparatus, however, no information could be ex-
tracted about the structure of the vortex core.

In the meantime by a beautiful experiment on
the motion of ions trapped in vortex rings, Ray-
field and Reif' established conclusively that the
circulation in HeII is indeed quantized with a
value of h/m to within experimental error. In
order to obtain this value they used a classical
model in which the vortieity is assumed to be con-

stant within a core of radius a = 1.28+ 0.13 A. If
a hollow core is assumed instead, they obtained
a core radius of a =1.00+ 0.10 A. The core radius
is rather small compared to the interparticle
separation. However the thermal de Broglie wave-
length of the particles is large compared to the
interparticle separation at a temperature of
( 0.7 K where the experiments were performed,
so the fluid behaves in some respects like a con-
tinuum.

In order for the vortex ring to be a classical
"quasiparticle" the group velocity must be the
gradient of the energy with respect to the impulse

at constant volume or pressure. Roberts and
Donnelly' used this concept to reanalyze the clas-
sical hydrodynamics of the vortex ring, and con-
cluded that the radius of the hollow vortex core

0

should be 1.28+ 0.13 A in the vortex-ring experi-
ment. ' More recent experiments' in which the
data are analyzed with the classical quasiparticle
model have determined the vortex core radius
more accurately to be 1.28+ 0.05 A at 0.35 K.
In addition, the pressure and temperature de-
pendence of the vortex-core radius are also de-
termined. ' The value of the vortex-core radius
extrapolated to 0 K is a = 1.14+ 0.05 A.' The
temperature dependence agrees with a semi-
phenomenological model based on a normal fluid
core of a few angstroms, with a polarized tail of
rotons outside the core. '

The vortex-core structure should be calculable
from the quantum-mechanical theory of a many-
boson system. In this paper it is calculated from
a generalized Gross-Pitaevskii (GP) equation. "
Other methods previously used are discussed
later (Sec. VII) and compared with the results of
the present calculation. The ordinary GP equa-
tion"' is a nonlinear jntegrodifferential Hartree
equation for the order parameter or condensate
wave function. The potential between the particles
in the condensate is taken into account by an
average or mean field. In fact, for most realistic
two-body potentials, the average field due to the
other condensate particles is infinite. This di-
vergence is due however to the absence of cor-
relation between particles in the mean-field term
of the GP equation, but this defect is partially
remedied here.

Either a Hartree product wave function" or a
canonical transformation" can be used to derive
the GP equation. It was pointed out by Kobe"
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that the average field in the GP equation is only
the first term in a density amplitude and potential
expansion of the actual average field in the equa-
tion of motion for the order parameter. By sum-
ming ladder diagrams in this expansion, a general-
ized GP equation is obtained in which the potential
is replaced by the T matrix. '4 Even with potentials
for which the Hartree field is infinite, the average
field calculated from the T matrix is finite. In
calculating the nonlocal T matrix, both Brueckner
and Sawada" and (Pstgaard" use an energy de-
nominator in which the particle kinetic energy is
only partially dressed. However, in a recent cal-
culation" of the excitation spectrum of HeII, a
local T matrix is derived in which the quasi-
particle energy is used in the energy denominator.

In this paper the T matrix is calculated from
the Morse dipole-dipole (MDD2) potential of Bruch
and McGee. " The two different energy denomin-
ators used in the local T matrix calculation are
(i) the particle kinetic energy minus the chemical
potential, and (ii) the observed phonon-roton
(quasiparticle) excitation spectrum. " Both T
matrices approximate the potential for large inter-
particle separations, but are much softer in the
repulsive core. Vixen the condensate wave function
(density amplitude) is calculated from the general-
ized GP equation, the only adjustable parameter
is the fraction of the particles in the condensate.
Of the two values for the condensate fraction used
here, one value is the commonly quoted theoret-
ical value of 0.10,"while the other is the recently
measured experimental value of 0,024+ 0.01."
The density amplitude is calculated with each of
the two condensate fractions for each of the two
T matrices. In each of these four cases the cal-
culated density profile is monotonically increas-
ing, with an effective core radius (the radius at
which the density is half its asymptotic value) be-
tween 3.V and 4.7 A. These values are over three
times the experimental radius of 1.14 A, ' which
is discussed later. A preliminary account of this
work has previously been given. "

In Sec. II, the generalized GP equation is de-
rived by a factorization method. The T matrix,
which plays the role of an effective interaction in

the generalized GP equation, is discussed in Sec.
III, The generalized GP equation is written ex-
plicitly for a vortex line in Sec. IV. In Sec. V,
which can be omitted in a first reading, the nu-
merical methods used to solve the equations are
briefly reviewed. The results are given in Sec.
VI and discussed. In Sec. VII the results are
compared with previous calculations. Finally,
Sec. VIII gives the conclusions.

p(, t)=(@„,(t)lg( )l@„(t)), (2.1)

where @„(t)is the exact wave function for a
system of E particles. The field annihilation and
creation operators are g(r) and P (r), respective-
ly, which satisfy the usual boson commutation
relations. " The equation of motion for the order
parameter can be obtained by using the N-body
Schrodinger equation

+N
N (2 2)

The Hamiltonian H in second quantization is
given by"

II. GENERALIZED GROSS -PITAEVSKII EQUATION

Since the ordinary GP equation'"" zs a Hartree-
like equation" for the condensate amplitude, no
correlation is included. The effect of the inter-
atomic interactions is taken into account only as
an average or mean field due to all the other con-
densate particles, so the particles can come
arbitrarily close to each other. Because of the
strong interparticle repulsion at short distances,
the particles should avoid each other. This lack
of correlation between the particles manifests it-
self in an unphysical divergence of the mean field
when a realistic potential is used. However, the
interparticle correlations can be partially taken
into account by replacing the bare potential by the
T matrix. Just how this replacement can be
mathematically justified is the subject of this
seen. on.

For a system of bosons, the order parameter
or condensate wave function Q(r, t) at the position
r at the time t is postulated to be"

-5' 2m'' r + d'r ~ r Ur +~'r, t

+~ dsrdsy rQ r Vr, r r r, (2.3)

where U(r) is a static external field, U'(r, t ) is a time-dependent external field, and V(r, r')= V( ~
r —r'

~ )

is the central two-body potential between the atoms. On differentiating Eq. (2.1) with respect to the time

and using Eqs. (2.2) and (2.3), the equation of motion,
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)I) ' =-( )7'0(r, ()+ ()(r)((r, ))+ ()'(r, ()((T', ))

+ df' Vryr 4g It r r r 4N (2.4)

is obtained. The last term on the right-hand side of Eq. (2.4) gives the average time-dependent field due
to all the other particles, which includes correlations between them. It has the graphical structure shown
in Fig. i.

If the correlation function in Eq. (2.4) is factorized into a product of three (j)'s, which would be valid for
a weakly interacting boson system, the ordinary GP equation"'"

()) ' = —( )v'((r ))+ U(r)((T ))+ U'(r, ))((r))+f d'~')'(r r')() "(r', ))((r )) ('(,r)) (25)

j,s obtRlQed. It ls this equRtloQ thRt hRS been studied by R number of Ruthol8 ' with R ~-function potentlRl
V(r, r') =V,5(r —r'), where V, is an adjustable parameter. However, we will now take some of the cor-
relation present in the exact wave functions in Eq. (2.4) into account.

In a previous paper, "it was shown that the exact wave functions of the system in Eq. (2.4) could be ex-
panded in perturbation theory, and a selected class of diagrams summed to all orders to give a general-
ized GP equation

N ' = V'y(r, f)+ U(r)y(r, f)+ U'(r, f)y(r, f)

+ dt' d'r, d'r, d r, * r„ t T r, r„r„r„t-t' r„ t' r„ t', (2.6)

where T is in general a nonlocal T matrix io Th
equation is a time-dependent Hartree equation
with the potential V in Eq. (2.5) replaced by the
T matrix.

Equation (2.6) can be made more plausible by
factorizing the exact expression in Fig. i into the
approximation of Fig. 2. In Fig. 2 the small boxes
represent the order parameter (j). The approxi-
mation involved in Fig. 2 is that two particles are
excited out of the single-particle condensate,
interact in all ways permitted by the Hamiltonian
(which, of course, includes noninteraction),
finally interact once, and then one of the particles
is reabsorbed into the condensate. If only free

I
I

I

propagation and scatterings are allowed in the
large box on the left-hand side, the T matrix is
obtained on the right-hand side.

The T matrix satisfies an equation shown graph-
ically in Fig. 3, and is expressed mathematically
RSIO

r()234)=) ()234) —fd) d2 aa d4')'()2)''a'')

x jQ,{I ', 2')G, (2', 4')T(2', 4', 2, 4),

(2.7)

where (1)= (r» f,), (2) = (r» f, ), etc The g.eneral
two-body potential V is local in space and instant-
aneous in time, so

V(1234) = V(1, 2)(-,')[5(1—3)5(2 —4) + 5(I —4)5(2 —8)],
(2.8)

FIG. 1. Average field due to all the other particles
given by the last term on the right-hand side of Eq.
(2.4). The dashed line represents the taro-body potential
V, and the box represents the correlation function.

FIG. 2. Factorization of the correlation function in
Fig. 1 to give the last term on the right-hand side of
Eq. (2.6). The small boxes represent the order para-
meter Q. If only free propagation and scatterings are
allovmd in the large box on the left-hand side, the T
matrix is obtained on the right-hand side.
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(2.9)

where the D function for both space and time is

6(I —3) = 6(r, —r, )5(t, —t, ),
and the local two-body potential is

V(1, 2) = V(r„r,)6(t, —t, ) . (2.1o)

FIG. 3. Graphical representation of the T-matrix
integral equation in Eq. (2.7).

The single-particle propagator G, in Eq. (2.7) is
given by" zero otherwise. The Fourier transform of the

potential is defined as
Q (1 3) g u (r )ud, (r ) e- ('„( d; d3) e(t t )

(2.11}
(r(d)=(r(lkl)= Jd rr ''"'r(I I). (3.2)

where 0 is the step function which is unity for
positive argument and zero otherwise. The single-
particle functions (u„J in Eq. (2.11) are eigenfunc-
tions of a single-particle Hamiltonian,

I(-I'/2m)((('+ U(r)]u„(r) =e„u„(r), (2.12)

with eigenvalue E„.
If the matrix elements of Eq. (2.7) are taken

with respect to the single-particle functions {u„),
followed by the time Fourier transform, the re-
sult is the usual equation" for the matrix elements
of the T matrix,

&n n
I
7'((») In, n, )

=&n, n, lVln, n, )

&n, n, I Vlnm)(mnl T((») In, n, )
(» —(e„+ e )+io

ll ply

(2.13)

where x is the frequency. The T matrix is in
general nonlocal and energy dependent. Equation
(2.13) is extremely difficult to solve exactly, but
in Sec. III a local approximation is made.

III. EFFECTIVE INTERACTION

In this section the equation for a static local
two-body T matrix is obtained from the general
T matrix in Eq. (2.13). The approximations re-
quired are discussed, and a tractable equation for
a T(l r, —r, l) is obtained. This local T matrix
simplifies tremendously the generalized GP equa-
tion in Eq. (2.6), and makes its solution feasible.

For the static local central two-body potential
V(r» r, ) = V( I r, —r, I ) the matrix elements between

plane-wave states are

(k,k, l Vlk, k, ) =(2Q) 'IV(k, —k, )+ V(k, -k, )]

x6„,(k, + k, —k3 —kd), (3.1)

where 0 is the volume of the system and momen-
tum conservation is insured by the Kronecker
delta ~„„which is unity for zero argument and

The external potentials U and U' in Eq. (2.3) are
taken to be zero, and periodic boundary conditions
are imposed, so that the solutions of Eq. (2.12)
are a complete set of plane-wave states.

A static (u& = 0) local T matrix can be obtained
from Eq. (2.13) by using plane waves and setting
k, =k4=0, which gives

&k, -kl Tloo& =&k, -klvloo&

,~ &k, - k I V I
- p, p& & p, - p I T

I 00 &

P

(3.3)

on using momentum conservation. Since the local
T matrix can be written in the form of Eq. (3.1),
Eq. (3.3) then becomes

7'(k) =V(k)
1 ~ V(k+ P)T(P)
0 ~ 2m~

P

(3.4)

T(r)=r(r)(1 —f dr'L(r, 'lt(r')), r
0

where the kernel is
I oo

L(r, r' ) = — dp e~ ' sinp r sinpr'
0

(3.5)

(3.6)

Equation (3.5) is more easily solved than Eq.
(3.4), since the Fourier transform of V(r), which
has a strong repulsive core, need not be taken.

From Eq. (3.6) it can be seen that as r- ~ the
kernel in Eq. (3.5) vanishes, so that

T(r)- V(r} as r-~. (3.7)

Thus the T matrix is expected to depart signifi-

Equation (3.4) can also be obtained from the
Bogoliubov ca-nonical" transformation, except that
the energy denominator is the quasiparticle en-
ergy E» not the bare energy e~." This similarity
gives justification in dressing the energy denom-
inator, which corresponds to using the dressed
propagators in the intermediate states in Fig. 3.

Since the integral in Eq. (3.4} is of the convolu-
tion form, the inverse transform of Eq. (3.4) is
the integral equation
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cantly from V(r) only at short distances where
the strong repulsive core induces strong short-
range correlations i.nto the mave function.

f(p)- 1, f'(p)- O, f"(p)- O as p- . (4.4)

Therefore, from Eq. (4.2) the chemical potential
is given by

The generalized GP equation in Eq. (2.6) can
nom be written mith U=U'=0 as p, =n, lim dp'p'K p, p' p' '.

phoo O

(4.5)

when the local static central T matrix approxima-
tion 1n Eq. (3.5) is used along with Eqs. (2.8)—
(2.10). In Sec. IV, Eq. (3.6) is written explicitly
for a vortex line.

In contrast to the positive chemical potential ob-
tained by using a repulsive 6-function potential, "'"
Eq. (4.5) can be negative, which would indicate
a bound system. The second boundary condition is
that f (0) =0 at the origin, since otherwise an in-
finite energy mould be obtained. In Sec. V the
numerical methods used to solve for the T matrix
and the relative condensate density amplitude are
discussed, The reader who is primarily interested
in the results of the calculation can skip to Sec. VI.

IV. VORTEX-LINE EQUATION

The generalized Gp equation in Eq. (3.8) has
solutions which describe a vortex line. To find
these solutions the condensate mave function
gr, f) is chosen to be of the form"'"

p(r ~)=(s )"'f( )p"c' e'"' (4.1)

in cylindrical coordinates (p, &, z), where p, is the
chemical potential, no is the condensate density,
aQd l ls the number of quanta of circulation. The
function f (p) is the relative condensate density
amplitude at a distance p from the vortex axis.
If Eq. (4.1) is substituted into Eq. (3.8), the equa-
tion for the relative density amplitude f(p) is

+p ' —~'p 'f ( p) pf (p)dp dp

x T((p'+ p" —2pp'cose+ z')"'),
(4.3)

-n, dp'p'K p, p' p' '
p =0,

0

(4.2)

where /=2m'/6' and n, =2m', /O'. Since vortex
lines with one quantum of circulation have the
lomest energy, 1 is taken to be unity here. The
kernel in Eq. (4.2) is itself a double integral,

x(p, p')=4f de
0

'tl'y' I (r, r') = dPe~ 'sinpr sinpx'

+ — dPcp cosP x —t'

dpe 'cosp(t+r')'(5.1)

V. NUMERICAL METHODS

In this section the numerical methods used in
solving the equations of Secs. III and IV are briefly
discussed. It is beyond the scope of this paper to
discuss the numerical procedures in full detail,
which is done elsewhere. " The method of solving
Eq. (3.5) for the 7 matrix is first briefly dis-
cussed, followed by the method for obtaining the
kernel K(p, p') in Eq. (4.3). Finally the method
of solving Eq. (4.2) for the density amplitude f (p)
is outlined.

Since a realistic potential V(r) is strongly re-
pulsive at short distances, Eq. (3.5) for T(r) is
divided by V(r), and then the resulting equation
is solved for the ratio T(r)/V(r) The potenti. al
V(r ) used here is the Morse dipole-dipole-2
(MDD2) potential of Bruch and McGee. ' The
kernel 1.(x, r') in Eq. (3.6) is numerically evaluated
for two different energy denominators e~: (i) the
bare particle energy P'/2m minus the experi-
mental" chemical potential —6.7 K, and (ii) the
experimental phonon-roton excitation spectrum
E~." To simplify the calculation of L(r, x'),
Eq. (3.6) can be written

because the vortex line has cylindrical symmetry
while the T matrix has spherical symmetry.

The chemical potential p. can be determined
from the boundary condition at infinity. The
relative density amplitude f ( p) approaches the
bulk deQslty at lax'ge distaIlces from the voxtex

cores'

so

For case (i) the limit 5 can be taken as zero,
since at P = 0 the denominator is finite. However,
for case (ii) the denominator is zero at P =0, so
it is convenient to choose 5 = 2 A ', below which
the phonon and roton regions occur. The integrals
with the cosines in Eq. (5.1) are evaluated using
the IBM eight-point Gaussian quadrature" for
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each quarter-period of the cosine function. The
integration is terminated when the contribution
of one complete period is less than 10 ' of the
accumulated sum of terms. The integral from
0 to b is also performed by using the IBM eight-
point Gaussia. n qua. drature' for every 0.2-A
increment. Evenly spaced values of r and r' be-

0

tween 0 and 10 A are used. The number of dif-
ferent values of r and r' depends on the number
needed for the solution of Eq. (3.5).

The method of solution of Eq. (3.5) for T(r) is
similar to the Fredholm procedure for integral
equations of the second kind. " The integral equa-
tion is converted into a set of n linear algebraic
equations for equispaced x, (i = 1, 2, . . . , n) in the
interval between 0 and 10 A. This set of equations
is solved simultaneously by using a maximum
pivot strategy in Gauss-Jordan complete elimin-
ation. " Numerical solutions of systems of linear
equations for large n may not be a,ccurate due to
increased round-off and truncation errors. There-
fore, Eq. (3.5) for the first energy denominator
was solved for n =20, 34, 50, and 100. For n
=100 the change in the values of T(r, ) over n =50
was less than 1 part in 10', so convergence is
assured for n =100. For the second energy de-
nominator Eq. (3.5) was solved for T(r) with
n = 100, As a final check the calculated values of
T(r, ) were substituted into the set of equations
obtained from Eq. (3.5) to ensure that it was in-
deed satisfied.

The next step is to calculate the kernel &(p, p'}
in Eq. (4.3) from the T matrix. Since the T ma-
trix is spherically symmetric and the vortex line
is cylindrically symmetric, the kernel Z(p, p')
is a double integral —one over the z direction
along the axis of the vortex line and the other
over the azimuthal angle. An adaptive Newton-
Cotes integration method" is used for both inte-
grals in Eq. (4.3). For each value of the azimuthal
angle used in the integration, the infinite z inte-
gration is performed by comparing the value be-
tween the limits 2" ' and 2" A (n= 1, 2, 3, . . . ) with
the accumulated total from 0 to 2" ' A. When
the ratio is less than 1 part in 10' the procedure
terminates. The adaptive Newton-Cotes method
breaks the ~ integration from 2" ' to 2" into a
sufficient number of subintervals so that con-
vergence to 1 part in 10' is obtained. The same
procedure is used for the azimuthal integration
from 0 to v. The symmetric matrix K(p„p,'. ) is
calculated for p«p& between 0 and 13 A with a
step size of 0.2 A.

The generalized GP equation in Eq. (4.2) can be
written in discrete form between 0 and 9A in steps

0

of 0.2 A using finite differences for the derivatives
and the repeated use of a Newton-Cotes six-point

closed formula" for the integral. The two bound-
ary conditions are f (0) =0 and f (9 A) = c ~ 1. The
value of c is chosen to be 0.98, but the density
profile is not sensitive to variations in it between
+ 0.015 and —0.03.

The integral in Eq. (4.2), which extends to in-
finity, is evaluated in three regions. For p' be-
tween 0 and 9 A, the kernel K(p„p~) is multiplied
by f(pJ')'. For p' between 9 and 13 A, f(p') is
taken to be Fetter's approximation" p'(p" +a') '~'

for a = 1.3 A. Beyond p' = 13 A, f (pJ ) is taken to
be unity. The kernel Z in Eq. (4.3) is calculated
in this region by approximating T, which is es-
sentially V, by a series expansion in p/p'. The
upper limit is chosen sufficiently large (-30 A
& p'& -50 A) so that further extension caused no
appreciable change in the integral.

The set of algebraic equations obtained by writ-
ing Eq. (4.2) in discrete form is solved by the
method of perturbed parameters. " First the set
of equations is solved for a condensate density
n, = 0. The differential equation in Eq. (4.2) for
/=1 with n, =0 has a solution which is a Bessel
function of order 1 for p, & 0, and a modified
Bessel function of order 1 for JU. & 0. The solution
is substituted to evaluate the integral term in Eq.
(4.2), and the equation set is solved again for a
nonzero value of no. ' Usually four or five iterations
are required for self-consistency. This process
is repeated until the value of n, is increased to
its final value of either 0.024 n or 0.10 n, where
the density' of the bulk He II extrapolated to zero
temperature and pressure is n= 0.0218 atoms
A '. Usually four or five different evenly spaced
values of n, between zero and the final value are
required to obtain the solution.

The set of algebraic equations obtained from
Eq. (4.2) is solved for various values of the
chemical potential p. . The value of p. for which

f '(9 A) is approximately zero (0+) is chosen, so
that the boundary condition in Eq. (4.4) is sat-
isfied. The results of these calculations are
given in Sec. VI.

VI. RESULTS AND DISCUSSION

In this section the results of the calculations
for the T matrix and the density amplitude are
given and discussed. The T matrix is calculated
with two different energy denominators in Eq.
(3.6). Then for each of these two T matrices,
the density amplitude f is calculated from the
generalized GP equation in Eq. (4.2) with two dif-
ferent condensate densities. The two different
T matrices obtained are now discussed.

The 7.' matrix shown in Fig. 4 is obtained when
the energy denominator e~ =P'/2m+ 6.7 K, where
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FIG. 4. Local T matrix in configuration space, cal-
culated by using the energy denominator && =P /2m
+6.7 K. The dashed curve is the MDD2 potential in

Ref. 17.
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p inA

FIG. 6. Relative density amplitude f (p) for a vortex
line as a function of the distance p from the axis calcu-
lated from the T matrix in Fig. 4 for two different con-
densate densities no. The bulk density of He II is n

=0.0218 A 3 at 0 K and 0 atm.
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FIG. 5. Local T matrix in configuration space, cal-
culated by using the observed phonon-roton spectrum in
Ref. 18 as the energy denominator. The dashed curve is
the MDD2 potential in Ref. 17.

—6.7 K is the experimental chemical potential, "
is used for the kernel in Eq. (3.6). The strong
repulsive part of the MDD2 potential" V(r) shown

by the dashed curve in Fig. 4 induces strong
short-range correlations in the wave function,
which causes it to vanish if the particles are suf-
ficiently close. The T matrix is an effective inter-
action for use with the unperturbed wave function,
which takes this short-range correlation in the
true wave function into account. Therefore, for
short distances T(r) is much softer than the bare
potential, as shown in Fig. 4. For distances
beyond about 2.5 A the T(r) approaches V(r), as
expected from Eq. (3.7). The T(r) shown in Fig.
4 is very similar to the T matrix plotted by
gstgaard, sa although his T matrix is not local.

When the experimental phonon-roton spectrum"
is used in Eq. (3.6) for the kernel in Eq. (3.5) for
the T matrix, the T matrix shown in Fig, 5 is
obtained. The T matrix is about the same as Fig.
4 beyond about 2.5 A, but is larger for values of

x less than about 1 A.
The density amplitude f (p) for the vortex line

is calculated from the generalized GP equation
in Eq. (4.2). The kernel in Eq. (4.3) is calculated
from the T matrix given in Fig. 4. Then the den-
sity amplitudes f shown in Fig. 6 are obtained.
Two different values of the condensate density
have been used. A value of the condensate fraction
n, /n =0.1 has been calculated by several groups. "
On the other hand, recent experiments" have in-
dicated that a value of n, /n =0.024+ 0.01 is the
physical value. Both of these values are used in
the calculations given here. The value of the bulk

0

density n used is 0.0218 atoms A ', correspond-
ing to the density of He II extrapolated to zero
temperature and pressure. "

For a condensate density n, =0.10 n the density
amplitude profile shown in the upper curve of
Fig. 6 is obtained, which is a monotonically in-
creasing function. The effective core radius is
defined to be the distance a from the vortex line
for which the density n(a) is half the bulk density
0.5 n, which corresponds to a relative density
amplitude of f (a) =0.707. The effective vortex
core radius is then 4.2 A, which is over three
times larger than the experimental value' of
1.14 A extrapolated to 0 K. The chemical potential
for which the boundary condition in Eq. (4.4) is
satisfied is p. = —0.10 K. The negative value of
the average energy per particle p, , although small,
indicates that the system is bound.

For the experimental value" of the condensate
density no=0.024 n, another solution was found
for the relative density amplitude f (p) in Eq.
(4.2) with the T matrix of Fig. 4, which is shown
in the bottom curve of Fig. 6. The effective core
radius obtained is 4.7 A, somewhat larger than
the previous case. However, the chemical po-
tential obtained is 0.15 K, which, although small,
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indicates that the system is not bound.
The T matrix in Fig. 5, obtained by using the

observed phonon-roton spectrum as the denomin-
ator in Eq. (3.6), is also used to calculate the
density amplitude f (p). The kernel in Eq. (4.3)
is calculated from the T matrix, which in turn is
used in the generalized GP equation in Eq. (4.2)
for the density amplitude f (p) of a vortex line.
The same two condensate densities e, used in
Fig. 6 are used here also.

When Eq. (4.2) is solved for n, = 0.10 n, the den-
sity amplitude shown in the upper curve in Fig. 7

is obtained. It is a monotonically increasing func-
tion with an effective vortex core radius of 3.7 A,
which is somewhat less than the corresponding
value obtained in Fig. 6. The chemical potential
satisfying the boundary condition in Eq. (4.4) is
p. = —0.48 K, which indicates that the system is
bound.

When the condensate density n, =0.024 n is used,
the density amplitude shown in the lower curve of

Fig. 7 is obtained. It is also a monotonically
increasing function, having an effective vortex
core radius of 4.4 A. The chemical potential ob-
tained is p, =0.08 K, which indicates a slightly
unbound system.

In all cases in Figs. 6 and 7 the effective vortex
core radii are over three times greater than the

0

experimental value' of 1.14 A. These results are
discussed further in Sec. VIII. However, in Sec.
VII a comparison is made between this work and

other approaches to the density profile of a
quantized vortex line.

VII. COMPARISON WITH OTHER WORK

The calculations of Sec. VI are compared here
with other calculations of the density profile of
a quantized vortex line. Previously, two different
methods have been used to obtain the density
profile.
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FIG. 7. Relative density amplitude f (p) for a vortex
line as a function of the distance p from the axis calcu-
lated from the T matrix in Fig. 5 for two different con-
densate densities npo The bulk density of He II is n

=0.0218 A 3 at 0 K and 0 atm.
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FIG. 8. Relative density amplitude calculated in this
work from Fig. 7 with n&=0.1 n (solid curve), calculated
from the Gross-Pitaevskii equation with a 0-function po-
tential in Ref. 40 (dashed curve), and calculated from a
correlated wave function in Ref. 41 (dotted curve).

The first method which was used is the ordinary
GP equation in Eq. (2.5) with a 5-function potential
of strength V, ." Although other authors" have
used an equation like this one to calculate the
density profile, the most accurate calculations
have been made by Kawatra and Pathria. " The
V, is absorbed into a "healing length" and adjusted
to give a vortex core radius of about 1.6 A. Their
monotonically increasing density profile is shown

by the dashed curve in Fig. 8. The chemical po-
tential in this approach is always positive, which
indicates an unbound system, and is deduced to
be about p. =6 K.

A second approach to the density profile of a
quantized vortex line has been used by Chester,
Metz, and Reatto. 4' They use a model wave func-
tion which, in addition to including short-range
correlations, vanishes on the core of the vortex
line and has one quantum of circulation around
the axis. When this model wave function is used
in connection with the energy variational prin-
ciple, and the experimental liquid structure factor
is inserted into their approximate equations, they
obtain the relative density amplitude shown by
the dotted curve in Fig. 8. The effective core

0

radius is about 0.5 A, but for another trial func-
0

tion a core radius of about 0.8 A is obtained.
Oscillations in the density, reminiscent of the

pair correlation function, are obtained, "which
Chester" explains in terms of particle correla-
tions. The density, of course, is not expected' to
have the same behavior as the pair correlation
function. Even though the average interparticle
spacing is about 3.5 A and the distance of closest

0

approach of two atoms is about 2.7 A, it is not
surprising that the vortex core can be about 1 A.
At temperatures & 0 ~ 7 K the thermal de Broglie
wavelength of the particles is much larger than

the average interparticle spacing, so the conden-
sate can be considered essentially a.. a continuum.
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Thus the density 18 6886Iltlally a conStRnt 1Q the
absence of the vortex line, However, when a vor-
tex llQe 18 px'eseQt the energy ls minimized 1f a
core of radius -1 A exists in the condensate. A

simpler variational calculation of Amit and Gros84'
based on a Hartree energy functional using the
5-function potential gives the value of 1,V A for
the core 1'Rdlus.

VIII. CONCLUSION

The density profile for a quantized vortex line
is obtained here using a T matrix" calculated
from a realistic potential as the effective inter-
action in the Gross-Pitaevskii (GP) equation. '
Thus some correlation induced by the two-body
potential is taken into account in what would other-
wise be a Hartree independent-particle model. "
The calculation of the density profile has been
made for two different Z matrices calculated from
the Morse dipole-dipole (MDD2) potential. " For
the energy denominator, the kinetic energy minus
the chemical potential is used in one case, where-
as the observed phonon-roton spectrum" is used
for the other case. In the calculation of the den-
sity amplitude, the only adjustable parameter is
the condensate fraction n, /n, for which two values
are used. One value is the commonly quoted
theoxetical value" of 0.10, while the other value
is the recently determined experimental value'0
of 0.024. The relative density amplitude in all
foul' case8 coQ81de1'ed 18 R DloQotonicRlly 1Qcreas-
ing function with an effective core radius (radius
at half-maximum density) of between 3.7 and 4.7 A.
The calculated chemical potentials are slightly
negative for a condensate fraction of 0.10, and
slightly positive for a condensate fraction of
0.024. The negative chemical potential indicates
a bound system, which the previous calculations '
based on the GP equation do not give. It is per-
haps disappointing that the theory here gives a
vortex core which is over three times the ex-
perimental value' extrapolated to 0 K, which is
1.14 A. On the other hand, it is remarkable that
even RQ ordex'-of-DlagQltude Rgx'66Dlent ls ob-
tained, since a calculation with the bare MDD2
potential' in the GP equation did not converge.
Thus it is necessary to take the multiple scatter-
ing of two particles into account to obtain a con-

. vergent density profile.
There are several conceptual difficulties con-

nected with tI16 Dlethod used hei 6. One diff lcul'ty
is that the method deals only with the particles
in the condensate. For a weakly interacting in-
homogeneous boson system Fetter'~ has shown
that the core should be partially filled with pairs
of noncondensate particles with total angular mo-
mentum zero. Even though the condensate density

is zero in the core, he shows that the density of
the noncondensate particles in the core is approxi-
mately 1,4 times the density of the Qoncondensate
particles in the bulk. " Fetter" then conjectures
that for HeII the same qualitative behavior could
occur. Since the condensate fraction in He II is
only 0.024, as measured recently, "the fraction
of particles not in the condensate is 0.976. Thus
if the conjecture is correct, the total density in
the vortex core mould be greater than the bulk
He II, Petter" then suggests a more sophisticated
txlal wRve function than thRt used by Chester
Metz, and Heatto" to take this effect into account
for HeII. However, this effect could also be taken
into account by using the pair and single-particle
condensate theory" with a realistic potential or
a T matxix calculated from it.

An object1on to t e use of t e ord1nary GP equa-
tion ls that lt ls R Dlean field equRtloQ which does
not take into account interparticle correlations.
Th18 criticism ls obvlRted by the generalized
GP equation" used here which does take inter-
particle correlations into account through the use
of the T matrix. " Since at very low temperatures
the thermal de Broglie wavelength of the particles
in the condensate is very long compared to the
interpaxticle spacing, the condensate behaves
very much like a continuum. Therefore, it is
expected that the generalized GP equation mould
provide a good description of the vortex structure,
even down to the range of 1 A or less. However,
it is in principle possible to calculate higher-
order corrections to the generalized GP equation
used here. " The monotonic increase in the den-
sity amplitude is not unexpected. The oscillations
in the density profile obtained by Chestex, Metz,
and Reatto" are unexplained in their original
paper, but ascribed to particle correlations by
Cheater. "

Although the temperature and pressure depen-
dence of the vortex core radius have been mea-
sured expeximentally, ' it is not immediately
obvious how to calculate these dependencies from
the generalized GP equation. ' The condensate
density 8O 18 a function of the teDlperRtux'6 RQd

pressure, but its dependence has not yet been
measured. In light of the small value' of the
condensate density there axe even those who doubt
that the zero-momentum state is in fact macro-
scopically occupied, contrary to most theoretical
approaches. A temperature-dependent local T
matrix could be calculated both by using the tem-
perature-dependent phonon-roton spectrum in
the energy denoDlinator and multiplying the
integrand in Eq. (3.6) by a factor of coth(e~/2k'&),
where 4~ is the Boltzmann constant and T is the
absolute temperature. Gn the basis of previous
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calculations of the temperature dependence of the
excitation spectrum, "this approach does not seem
to be especially fruitful. Perhaps a unification of
the GP equation with the Glnzburg-Pltaevskll equa-
tion" can be made which mould be valid at tem-
peratures intermediate between the transition
temperature and zero. Since the vortex core cal-
culated here at zero temperature is over three
times larger than the experimental value, it does
not seem to be fruitful at this time to pursue the
above refinements.

IQ older to decide betweeQ the va11ous deQslty
profiles shomn in Fig. 8, resort must be made to
experiment. Even though vortex lines have been
directly observed recently, ~' no information on
the core structure is obtained from the experi-
ment. An irregular array of lines is seen, ~'

instead of a triangular lattice" of vortex lines.
Perhaps the irregular array of vortices can be
pinned in a regular lattice, and the form factor
for an individual vortex line extracted from neu-
tron or x-ray scattering data. Vortex lines in
He II are by no means as well understood as the
analogous flux lines in type-II superconductors. 'o

Obviously there are many problems remaining to
obtain a thorough understanding of vortices in
HeII, which will provide a challenge for both
theorists and experimentalists for many years to
come.

Note added in proof T. he effective core radius
determined here is not directly comparable with the
the core radius determined experimentally. The
classical hydrodynamic analysis of Hayfield and
Heif' involves the fluid density for which they use
0.1454 gcm ' or n=0.0218'7 atoms A '. In our
calculation the condensate density n, enters, for
which the values of 0.1n and 0.024n were used.
%hen a calculation with the condensate density
equal to the bulk density was attempted, the solu-
tion did not converge. The good agreement between
the classical analysis of Hayfield and Beif' and
experiment indicates that the particles not in the
condensate are coupled to it and also participate
in the vortex motion. In our calculation the par-
ticles not in the condensate have been neglected.
Hall" has inferred that the core radius of a free
vortex line is (6.8+1.6) A from experiments on
the velocity of vortex waves. Hayfield and Beif'
suggest that the presence of a charge on the core
of their vortex rings may modify the effective core
radius compared to that of an uncharged vortex
line.
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