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The annihilation rate of positroris in metals can be related to the correlated electron wave function at the

posit n site. It is argued that the effective interaction at short distance for a positron i.n an electron gas

should e dominated by terms involving one and two electrons. The positron-electron wave function is thus

calculated using an effective interaction which includes the strong. screening effects from one highly correlated

screening electron. The electron wave functions are approximately antisymmetrized using the analogy of a .

recoiless impurity. The positron annihilation rates calculated using this wave function are in good agreement

with the observed rates over the whole range of electron densities found in alkali metals.

I. INTRODUCTION

In a previous paper' (referred to as LB) a
scheme was developed for calculating the effec-
tive interaction in a pure electron gas. In this
paper we extend the method to the problem of a
positron impurity in the electron gas. The posi-
tron has been used extensively as a probe to mea-
sure electron structure in metals and to measure
the electron structure of defects in metals. 2 It is
therefore important to have a good understanding
of how positrons interact with electrons in a many-
electron medium. In particular, we would like to
construct the effective electron-positron interac-
tion at short distances and use it to calculate the
positron annihilation rate in the electron gas at
metallic densities.

In experimental measurements of positron anni-
hilations in metals, the positron is introduced into
the metal from a source (e.g., "Na) embedded in
the metal. ' The "Na nucleus undergoes P' decay
with the emission of a 1.28-MeV y ray. The anni-
hilation of the positron with an electron in the me-
tal results in the emission of two 0.51-MeV y rays
in nearly opposite directions. Ferrell4 showed
that the annihilation rate R is proportional to the
electron density at the positron site, averaged
over all positron sites:

a =l[z„ile„(o)l']

d'y0 *r r +*r +r0,

where g, (r) are the second quantized operators
for the positron and electron fields, R is the
annihilation rate of positronium, and 4p, ( r) is
the positronium wave function. The positron-
electron interactions within the metal are strong,
as shown by the observed annihilation rates which
are an order of magnitude greater than would be

expected for a noninteracting test particle (Fig.
1). At room temperature a positron thermalizes
10-" to 10 "sec after it enters the metal. "
This is much shorter than its average lifetime of
more than 10 ' sec. The annihilating positron
may therefore be taken to be in its lowest-energy
Bloch wave function for the lattice potential. This
lowest-energy Bloch wave will avoid the positively
charged ion cores, and since the core electrons
for the alkali metals are tightly bound to their
ions, the positron should mainly annihilate with
the valence electrons which are free to accumu-
late around the positron. Since the annihilation
rate depends only on the electron density at the
positron site, the electron gas should be a satis-
factory model for annihilations with valence elec-
trons.

Ferrell4 proposed calculating the electron den-
sity using a perturbation expansion of the screened
Coulomb interaction between the positron and elec-
tron, but Kahana' showed that such finite-order ex-
pansions could not produce sufficient buildup of
electron density around the positron to account for
the observed rates. Kahana proposed summing
the infinite set of ladder diagrams for a static
screened interaction using the Bethe-Goldstone
equation. For the higher electron densities r,
&4, his results agreed remarkably well with ex-
periment (Fig. 1). In subsequent papers, Carbotte
and Kahana examined various modifications to this
method such as introducing one nonstatic screened
interaction, ' inserting low-order self-energy
terms, ' or adding diagrams needed to satisfy the
charge sum rule, ' which Bergersen' had shown was
violated in the original Kahana formulation. ' In
all cases little effect was seen on positron life-
times. Kahana' also evaluated the plasmon con-
tribution to the electron buildup near the positron
with the assumption that the e —e+ interaction
through the plasmon does not depend on their mo-
mentum. He found that the plasmon contribution
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FIG, 1. Positron-annihilation rates in nsec i. Experi-
mental annihilation rates are taken from Refs. 30—35.
Curve (a) is Kahana's (Ref. 7) results extended to lower
density. Curve (b) is Sj5lander and Stott's (Ref. 18) re-
sults using a two-component STLS theory. Curve (c) is
Bhattacharyya and Singwi's (Ref. 19) results using STLS
theory, but with additional three-body terms. Note their
rate at low densities. Curve (d) shows the rates pre-
dicted if we neglect the positron attraction.

was small for metallic densities. Further modifi-
cations and corrections have been suggested by
other authors. Alternative static interactions
have been used by Zuchelli and Hickman, "by

rowel 1 et al ii and by Arponen and Jauho u They
all obtain rates similar to those of Kahana. Kana-
zawa et al. ,

"Crowell et al. ,
"and Arponen and

Jauho" have examined corrections to the ladder
sum arising from particle-hole interactions.
These additions produce only minor corrections
to the original Kahana results. The Bethe-Gold-
stone equation plays a central role in these cal-
culations, and a common feature of all of them is
that their rates diverge when the density decreases
below r, = 4. At r, = 6 the Bethe-Goldstone rates
are about three times the rate observed for
cesium, and at slightly lower densities the cal-
culated Bethe-Goldstone rates go to infinity (see
Fig. 1). The Bethe-Goldstone equation relies on
a Pauli projection operator acting on the interme-
diate electron states to approximate the antisym-
metry of the N-electron wave function. In Sec. III
we examine the validity of this approximation. Be-
cause of certain important classes of three-body
terms the approximation is in fact not valid for
this particular problem; hence, the Bethe-Gold-
stone equation does not give the correct positron-
electron wave function. We show in Sec. IV that
this inappropriate use of the Pauli operator leads
to unphysical bound states embedded in the con-
tinuum at positive energies and that the low-den-
sity divergence in the Bethe-Goldstone rates is
the result of using an incorrect plane-wave nor-

8
1+A,/A,

(2)

Using Eq. (2} and West's values for Ao and A~,
the values for g„„are far below Kahana's curve:
for potassium B „ is 1.8 nsec ', for sodium 1.9
nsec ', for lithium 2.3 nsec ', and for aluminum
5.0 nsec '. Note that West's analysis in terms of
an effective valence-electron density relies heav-
ily on t4e assumption, valid in the noninteracting
case, thatIt~(r, } '. This is not a good approxi-
mation either to Kahana's calculated rates or the
experimental annihilation rates as a function of
's.

malization for these bound states. We find that
at densities higher than r, =4 the poles do not
seriously affect the numerical results.

Hede and Carbotte" and Carbotte and Salvadori"
have generalized the electron-gas theories to pro-
vide a better description of positron annihilation
in real metals. Bede and Carbotte modified the
ladder approximation to include low-order elec-
tron-lattice interactions. The main effect of the
periodic-lattice potential is the introduction of
momentum components k+G into the unexcited-
electron wave functions of wave vector [k i(k~,
where G is a reciprocal-lattice vector. This en-
hances the contribution to the annihilation rate
from high-momentum electrons, but the change
in the total rate is small. Annihilation rates from
core electrons have been calculated in the ladder
approximation by Carbotte and Salvadori. A gen-
eralization of the electron-gas theory by Carbotte"
enables the Bloch nature of the particle states to
be included. The ladder sum of Coulomb interac-
tions between the positron and a core electron is
calculated assuming that the intermediate electron
states are all conduction-band Bloch states. Car-
botte and Salvadori estimate that the contribution
to the annihilation rate from core electrons is
about 15% of the total rate for sodium and about
20% for aluminum.

West" has estimated separate core- and valence-
electron contributions to the total rate on the basis
of angular distribution data for the 0.511-MeV y
rays. Annihilation of a stationary positron with
an unexcited valence electron leads to a parabolic
angular distribution centered at 8 = m with a width
of -4 mrad. Annihilation with core electrons leads
to broader angular distributions due to high-mo-
mentum components in the electron bound-state
wave function. West fitted these tails with a Gaus-
sian shape. The annihilation rate for valence elec-
trons alone is readily calculated in terms of the
areas of the Gaussian and parabolic components
of the angular distributions (Ao and A~, respec-
tively} and the observed rate R as
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The center-of-mass momentum of the annihilat-
ing e'-e pair can be measured more directly by
determining the Doppler shift of the y rays. This
technique is insensitive to possible elastic scat-
tering of the y rays. Such measurements have
recently been made by Geisler, Lynn, and Go-
land. " Preliminary results indicate that the high-
momentum tails are significantly different from
those observed in angular-distribution measure-
ments. One would like to see an experiment car-
ried out which directly determines just how much
the scattering of the y rays inside the sample
affects the resolution in angular-distribution ex-
periments. When more complete data from the
Geisler et al. experiment is available, it will be
interesting to use the data to recalculate 8„„.

A quite different approach to the problem of cal-
culating the annihilation rate has been used by
Sjolander and Stott" and by Bhattacharayya and
Singwi. " They have developed suitably modified
versions of the Singwi, Tosi, Land, and Sjolander
(STLS) electron-gas theory. " Sj'olander and Stott
expanded the theory for a two-component (posi-
tron-electron) system, and then took the limit of
zero positron density. They calculated a positron-
electron correlation function from which they
could obtain annihilation rates for a given elec-
tron density. Their computed rates are in strik-
ing agreement with those of Kahana and, like
Kahana's, diverge at low densities (Fig. I). Bhat-
tacharyya and Singwi employ Vashishta and
Singwi's" modification of the STLS theory.
Vashishta and Singwi allow for changes in the
pair-correlation function in a weak external field
by adding a term to the STLS local-field correc-
tion which involves the density derivative of the
equilibrium pair-correlation function. Since this
derivative is related to the three-body equilibrium
correlation function, certain three-body correla-
tions have been built in. Looking ahead to our con-
clusions in Secs. II and III regarding the import-
ance of some three-body terms and the inapplic-
ability of the Bethe-Goldstone equation to this
problem, it is interesting that Bhattacharyya and
Singwi found that their three-body modifications
(i) altered the effective interaction only for small
momentum transfers, and that (ii) their calculated
rates did not diverge at low densities (see Fig. I).

A serious drawback of Bhattacharyya and
Singwi's approach is that the calculated rates for
r, & 4 depend strongly on an undetermined parame-
ter a». They adjust the value of a„until the cal-
culated rate at ~, =6 agrees with the experimen-
tal rate. Since the additional term, which is pro-
portional to a», contributes appreciably only in
the region r, &4, it is clear from inspection of
Fig. 1 that they are practically guaranteed a good

fit over the experimental range 2&x, &6 if they
choose this value for a». Until a» can be inde-
pendently determined their theory is strongly
parameter dependent. Moreover, with this value
of a» the calculated rate in this theory does not
have the correct low-density-limiting behavior.
For z, & 7 the rate drops toward zero," instead
of asymptotically approaching the spin-averaged
positronium rate of 2.01 nsec-'.

II. POSITRON-ELECTRON EFFECTIVE INTERACTION

To calculate the positron-annihilation rate, we
need the positron-electron correlation function at
zero separationg, (r =0). This problem is more
complicated than the calculation in LB of the elec-
tron-electron correlation function g(r =0) for the
pure-electron gas, but we find certain analogies
with that problem help to make the present prob-
lem tractable.

A. Effective interaction at smaH separations

In order to determine g, (r =0) we must first
construct the effective positron-electron interac-
tion for small separations. In this section we re-
strict ourselves to momentum transfers greater
than the Fermi momentum 0~. We associate mo-
mentum transfers smaller than k„with the over-
all polarization of the medium, and we consider
this effect in Sec. IIB.

In the present section we argue that for momen-
tum transfers greater than k~, the dominant con-
tributions to the effective interaction come from
terms with no more than one screening electron
excited at any instant. There are two main causes
for this. First, if two electrons and a positron
are close to each other they will strongly repel
any additional electrons which approach them.
Second, when three or more electrons are close
to a positron Fermi statistics will necessarily
play an important role. We would grossly over-
estimate the total contribution of such terms if we
included only their direct parts. Since it is im-
practical to calculate the exchange parts, we pre-
fer to omit the direct parts which themselves are
already small.

We conclude the section by showing that if we
consider only the dominant terms with a single
excited screening electron at any instant, then
the infinite summation of the screened interac-
tions reduces to a tractable ladder sum. This is
an important property since it is not generally
true for retarded interactions.

Our arguments are similar to those in LB. In
this problem, however, when a positron and an
electron are close together it costs very little
energy for a second electron to approach them
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since the positron-electron pair has no net charge.
By the uncertainty principle this electron can re-
main close to the pair for a long time. However,
any further electrons will be repelled by this
three-particle entity, so that a third electron can
only approach at considerable energy cost. Thus,
the uncertainty principle does not restrict one
electron from contributing to a strong retarded
screening effect, but i' does restrict more than
one electron from contributing. In other words,
most retardation effects of the screening should,
at any particular instant, be caused by one and
only one screening electron. Exchange effects
reinforce this conclusion. Whereas a positron
and two antiparallel spin electrons can come close
together without any cancellations from exchange,
when a positron and three electrons are close
there will always be exchange terms. These ex-
change terms will tend to cancel with the direct
terms.

We see explicit cancellations of certain low-or-
der direct and exchange diagrams when two
screening electrons are in excited states at the
same instant in time. Consider Fig. 2 for P & kz.
If the screening electron and the scattered elec-
tron have parallel spin, there is a leading-order
cancellation between the direct and exchange dia-
gram. If the two electrons have antiparallel spins
there is no exchange term, so this spin configura-
tion gives a contribution O(P/kz} larger than the
configuration with parallel spins.

Let us therefore restrict the scattered and
screening electrons to have antiparallel spin. In
this case there is a leading order cancellation of
direct and exchange diagrams when the excitations
of two screening electrons overlap in time. Com-
paring Figs. 3(a} and 4(a), we see that their main
difference is that in Fig. 3(a) the two excited
screening electrons overlap in time, while in
Fig. 4(a} the screening electrons do not overlap
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FIG. 3. For screening electrons with spin antiparallel

to the scattered electron, there is leading-order cancel-
lation of direct and exchange terms whenever two excited
screening electrons overlap in time.
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FIG. 2. There is a leading order cancellation of the
direct and exchange diagram when the screening elec-
tron has spin parallel to the scattered electron. Open
arrows indicate electrons; shaded arrows the positron.

FIG. 4. For screening electrons with spin antiparallel
to the scattered electron and with no overlaps in time,
there are no exchange diagrams and hence no exchange
canc ellations.
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Because of this, Fig. 3(a) has an exchange dia-
gram which cancels the direct diagram to leading
order in k~/P, so that the sum of Figs. 3(a) are
O(k~/P) smaller than Fig. 4(a). Similar arguments
show that the sum of Figs. 3(b) are O(k~/p) small-
er than Fig. 4(b), and that Fig. 3(c) has an ex-
change diagram which cancels its direct diagram
to leading order in k~/p. Note that Fig. 3(c) shows
the retarded interactions cannot cross over in
time without exchange cancellations reducing
their contribution. These are three examples
of how statistics cooperate with the repulsive
electron-electron interaction to reduce contribu-
tions from terms where more than one screening
electron is excited at @ny one instant.

The dominant terms with only one screening
electron can be summed iteratively, in spite of
the fact that the screened interaction is explicitly
retarded. The retarded interactions can be time
ordered, since the polarization bubbles cannot
overlap in time. Since the interactions do not
overlap and since only Tamm Dancoff (TDA)
terms" are retained (Fig. 5), each interaction
remains a constant and well-defined distance off
the energy shell.

Our arguments do not eliminate the class of dia-
grams where one unscreened interaction overlaps
a single retarded interaction (Fig. 6) and in order
to make the calculation tractable we must rather
arbitrarily neglect these terms. We defer con-
sideration of self-energy insertions until Sec. IID,
and correlations of the screening electrons until
Sec. IIE.

We now show that the sum of all the diagrams
we have retained are included in the solution of a
Lippmann-Schwinger integral equation,

(pKlt„(E =e, +e )lkoK)=(pKl V,ff(E)lk, K)

p
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FIG. 5. Typical contribution to screened interactions
when no more than one screening electron is excited at
any instant. Note (i) we can time order these:interac-
tions, and (ii) each screening electron is excited a well-
defined distance off the energy shell.

+,(pKl V.„(Z)lqK)

x [l/(E-q'- «Z')]&ALKI&, (&)lk, K),

where V,«(Z) is a screened retarded interaction
which we shall define presently, lp K) is a posi-
tron-electron plane-wave state with relative mo-
mentum p and center-of-mass momentum K,
lk~) is the initial positron-electron state, and
~, are the initial energies of positron and elec-
tron. The scattered electron is not antisymme-
trized with the other electrons in the electron gas.
%'e discuss in Sec. III how to carry out the anti-
symmetrization. A typical term in the sum of dia-
grams we have retained is shown in Fig. 5.

If we integrate over the time variables in Fig. 5

p]s

p]c ii-p

FIG. 6. One screened and one unscreened interaction
can overlap in time without restrictions. We must ne-
glect these terms.
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v(l q'I) v(lq"I)
I-Ilp"(q', E')V(lq'I) p~-e, -e -f'f) I —II "(q E )V(lq. I) ' (5)

l, . 1. l28 =2P +2P Ell pll2 + —pl2

q'=-p' -p, q
ll —pll pl

and II, " is the forward-time part of the Lindhard function II0 without the sum over spins,

l)
(-()f [e'e/(pe)']e "e'p"'~'e-" e»-O

ToA I
' I&'s

II, (p, t)=

, 0, t&0

oe'*(p, z) = (e/o) f oee'e'o, (p, () .
0

Each of the interactions in Fig. 5, with the excep-
tion of the unscreened term, can also have the
opposite time flow direction. Adding these terms
we get

& pl v„,(E)lp'&
+

where

x& p'I v, ff(E)1p"), (7)

B. Long -wavelength screening

We now consider the nature of the effective inter-
action for small momentum transfers. In this re-
gion exchange diagrams are negligible. Since the
wavelengths of the screening excitations are great-
er than the average electron spacing, it is appar-
ent that any screening must be a truly collective
effect involving many electrons simultaneously.
In LB we argue that for the pure electron gas the
long-wavelength collective screening effects
should be small for a pair of close electrons,
since the pair will polarize the surrounding med-
ium symmetrically. However, a positron and an
electron have opposite charges, and even when

they are close together, they will polarize the
surrounding electron medium asymmetrically.

& p I v.ff(E)l p') = v(1 p - p' I)

2II "(Ip-p'I, E')v(lp-p'I)
I —IITD'(lp-p'I, E')v(lp-p'I)

(8)
E/ p2+ p/2 E

Equation (7) shows clearly that the contribution
to Fig. 5 is part of a Lippmann-Schwinger iterative
sum for the effective interaction V,«(Z) defined by
Eq (8).

The polarization will have a dipolar pattern which
will reduce the effective charge of both the posi-
tron and the electron. We would thus expect long-
wavelength screening to be important. However,
'the instantaneous pair-correlation function for
small separations should not be too. sensitive to
the details of this over-all polarization, and a
Thomas-Fermi-type approximation2' for this
screening should be sufficient. Thus, for very
small momentum transfers the effective interac-
tion should be simply the static random-phase-
approximation (RPA) interaction,

&pl v.«(E)lp )lg;.I„,
v(lp -p'I)

l-il, (lp-p'I, 0)v(lp-p'I) '

Here II,(P, 0) is the static Lindhard function which
includes the sum over spins. We would expect a
smooth transition from the TDA effective interac-
tion of Eq. (8) to the RPA effective interaction of
Eq. (9) for momentum transfers on the order of

k~. Our calculations have been performed using
a discontinuous transition from Eq. (8) to Eq. (9)
at a momentum transfer of k~. A linear interpola-
tion between the TDA and RPA effective interac-
tions in the momentum-transfer region of k~ to
2k+ resulted in -2% changes in positron-annihila-
tion rates and indicates that the details of the
transition are not of importance for the present
problem.

C. Construction of electron-positron wave functions

The wave function for a given electron-positron
pair may be obtained from the solution of the half-
shell Lippmann-Schwinger equation (3) using the
electron-positron effec'tive interaction defined by
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Eqs. (8}and (9). Since V«(E) and, hence, ff~(E),
depends only on the magnitude of the center of
mass momentum, it is convenient to consider the
partial wave decomposition of Eg. (3):

(»I & (&&&I».&=&»l &' {»&I&.&+(2/w& Je'aq&»l &' (z&le&

,.„&el fg(E)l 4& (Io)

where z is the cosine of the angle between p and
k. As noted above, E represents the energy of
the initial electron-positron state. For numerical
purposes it is convenient to employ standing-wave
boundary conditions so that all quantities appearing
in Eq. (10) are real. [This means only. that the in-
tegral on the right-hand side of Eg. (10) is treated
as a principal-value integral. ] The equation may
be cast in a manifestly Fredholm. form using the
transformation of Kowalski~4 and can thus be
solved numerically by replacing the integral by a
weighted sum over a suitably chosen mesh of
points. The solution may be converted to outgoing
boundary conditions through an appropriate change
of normalization.

The electron-positron wave function is related
to the half-shell I; matrix by

D. %If-ene1'gf insertions

%'e have argued that one screening electron
could strongly screen the positron-electron inter-
action. This one electron could equally well inter-
act strongly wwith only the positron or-orily the elec-
tron, to give significant self-energy contributions.
U'sing our arguments abo&ut leading order cancella-
tions of direct and exchange diagrams, we may
exclude vertex corrections such as Figs. 7(a) or
7(b}. For self-energy insertions on the interme-
diate propagators between interactions, such as
Fig. 7(c), there are no such cancellations, and
we approximate their effect by adding RPA self-
energies to the single-particle energies (see the
Appendix),

~,(4) = k I Il l'+ E"„'(i,e-) (14)

These energies are used in the Lippmann-Sch-

sk

(+)

Alternatively, we may use, . the Schrodinger equa-
tion to write

&pig o&=[I/(E-P')]&pl&'(E)Ih. &.

The electron-positron wave function in coordinate
space, P o(r}, is obtained as the Fourier trans-
form of Eg. (13). The pair-correlation function
for the initial state ~K%0& may finally be obtained
as

Since the present problem involves only the cor-
relation function at y =0, we need solve the Lipp-
mann-Schwinger equation only for the 1=0 partial
wave. The formidable problems of constructing
Fourier transforms numerically are also absent
in the special case r =0 where it is adequate to
use the same mesh of points employed in the solu-
tion of the Lippmann-Schwinger equation.

(-)
. (c)

FIG. 7. Vertex corrections (a) and g)) shower leading
order cancellations of direct and exchange diagrams.
Self-energy insertions (c) on the intermediate -propagator
lines do not have exchange diagrams unless they overlap
in time ~ith a screened interaction.
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winger Eq. (3). Since

Zt';~'( —'K+(I, e, (-,'K+q))

are isiowly varying «nctions of K for 0 «
I ~z„K I» k~,

we averaged both functions over the angle K to ob-
tain f",~(E) as a function only of IK I. The remain-
der of the calculati'on for & p K I

t~ (E)lk, K) can
then be performed without further modification.
These insertions reduced the @rave functions at
the origin by about 5% and the annihilation rates
by 1o.

E. COffC18tlOQS Of SCl'CCmBg C1CCtfOIN

Kahana' has shown that the observed buildup
of electloQ density Rl'oUnd R posltx'on could only
be accounted for by summing the positron-elec-
tron effective interaction to infinite order. The
importance of screening the effective interaction
is also mell knovin. In previous sections we have
considex'ed the effect of screening excitations only
within the linear-response RPA theory. To be
consistent we must take into account the nonlinear
buildup of scl eenlng chRl ge around the posltx'OD. .

Otherwise we shall underestimate the effect of
scree ning.

In this section we approximately include corre-

lations of the screening electron by replacin~
each bare Coulomb interaction in our expression
for V,«(E) with the appropriate ladder sum of in-
teracti. ons. Each electron-. electron interaction is
replaced by either the ladder sum of unscreened
Coulomb interactions t„or its local approxima-
tion t y both of which Rre deflQed Rnd cRlculRted
in LB. The positron-screening electron interRc-
tlon ls replRced by t~ Rs cRlculRted lD the previous
secti.ons for the uncorrelated screening electron.
This procedure is analogous with our construction
of t,« in LB.

%6 have approximately treated correlations be-
tween a screening electron and the positron (f,~),
correlations bebveen two screening electrons
(f ';,'), and correlations between a screening elec-
tron and the scattered electron (t„). Because the
initial state for the scattered electron-screening
electron interaction is not generally within the
Fermi sea, we must use t„rather than t'„ for
this particulax interaction. For momentum trans-
fers I jl&k~, each interaction is a well-defined
distance off the energy shell; for IjI& k~ we use
the static approximation for the off-shell effects.
Thus the effective positron-electron interaction
with correlated screenmg electrons V~',„ ls de-
fined as (Fig. 8)

&(IKII'",„'(E)lkK)=I'(l4-kl)+, , i (I'p "&2(2K+0-p")lf I,'. ""''~'I(E.)lk(4K+2k-(I-p'))
g1F y Iptll(g

x[f(IK-Ki;ra)I, , u*((-', (p+2i-ic —,'K)it(, '" ~ —""((Z,)I (-'K+i+i'-c)))-
3 "4 lpl&a ep

where for I(I —klan yz

2IIOTDA{lj-k I, (d)

1 —t,";(Ij-kl)II "(Ifl —kl, (g)

z, =z+-.'P""——.'(-.'K —q)2, z, =z+-.'P'- —.'{-.'K+k)2, ~=-.'(-.'K-(I)2+-.'(-.'K+k)2-E;

while for I q —k I
~ k~

2li, (l(l- k I, 0)

;,'(I~-kl)II, (

BecRuse of the 1Rthel' long computing time, %'6

had to average each momentum vector in the ex-
pression for V~,«~ over the directions p", P, and
K. If screening-electron correlatloQs Rl 6 unim-
portant, V,«and Ve«become identical since we

may recover V,« from V~~«~ simply by replacing
t„, t"', and t,„by V„and V,„. Using the Iow
equation" to efficiently compute the off-energy-
shell values of t,~(E) and t., (E), we could calcu-
late V(x«) numer i.cally
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—K-q
dk ~

Ip4 q-k

Iq-}d

0 p+q4'&I, q~p
p'

loc
&ee (Iq-kl)

$ —K&q

&ee

II p K+kp(

cess could be repeated until self-consistent val-
ues of t~ (and, hence, self-consistent electron-
positron wave functions) were obtained. However,
consideration of the diagrams added in each itera-
tion indicates that an unlimited number of screen-
ing electrons could contribute to the final self-
consistent V,«. Since our previous arguments
suggest that there should be extensive cancella-
tions with exchange diagrams not included in such
an iterative procedure, additional iterations are
expected to overestimate the correction to the
wave function. Thus, we have approximated all
positron-screening electron correlations by the
use of Vp«i defined by Eq. (15). In fact, the add-
itional corrections to the wave function from high-
er iterations were found to be only on the order of
4%. This suggests that the use of Eq. (15) is prob-
ably quite reliable.

$ piq-k& &p

&ep

)g ~ K-k

FIG. 8. Typical contribution to V,ff, the effective(i)

positron-electron interaction with correlated screening
electrons. Here top is the ladder sum of effective posi-
tron-electron interactions with. uncorrelated screening
electrons Vff, t„ is the ladder sum of unscreened
electron-electron Coulomb interactions, and t e~c' (lq- kI}
is a local approximation to t„, both calculated in Ref.
1. The equivalent contribution for Vff would be with
tep & tee &

and tpt, all replaced by Coulomb interactions.

Replacement of V„by t„tends to reduce the
density of screening electrons between the posi-
tron and electron while the replacement of V

p

by t~ tends to increase the density of screening
electrons. The latter effect is dominant so that
V,ff is markedly less attractive than V,« for
small and intermediate momentum transfers. The
replacement of V,«by V,'« in Eq. (3) leads to a
reduction of the positron-electron wave functions
for zero separation of approximately 30%. The
new wave functions also show considerably less
variation across the Fermi sea of initial electron
states. The magnitude of the reduction of
g, (r =0) confirms the importance of screening-
electron correlations in the calculation of posi-
tron-annihilation rates.

This procedure could have been repeated to ob-
tain V&/ by replacing the t,~ in Eq. (15) by the t &'&

obtained using V,',) in Eq. (3). This iteration pro-

III. ANTISYMMETRIZATION OF
ELECTRON WAVE FUNCTIONS

In Sec. II we calculated the correlation of a par-
ticular unsymmetrized electron by the positron,
using the two-body Lippmann-Schwinger integral
equation with a complicated effective interaction.
We now turn to the problem of how to antisymme-
trize this particular electron with all the other
electrons.

A. Bethe-Goldstone equation

We first examine the Bethe-Goldstone equation
which, as we have mentioned, has previously
been used to antisymmetrize the electron wave-
functions in the calculation of both short-range
electron-electron correlations"' and short-range
po'sitron-electron correlations. ' We find that the
Bethe-Goldstone equation correctly antisymme-
trizes the electron wave functions for. electron-
electron correlations. In contrast, however, we
shall find in Sec. III 8 that for the positron-elec-
tron correlation function, the Bethe-Goldstone
equation does not correctly antisymmetrize the
electron wave functions. In Sec. IV B we are able
to show that the divergence in the Bethe-Goldstone
rates at low density (Fig. 1) is directly attribut-
able to this misuse of the Bethe-Goldstone equa-
tion.

In LB the Bethe-Goldstone was used to calculate
the antisymmetrized electron-electron wave func-
tion at short distances. Let us examine how the
Bethe-Goldstone equation correctly antisymmet-
rized this wave function. For two labeled unsym-
metrized electrons i and j, the two-body inter-
acting wave function g, &

is given by the Lippmann-
Schwinger equation. For the pure-electron gas,
we argued that only the electrons i and j them-
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selves ar'e perturbed, so the antisymmetrized N-
body gx ound-state wave function is

g(C, (1)@(2),, ~ yt&l~. ..C, (8))

where A is the antisymmetry operator,

c,(A) c,(k)(~p )

and all starting momenta are less than k~.
Using the Lippmann-Schwinger equation (LSE)

to define g, ~ in terms of unperturbed states and
performiQg some of the interchanges implied by
A, it immediately follows that

BG ' '
@(A)

~I Wel

where Q is the Pauli projection operator,

Q(pf, pg, &&) =e(lp& I-&&)e(lp& I-&&), (21)

P =9& -Pg~ p'=p) -pg~ 4+Pg =Pg+Pg~ (22)

and g~~ is the two-body Bethe-Goldstone wave func-
tion. Thus, if only the two scattered electrons
are perturbed, use of the Bethe-Goldstone equa-
tion leads to a correctly antisymmetrized wave
function.

It is straightforward to show that the Lippmann-
Schwinger wave functions are mutually orthogonal
and that the Bethe-Goldstone wave-functions are
not

Due to the Pauli operator, the Bethe-Goldstone
wave functions are orthogonal to the unperturbed
states below the Fermi sea,

&4, e [ y,', &
= O if P„P„&u~ and (um) & (fg) .

Thus, if the other N - 2 wave functions are unex-
cited by the scattering, the N-body ground-state
wave function

86 @(4)

k=j. ,

is still a Slater determinant of E mutually ortho-
gonal single-particle wave functions. It follows
that the expecta, tion value of any two-body operator
0, will reduce to

The electron-electron correlation function g(r) is
the expectation value of the density operator
squared, which is a two-body operator. Thus

g(r) is given by

We conclude that if the two scattered electrons
are the only particles perturbed, the Bethe-GoM-
stone formalism correctly calculates the pair
correlation-function for the antisymmetrized N-
electron ground state.

8. Inhomogeneous electron gas

Returning to the positron problem, we note that
the positron is an impurity which destroys the
homogeneity of the electron gas. Since the elec-
trons will scatter off the impurity, the Hartree-
Fock solutions to the inhomogeneous problem will
differ from the Hartree-Fock solutions for the
pure-electron gas. Thus even at distances from
the i.mpurity so large that the impurity potential
has been completely screened out, the exact single-
electron wave functions for the inhomogeneous
system will be phase shifted away from the unper-
turbed plane-wave states. The impurity perturbs
all the electrons from their plane-wave states„
so that the Bethe-Goldstone equation (BGE) em-
ployed by Kahana' is inappropriate for this prob-
lem since it uses the unperturbed plane-wave
basis. In particular, the plane-wave BGE re-
quires that the momentum threshold for scatter-
ing be greater than zero, and this is not true when

the system includes an impurity. It is of course
difficult to start from other than a plane-wave
basis for a finite-mass impurity, making it im-
practical to apply the BGE to this problem.

Vfe now show that i.f we could neglect the recoil
of the positron it would be quite straightforward
to calculate g+ (r) from the solutions of the Lipp-
mann-Schwinger equations. Vfe couM probably
neglect the positron recoil should it become
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trapped, for example, at a crystal defect. Such

trapping is frequently observed in aluminum, but
not in the alkali metals. '

We have included in our effective impurity po-
tential V,ff only screening effects caused by ex-
cited electrons with spin antiparallel to that of
the electron being scattered by V(,'«). Arbitrarily
assigning spin up to this electron, we are thus
excluding all terms in which there are excited
spin-up screening electrons, arguing that the
total contribution of such terms after antisymme-
trization is small. Hence, within our model, anti-
symmetrization of the spin-up electrons is not
affected by excitations of screening electrons
since the latter all have spin down and are thus
a distinguishable species. Calculating the elec-
tron correlation functiong+ (r) for this system
is straightforward since the spin-up electrons
form a one-component system of noninteracting
fermions moving in the external potential V ff

With the positron fixed at the origin and omitting
the spin-up labels, g, (r) for spin-up electrons
is given by

g+ (r,)

d+2 ~~N + ry r $ rN/2

(&l.y"( ) (t"'( )" ()"'( )lj* (23)

g, (r)= g l(0.'"(tP)lr)I', (33)

where the antisymmetrization is automatically
included when we average over the starting mo-
mentum I p~ l(kr. Since g, (r =0) is the probabil-
ity of finding an electron at the positron site, us-
ing E(l. (1) the annihilation rate is

Bp, 1
( s) 4 I@ ( 0)lg / (

)sg+-( )I
(34)

where a, is the Bohr radius. We discuss our cal-
culated rates in Sec. V, but we first examine
those modifications needed when the interaction
permits the formation of bound states.

In Sec. III we solved the Lippmann-Schwinger
equation, including positron recoil, and obtained
the correlated positron-electron wave functions

) as solutions. Including positron recoil,
we can no longer calculate g, (r) exactly, even
within our model, since we do know how to con-
struct the many-body wave function from I gt" /JAN)).

Consequently, we simply follow the procedure
that was correct in the recoiless case. Since the
Lippmann-Schwinger wave functions I/op" g~(~ ) are
mutually orthogonal, the pair-correlation function
is then just the square of the two-body positron-
electron wave functions,

~(s)(r) J e(~ i ~P)
~ (2v)'

(~) @,(~)+ d ~ @0)4k a +
& (2 )s a' P . pig

x(c,(f )I y(&)I (I)(f )) (29)

where 2k =E& and 2k' =E~. and

(3o)0=Ei&E2(' ' '&.E~/2 = 2y ~
2

Since the g~(i form an orthonormal set, it follows
that the positron-electron-correlation function
for a spi.n-up electron is

g, (r, ) = Q I(I")(r,)l'.
P~ &A~

(31)

Writing the spin labels explicitly, the total con-
tribution tog+ (r) from spin-up and spin-down
electrons is

g. (r|)=Q Q lyo)(r, )l'
0=k Pg &Ay

(32)

Here g(i)(r) is the normalized solution of the one-
body Lippmann-Schwinger equation for the spin-up
electron (j),

Pl)r. BOUND STATES

When a positron and an electron interact in free
space, their energy spectrum consists of a con-
tinuum of positive-energy scattering states and
an infinite number of bound states. These latter
states are bounded from below by the 'S positron-
ium ground state at energy —6.8 eV. When an
electron is in this state it is localized in a spher-
ically symmetric wave function around the posi-
tron so that it almost completely screens the
positron's charge.

If we place the positron-electron '8 bound state
in a dilute electron-gas medium, the pair will
polarize the medium, which will, in turn, screen
the positron-electron interaction. This decreases
the binding energy of the bound state, but our cal-
culations indicate that the spatial bound-state
wave function changes very little. The reason
for this is that it is mainly the long-wave-length
components of the wave function which are af-
fected by screening, and these components are
unimportant for a localized wave function. As
we increase the density of the electron medium,
and hence increase the screening, the bound-
state wave function does not delocalize appreci-
ably until its binding energy is almost zero. If
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ak

&ep (j

&e

(36)p' = (4/va', )(I/o.r, ),
where a, -0.52 A is the Bohr radius and n
= (4/9v)'~'. Setting e'p. equal to the Ps binding
energy suggests that this bound state will not ex-
ist for r, & 3x10' and may thus be neglected for
all metallic-electron densities.

For 6.2 &r, & 3&& 10' the many-electron ground
state will consist of a positron-electron '8 bound
state with the remaining electrons filling the low-
est energy continuum states. Since the bound
state remains localized, the positron will be very
effectively screened by its bound electron and the
continuum states will be only weakly perturbed
from plane waves. In this situation the positron
can annihilate with either the strongly correlated
bound electron or the weakly correlated continuum
electrons. The former process is expected to
dominate.

)k 'fep g
&e

iit6p (/

we then increase the density only slightly, the
state rapidly diffuses and merges with the con-
tinuum states at a density of r, = 6.2. We note that
this represents an electron density slightly lower
than that found in Cs, the most dilute alkali metal.
The Ps bound state behaves similarly but merges
with the continuum at a much lower density. The
density may be estimated in perturbation theory
by replacing all Coulomb interactions with Yukawa
potentials:

(35)

For the case of interest p. is sufficiently small to
justify expansion of the exponential yielding AE
=+e'p. . In the Thomas-Fermi approximation,

(+) (b} (-)
FIG. 9. When the screening electron is in a bound

state for r, &7, it almost completely screens the posi-
tron charge. Terms of high order intep and t6(b) con-
tribute significantly to this effect.

A. Bound states for present calculation

In the present calculation, an electron-positron
bound state will appear as a pole in the electron-
positron t matrix, t, (E) or &,f'&(E), atE=-Es.
The unnormalized bound-state wave function is
easily recovered from the residue of this pole
using Eqs. (12) and (13). In constructing V~,',I via
Eq. (15), one may be led to integrate over a bound-
state pole in fop(E) corresponding to a bound state
formed from the positron and a screening electron.
From the above discussion of the Ps bound state
it is clear that a bound screening electron, prop-
erly described, will screen the positron so thor-
oughly that no additional bound states will exist for
normal metallic-electron densities. The inclusion
of the effects of a bound screening electron is
clearly appropriate for determining VI/ for calcu-
lations of electron-continuum states (Fig. 9). For
the calculation of electron bound states, V,«should
include the screening effects of continuum elec-
trons only. Thus, we have explicitly isolated and
removed the pole in top(E) in the determination of
V„',- for the electron-positron bound state.

In Fig. 10(a) we show E~ (r, ) for t~.'~-'. In the
zero-density limit E~ tends toward 6.8 eV, which
is the binding energy of 'S positronium in free
space. As the density is increased, E~~ smoothly
decreases reaching zero at r, =6.2. Since the 'S
state is the positronium ground state, there can
be no bound states at densities higher than r, —-6.2.
In Fig. 10(b) we show

p,, (~ =o) =I&,,(~=0)l',

the bound-state electron density at the positron
site. Since we normalize the wave function



12 POSITRON ANNIHILATION AND ELECTRON CORRELATIONS IN ~ ~ ~ 1.701

-2-
E(ev)

-4-

Epos

-6-

"8
5

I

7
I

9
(a)

l5

ppos(o)
5.0-

z (o)
S

20-

I.O-

0
5

I

7

this is also a measure of the degree of localiza-
tion of the wave function. The value of p, (x=0)-
for free-space positronium is about 3.37 A ', and
it remains constant at that value until the density
is increased to z, = 7. Between z, = 7 and z, = 6.2,
as Es goes to zero, p, (r =0) drops rapidly to
zero. Thus, although the binding energy is very
sensitive to the amount of screening, the spatial
wave func'tion remains practically unchanged until
the screening is so strong that the bound state
ceases to exist. These properties are character-
istic of a Yukawa-type potential.

Cesium hap the lowest valence-electron density
of the alkali metals at ~, = 5.74, and so our cal-
culation predicts that screening is too strong for
the positron to form bound states with electrons
in any of the alkali metals. If positronium were
to form in any of the metals, then, provided it

II l5

(b) S

FIG. 10. (a) Position of S bound-state pole in t,z (E)1 (&)

as a function of ~s. This is equal to -Ea~, where E~ is
the binding energy of the bound state. Note how slowly
E~ approaches 6.8 eV, the binding energy of S positron-
ium in free space. (b) Electron density at positron site
for ~S bound state p& (r=0). The density for free-space
positronium pp„(x=0) is 3.37 A 3. Since the bound-state
wave functions are normalized, p& (0) also measures the
degree of their localization. Note the wave functions re-
main localized until the binding energy is nearly zero.

first thermalized, it should be detectable in the
angular-distribution data of the emitted y rays as
a sharp spike at relative angle 8= m. Unfortunate-
ly, it is difficult experimentally to reach the den-
sity region below x, = 5.74. The alkali metals with
low valence-electron densities, cesium and rub-
idium, both have low melting points, so their ther-
mal expansion cannot be used to lower the density.
If a positron were to get trapped near a negative-
ion impurity in a cesium or rubidium lattice, it
is possible that the average va, ler".e-electron den-
sity in the vicinity of the negative ion would be
lowered sufficiently for positronium to be formed.
A similar situation might occur if the positron
were to get trapped on the surface of an alkali
metal. It would be interesting to search for posi-
tronium under these experimental conditions.

When the bound state exists, its annihilation
rate is proportional to p, (r„x=0), and, refer-
ring again to Fig. 10(b), we see that the rate re-
mains almost constant over the density range
7&x, & . It then drops rapi. dly to zero over the
range 6.2&r, &7. We take the annihilation rate
of spin-averaged positronium in free space as
the proportionality constant which relates
p, (r„r = 0) to the bound-state annihilation rate.Sp

In the absence of an external magnetic field, sing-
let 'S positronium and triplet 3S positronium are
degenerate. In a metal, we would expect stray
magnetic fields would be sufficient to maintain a
statistical balance between the singlet and triplet
states whenever either was depleted by annihila-
tions. Singlet positronium annihilates with the
emission of two y rays smith a rate of 8.0x 10'
sec '. Because of angular-momentum conserva-
tion, triplet positronium must emit three y rays
when it annihilates and has the much lower rate
of 7.1x10' sec '. The spin-average of, these rates
is 2.0x10' sec '; thus

p, (r„x =0)
It (r, ) = x 2.0x10' sec '. (38)

p, r= r=o
S S

The contribution to the rate from the 'S positron-
ium state for r, a6.2 is shown in Fig. 13.

We also estimated the contribution to the rate
for x, ~ 7, coming from annihilations with elec-
trons in continuum states. We projected out
screening-electron bound states from V~,'«~, sine'e
when the screening electron is in a 'S bound state
for r, a 7, it should so efficiently screen the posi. -
tron's charge that the continuum electrons will
remain practically unperturbed. Our calculated
V ff did not show this effect since only terms of
first order in t, and t„were included, Fig. 9(a).
By setting V,« =0 when the screening electron is
in such a bound state for y, ~ 7, we are approxi-
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mately including the additional screening coming
from terms of higher order in t,~ and t „, Fig.
9(b). We show in Fig. 13 the contribution to the
annihilation rates for r, ~ '7 coming from the con-
tinuum states. As expected, the contribution to
the rates from the bound state dominates for r,) 7, and the continuum contribution decreases
towards the noninteracting value.

-6.8 -l.7

B. Bound states for Bethe-Goldstone equation

We now examine the behavior of the bound-state
poles if we inappropriately apply the Bethe-Gold-
stone equation discussed in Sec. IIIA to this prob-
lem. We find that the poles behave quite different-
ly from the poles of the Lippmann-Schwinger equa-
tion. We show that the divergence in the annihila-
tion rate at low density which occurred in previous
diagrammatic calculations (see Sec. I and Fig. 1),
is due to unphysical bound states generated by the
Bethe-Goldstone equation. Qualitatively, our con-
clusions do not depend on the exact form of the
effective interaction, so for simplicity we use
the static RPA interaction,

(a}

&Fermi

0.5 l.75

v„,„(q)= v(q)/[I —rr, (q, 0) v(q)], (89)

d3
RPA

) I
(2g) RPA

, (q[f'„'(E).1
(40)

The analytic structure of t „(E)now differs funda-
mentally from the structure of t,~ (E) which has
no Pauli operator. The. bound states of t „(E)
have less binding energy than the corresponding
states of t,~(E), because the Pauli operator pro-

, jects .out low-momentum components from the
bound state. More importantly, the threshold for
scattering solutions is at nonzero energy [Fig.
11(b)],

E =& .=k~) 0.
thresh Fermi

(41)

which has been the interaction commonly used by
previous authors. '

Let us examine the analytic structure of the
Bethe-Goldstone effective interaction t~o(E) on
the real-energy axis. In free space, Fig. 11(a),

p is identical to our previous solution. It has
an infinite number of poles on the interval —6.8
eV ~E& 0, corresponding to the states of positron-
ium, and it has a cut along the positive E axis
with the branch point at E =0. This cut corre-
sponds to the positive energy-scattering states.
At nonzero density for center-of-mass momentum
K =0, f „(E)is a solution of the equation

For simplicity we have chosen K=0, correspond-
ing to the annihilation of a positron with an elec-
tron at the bottom of the Fermi sea, but the
threshold remains nonzero even in the other ex-
treme in which the stationary positron annihilates
with an electron at the top of the Fermi sea and

I K I
= 0&. Then,

E „=(A,, -l-.'Kl)'=-,'@&O. (42)

The positive-energy cut extends from infinity to
the branch point at 8th„» )0, and this causes the
difficulties. The position of the 'S bound state
pole of t eP(E) as a function of density is shown
in Fig. 12(a). For r, &8.4 the position of this
pole agrees with the calculations 'of HeM and
Kahana" and Arponen. " However, these papers
failed to note that at r, =8.4 the pole crosses over

FIG. 11. (a) Analytic structure of the Bethe-Goldstone
solution tep(E) along the real-energy axis in the zero-
density limit. The pole at -6.8 eV corresponds to the
positronium ground state. There are also an infinite
number of poles in the interval -1.7 eV &E ( 0 which for
reasons of clarity we do not attempt to show. (b) Analytic
structure of pep(E) at r, =7.6. Note the nonzero threshold
at +1.75 eV, and the pole on the positive real-energy
axis at +0.5 eV.
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from the negative real S axis to the positive real
E axis. This can occur because the threshold
branch point is no longer at the origin but at Z
=E,„„~&0, Fig. 11(b). If we further increase the
density, the pole approaches E~„;„asymptotical-
ly but never reaches it, so that-it exists for ar-
bitrarily high'density and for an arbitrarily weak
interaction. The magnitude of the bound-state
wave function at r = 0, ) g'o(r = 0)(', is shown as a
function of r, in Fig. 12(b). Since it is normalized,

E(eV)

I g "(r)l' d'~ =1 (43)
0 6

(a)
IO:

&s

For k~& 0 and any A &0, t„p(E) always has a pole
at some real E&k~2, since the integral covers all
non-negative values as 8 varies from -~ to 4~2.

However, if k~ =0 the integral has an upper bound,
since the phase-space factor q' cancels with the
pole at E =0. Then t„(E)has a pole on the real
E axis only if the attraction is sufficiently strong:

v' q (46)

This exact example illustrateg two important
points. For nonzero threshold (i) poles can exist
at positive energies, and (ii) these poles will con-
tinue to exist for arbitrarily weak attraction.

Returning to the present calculation, we fi.nd
that the Bethe-GoMstone equation generates a
bound state embedded in the positive-energy con-
tinuum states, for the entire range of rnetalli, c
densities 2 &r, & 6. %Ye know that the Bethe-Gold-
stone wave functions are not orthogonal to each
other, so there will be components of this bound-
state wave function in all the continuum states,
and not just in the continuum state which is de-

this again provides us with a measure of the de-
gree of localization of the bound state. As the
density increases, I g "(~=0)I' «nd»»y «ymp-
totically to zero, so that the bound state becomes
arbitrarily diffuse but always exists. The mech-
anism acting here is very similar 'to the one which
generates Cooper bound-state pairs for arbitrar-
ily weak attraction in the presence of a Fermi
sea, in the BCS theory of superconductivity. '9

As an example of the effect of a nonzero thresh-
old for an attractive interaction, consider the
exactly soluble model of a separable potential,

(plI „,ik.)=(3v'~) ~(lpl) ~(lk, l), ~«0. (44)

The Bethe-Goldstone equation with this potential
has the exact solution

- ]ac E k (»'&)~(lpl)~(lk. l)
I+ f"d4q'[+(it|1)/(e'- )3

'

Ppos(o)

5.0-

0 I I. . .I ' . I

4 6 O' IO
(b}

FIG. 12. (a) Small circles indicate position of the ~8
bound-state pole for the Bethe-Goldstone solution t~epG(E).

The curve eF„;is the energy threshold for physical
scattering. The annihilation rate for the continuum
states is averaged over 0 ~E~~&F„~;, and for 7.8 &t~
&8.4 the bound-state pole lies within this region. -

(b) Electron density at positron site for ~S Bethe-
Goldstone. bound state. This measures the degree of
localization of the state. Compare this with, Pig. . XO(b).

0

generate with the bound state. 8 we incorrectly
apply plane-wave continuum normalization. to a
bound state, its contribution to annihilation rates
is clearly divergent. This is the reason for the
divergence in the Bethe-Goldstone rates. Since
the positron is at' rest, the initial relative mo-
menturn of the scattered positron electron is ko

j.= a I k, - k& I, i.e, 0 &
I k, [ & ~ k~. The rate must

thus be averaged only over those cotitinuum states
for which 0 & E & 4 k~~ = ~ e „, , [see Fig. 12(a)]. At
high densities the bound-state pole is very close
to &„„,. and far away from the averaging region
because of the kinematic constraints. For this
reason, at high densities the Bethe-Goldstone
rate is finite and, coincidentally, is in good agree-
ment with the experimental rates. As the Chnsity
decreases, the bound-state pole moves away from
e„„,. and towards the region 0+8 + ~cp„,-. By
r, = 5, components of the bound state are signifi-
cantly mixing with the continuum states in this
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We find (gs [ys)W 0 even when E IEe confirming
that the continuum and bound states are not ortho-
gonal. Also we find that gs[r =0) does not diverge
for z, & 5 but in fact decreases smoothly toward
the noninteracting wave function. Thus, simply
projecting out the bound-state wave function from
the continuum wave functions removes the diver-
gence. This pinpoints the cause of the divergence.
If, without further justification, we add the separ-
ate rates from the modified continuum wave func-
tions [gs) and the bound-state wave functions ) &&t&s ),

1 Rp, 1
4 [ C p (r = 0)P ', m(r, a—,)'

x g l&t& Ir=0&I'+I&&' Ir=o&l'),
E&$ y

(48)

we find that this rate is very close to the rate
computed by Bhattacharyya and Singwi, "curve c
of Fig. 1, over the whole metallic density range
2 &y, &6.

We would like to re-emphasize that the Bethe-
Goldstone equation does not correctly antisymme-
trize the electron wave functions, so that the re-
sults from this artificial separation have no physi-
cal significance. They serve only to unambiguous-

ly locate the cause of the divergences in the Bethe-
Goldstone rates found in previous calculations.
We conclude that the divergence is due to the mis-
match of normalizations, resulting from an un-

physical mixing of continuum and bound-state
wave function&. The mixing is caused by using
the Bethe-Goldstone equation in a problem for
which it is not applicable because the positron is
an impurity.

V. RESULTS FOR POSITRON ANNIHILATION AND

CONCLUDING REMARKS

Our computed rates for positron annihilation
with valence electrons are shown in Fig. 13. We
also show the experimentally observed rates in

the alkali metals'~' ' and in aluminum. Our
rates are slightly higher than the observed rates.

region. At r, =7.8, the pole itself moves into
the region, and the bound-state components di-
verge since they are incorrectly given continuum
nor malizations.

We may show this divergence is indeed a result
of incorrect normalization coupled with the mix-
ing of continuum and bound states, by defining a
modified continuum wave function

~ &t&s) in which
the bound-state wave function ( &f&+) has been pro
jected out,

(47)

7.0

6.0-

5.0-
Rate

(nanosec')
4.0-

5.0-

Rpps+2. 0-

I.O-

0
I 4 5 6 7 8 9 IO

r&

FIG. 13. Positron-annihilation rates in nsec ~ for our
calculation. Experimental points from left to right are
for Al (Refs. 30-34), Li, Na, K (beefs. 34 and 35), and

Cs (Ref. 34). For r, &6.2, the solid line is the contribu-
tion to the rate from the ~S bound state, and the broken
line is the approximate contribution to the rate from the

continuum states.

Since our calculations were made for positron
annihilation in the electron gas, we should com-
pare our calculated rates to the experimental
rates only after effects of the lattice as well as
annihilations with core electrons have been sub-
tracted out. If we were to simply subtract Car-
botte and Salvadori's" estimates of the annihila-
tion rate with core electrons for aluminum and
sodium the results would be 20%%uo smaller than our
calculated rates, but lattice effects could greatly
reduce this difference.

There are some identifiable terms we have
neglected which would tend to lower our rates.
In our V,«we assumed complete cancellation of
direct and exchange diagrams for momentum
transfers greater than the cutoff momentum k~.
Since the exchange terms actually only cancel to
leading order, this assumption will underestimate
the screening, and hence overestimate the rate.
Similarly, referring to our arguments about the
three-particle bound state in Sec. Dt, we would
expect terms we have neglected of higher order
in t,~ and t„(Fig. 9), would further increase the

screening and lower the rates. We also found that
our RPA self-energy insertions significantly low-
ered the rates, so that a more sophisticated'treat-
ment of self-energies is probably necessary.

With that said, the agreement with the observed
rates is still remarkably good over the entire
range of metallic densities. For ~, &4 our rates
continue to decrease smoothly toward the free
positronium rate of 2.0 nsec ' in marked contrast
to the Bethe-Goldstone rates. At r, =6.2 the 'S
bound state is formed and, by r, = 7, its contri-
bution to the rate is already 1.8 nsec '. With the



approximations discussed in Sec. IV', the contin-
uum contributions to the x'Rte fox' r, &6.2 decx'8R88
toward the rate for a noninteracting positron as
expected. Thus, this approach may also be use-
ful for the description of positron annihilation at
the lower electron densities which would occur
in the vicinity of' a lattice defect, a negative-ion
impurity, ox the surface of a metal.

(-)

Vq=o . .~q=o
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APPENDIX: SELF-ENERGKS

The single-particle energy for a positron or
an electron with momentum k and self-energy in-
sertions Z"& is

(A1)

where (e) or (P) labels the particle as an electron
or a positron. The Bartree self-energy fox' either
type of particle is exactly cancelled by the parti-
cle interaction with the uniform positive back-
ground, Fig. 14(a). Since the density of positrons
in the metal is vex y low, the exchange part of the
Hartree-Fock self-energy i8 only 8lgnlflcQnt fox'
the electron, Fig. 14(b). This may be included in
the RPA self-energy term which is defined as
fFig 14(c)l

kg%) $

k-qpt

(-)
(b)

w
kgb) (

FIG. 14. {a) Hartree self-energy exactly cancels inter-
action vrith uniforxn positive background for both posi-
tron and electron. {b) Exchange paxt of Hartree-rock
self-energy for electxon, For positron this term is negli-
glble4 {c)HP+ self-energy insertion for positron an6
electron.

Z ' (k &g) = d k' der'e '"
RPA ' (2 p)4

y(k')11,(k', ru')V(k') (P) k

where

(A2)

(As)

Rx'8 the free-electron Rnd positron Qx'een 8 func-
tions. For small lkl, Z("~gk, e, (k)) should be a
good approximation to the self-energy insertions.
For large lkl the self-energy effects should be
small, because the uncertainty principle restricts
the time available for the original virtual excita-
tion of momentum k to produce additional virtual
excitation8 in self -energy-type px'ocesses. Since
Z(R;~~&(k, ~,{k)) itself goes quite rapidly to zero for
lk l & 1.5k~, we used it to approximate self-energy
effects for all k, regarding it as an intex'polating
function between the high- and low-lkl limits.

%'8 used the techniques developed by Hedins' to
calculate Z(RP1„(k, 2 lk p) and extended them to cal-
culate Z(~~'~ sliP). To relate Z„pA(k, ~2lkl') to
Z„~„(k,e4(k)), we used the Taylor expansion, to
first order,
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