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Nuclear-spin-lattice relaxation in solid mixtures of ortho and para hydrogen is studied as a function
of the o-H, concentration c. Equations of motion for the dynamical two-point angular momentum
correlation functions are first obtained by the method of Blume and Hubbard. These equations are then
impurity averaged by the Sung-Arnold method to obtain equations vahd in the low-c regime.
Numerical solutions to the latter equations are then used to obtain the nuclear-spin-lattice relaxation
time T, as a function of c. The resulting T, displays the experimentally observed c'" behavior at
small c and its magnitude is shown to agree favorably with experiments at 10 K over the
concentration range 0 ( c ( 0.5.

I. INTRODUCTION

The properties of solid mixtures of ortho (J= 1)
and para (J= 0) hydrogen molecules have been ex-
tensively studied both theoretically and experimen-
tally in recent years. ' A popular method of exper-
imentally probing this system has been through nu-
clear- magnetic- relaxation studies. Recently, such
studies have been undertaken in both the large and
the small' ortho concentration regimes and over a
wide range of temperatures. ' Of particular in-
terest in these experiments has been the dependence
of the nuclear-spin-lattice relaxation time T, on
the concentration c of the ortho molecules. Since
a knowledge of the dynamical rotational angular
momentum correlation functions of the o-H2 i.s
necessary in order to make a theoretical predic-
tion for T&, the theoretical efforts in this area
have been devoted to the development of theories
for calculating these functions. ' '

In the high-concentration regime, Harris has
calculated the spectral functions for these correla-
tion functions for both infinite and finite tempera-
tures. He uses the method of moments plus a high-
temperature expansion and obtains good agreement
with the high-concentration experiments of Am-
stutz et al. , with regard to both the temperature
and concentration dependence of the relaxation
time. More recently, Myles and Ebner, also
working in the high-concentration region, have used
a high-temperature diagrammatic technique com-
bined with a simple method of averaging over the
distribution of o-H~ molecules to calculate the
T=~ spectral functions self-consistently for the
first time. They obtain a v c concentration depen-
dence for T, which is in agreement with the data of
Ref. 3 for all c&0.5. Also, the absolute magnitude
of T, obtained in Ref. 9 is within 5% of the value
obtained by extrapolating the data of Ref. 3 to T= ~

for all concentrations larger than 0. 5.
The low-concentration regime (c&0.5) has been

explored by Sung, Harris, Hama, Inuzuko, and
Nakamura, and Ebner and Sung. Sung has ap-
plied the high-temperature statistical theory,
developed for paramagnetic resonance with a small
concentration of spins, to the calculation of the
angular momentum correlation functions and Harris
has used an improved version of the same theory.
The T& resulting from these calculations has a con-
centration dependence of g", which is in agree-
ment with the data of Weinhaus and Meyer for
c&0.5, but the magnitude of T& obtained in this way
is in disagreement with that data by as much as
30/o at some concentrations. Hama et a/. , have
developed a theory which is capable of treating the
T = ~ correlation functions at all concentrations
and which gives a concentration dependence and
magnitude for T& which are in fair agreement with
experiment for all q. ' Both the method of Refs.
2 and 6 and the method of Ref. 7 suffer from the
defect that the impurity-averaged correlation func-
tions are obtained by statistically averaging as-
sumed functional forms and no attempt is made to
determine the shape of the spectral function from
first principles. The first attempt in the small-c
region to calculate the high-temperature correla-
tion functions self-consistently and thus to over-
come this defect was made by Ebner and Sung. e

They used the Sung-Arnold' method of impurity
averaging the Blume and Hubbard correlation
function theory and have obtained a T& which has
the experimentally observed c" concentration de-
pendence at small e. Their theory is only quali-
tative, however, since they have made no attempt
to properly account for the anisotropy of the inter-
molecular interactions. For this reason, they did
not obtain quantitative agreement with the experi-
mental magnitude of T~.
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It is the primary purpose of this paer to improve
the calculations of Ebner and Sung by properly
treating the anisotropy of the electric quadrupole-
quadrupole (EQQ) interaction, which is the domi-
nant or ientationally dependent interaction between
two o-H2 molecules in solid H~, ' and which there-
fore almost totally determines the shape of the an-
gular momentum spectral functions. As in Ref.
8 the Sung-Arnold method of impurity averaging
the infinite-temperature Blume-Hubbard' correla-
tion function equati. ons is employed, but the equa, —

tions are obtained using the full EQQ interaction
rather than an isotropic approximation to it. The
impurity-averaged correlation function equations
are solved self-consistently and the spin-lattice re-
laxation time is computed as a function of the o-H2
concentration using a formula for 1/T, derived by

applying the Blume-Hubbard' theory to the nuclear-
spin correlation functions in thi. s system. The re-
sulting T& is compared to the data of Weinhaus and

Meyer at a temperature of T =10 K and agreement
is generally good with regard to both its magnitude
and concentration dependence. Finally, the dense
(c =-1) Blume-Hubbard equations for the rotational
correlation functions are solved self- consistently
and the shapes of the spectral functions and the
spin-lattice relaxation time obtained from this cal-
culation are compared to both the high-c experi-
ments of Ref. 3 and to the theoretical results of
Myles and Ebner at c=1.

The remainder of this paper is organized as fol-
lows: In Part A of Sec. II the physical model and
the notation are presented. Part B of Sec. II con-
tains an outline of a matrix generalization of the
Blume-Hubbard correlation function formalism.
In Part A of Sec. III, the formalism is applied to
the particular case of spin-1 particles interacting
via a quadrupole-quadrupole interaction, and the
equations of motion for the rotational angular mo-
mentum correlation functions are derived for the
dense system. The impurity-averaging method of
Sung-Arnold" is briefly reviewed in Part 8 of Sec.
III and is used to obtain equations for the impurity-
averaged correlation functions. These equations
have been solved numerically and the solutions are
also presented in Sec. III B. In Sec. IV, a formula
for 1/T& is derived via the Blume-Hubbard tech-
nique. The impurity-averaged correlation functions
are used in this expression and the resulting T& is
compared with the experiments of %einhaus and
Meyer at a temperature of 10 K for a variety of
o-H, concentrations. In addition, a formula for
1/T2 is derived by the same method and the T2 ob-
tained from this expression is compared with ex-
periment. In Sec. V the self-consistent solutions
are obtained for the dense-system Blume-Hubbard'
equations derived in Sec. III and the values for T,
obtained from this calculation are compared with

the experiments of Amstutz et gl. at large c and
with the theoretical c=1 results of Myles and Eb-
ner. Some remarks are then made regarding the
reasons for the differences in the results found in
Ref. 9 and those obtained here for the dense system.
Finally, the basic limitations of the Sung-Arnold
averaging technique are discussed and an alternative
theory is suggested.

II. THEORETICAL BACKGROUND

A. Model

As was first shown by Nakamura, the orienta-
tionally dependent part of the intermolecular po-
tential between o-H2 molecules in solid H~ is
dominated by the electric quadrupole-quadrupole
(EQQ) interaction. The EQQ Hamiltonian may be
written

8 = ,', 470~ 1 —p,Q (a/
~
r, , ~

)'

&Q C „A, (r;)IY, '"(Q„.)]*A,„(r,),

where 1" is the EQQ coupling constant, a is the lat-
tice spacing,

C „ is the Clebsch-Gordan coefficient C(224, mn),
r, and r& are the locations of moleculesi and j in
the hcp lattice, Q,.~

= (0,~, P, &) expresses the orien-
tation of r, j= r,. —r& with respect to the c axis, and
YP is a spherical harmonic. The quantity A, „(r;)
is the irreducible angular momentum operator at
site r; and has been discussed and defined in Refs.
14-18. In what follows, only the particular case
of 4=1 will be considered. As a consequence, A&

and A&, which are, respectively, quadratic and
linear in the components of the angular momentum
operator X, are the only A, that will enter the cal-
culation. The form of the Hamiltonian shown in
Eq. (1) can be obtained from the standard version
given by Eq. (2. 1) of Ref. 2 by replacing the spheri-
cal harmonics YP(Q;) which occur in that equation
by their operator equivalents ' and then rewriting
those operators in terms of the irreducible tensor
operators A, (r;). Here A; specifies the orienta-
tion of molecules i with respect to the c axis of the
crystal. Since it has been shown' that other pair-
wise interactions and crystal-field effects are only
small perturbations on H, at least for moderately
large o-H~ concentrations, and since it has also
been shown' that the only effect of three-body inter-
actions, dielectric screening, and phonon interac-
tions is to renormalize the interaction energy I" the
only intermolecular interaction that mill be consid-
ered in this paper is H@ with I' taken as 0. 712 K. '

The nuclear-spin-rotational angular momentum
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G ()(r&, r&, t)

=(6A D(r„rq, t))/(5A ])(r„r),0)), (3a)

where the angular brackets denote a thermal aver-
age, 5A z is the response to a unit external mag-
netic field,

~A e(r„r&, t)

~0
=l(m] i( dt [ (r„ i)A, Ae(rt, t')]e" ),

6-O ~
(Sb)

interactions which occur in solid II~ are discussed
in Refs. 2 and 6. Although these interactions have
a negligible effect on the rotational angular momen-
tum correlation functions to be discussed below, ~'6

they are of primary importance in the calculation
of the nuclear-spin-lattice relaxation time to be
discussed later. The interaction of the angular
momentum J of a given molecule with its own nu-
clear spin I takes the form

H„=d[3(I ~ J) —(I) (J) ]+ (2d —c')(I ~ J), (2)

where d = 57.67 kHz and e' = 113.S kHz. The terms
proportional to d originate from the internuclear
dipolar interaction of the two nuclei seisin the H~

molecule and the term proportional to e' repre-
sents the interaction of the nuclear spin I with the
magnetic field produced by the molecular rotation
currents. Harris has written that part of H„
which is proportional to 4 in terms of the dipolar
interaction between the two nuclear spins in the
molecule. The above form can be obtained from
his expression by taking matrix elements of it
within a manifold of constant J and I and then by
using the Wigner-Eckart theorem. Strictly
speaking, Eq. (2) should also include effects of the
interactions of J and I with the external magnetic
field. ' This interaction will, however, have a
negligible effect on the calculation of the angular
momentum correlation functions except at extreme-
ly small concentrations. ' Also, the effects of
the external magnetic field on the nuclei and on T&

can be transformed away by assuming that all cal-
culations are performed in the rotating frame. '

The effects of such an interaction will therefore be
neglected in what follows.

B. Generalization of the Blume-Hubbard formalism

For convenience, the notation that will be used
to describe the infinite-temperature correlation
functions to be discussed below will be a general-
ization of that of Blume and Hubbard' combined
with the tensor-operator notation. ' ' The corre-
lation functions considered here are therefore de-
fined as

correlation function defined in Eq. (Sa) is precisely
the same as the one defined in Eq. (2a) of Ref. 9.
This fact will be shown explicitly in Appendix A.

In order to derive the equations of motion for the
various correlation functions, it is necessary to
begin with the equation of motion for the operator
A (r&, t). The Hamiltonian in Eq. (1) and the com-
mutation relations of the tensor operators lead to
an equation of the form

A (r„ t) =gh ()(r„ t)A])(r„ t), (4a)

where

h, ](]r„t) = -i Q Q Q»(r„r~)A„(r~, t). (4b)
r

The 0»'s in Eq. (4b) depend upon the Clebsch-
Gordan coefficients C„and upon the spherical har-
monics Y4", which appear in Eq. (1). These Q,»'s
are tabulated in Tables I-V and discussed in Ap-
pendix B. Equation (4a) is a matrix equation i.n the
indices n and P and can thus be generalized to the
form

A(r„ t) = h(r„ t)A(r„ t), (6)

t
IIA(rt, rt, t}=exp, Ii I dt'0(r„ t')}0A(r„rt, p), (0)

where exp,( ) means that the quantity within the
curly brackets is to be time ordered. The matrix
version of Eq. (3a) then gives

pt I

G(r„rt, t) = (exp, i } 0(r„ t )dt 5A(r„rt, p'}'
~o

(5A(r„rq, 0))

or in Blume and Hubbard's' notation

(Sa)

where the A's without indices represent a column
vector in the space of ~ and p and the h without in-
dices represents a matrix in that space. Similarly,
Eqs. (3a) and (Sb) can be considered as matrix
equations in the same space.

If the operation defined by the matrix version of
Eq. (Sb) is applied to Eq. (5) the result is

5A(r&, rz, t) = h(r&, t) 5A(r;, r&, t) + 5h(r;, r&, t)A(r;, t).
(6)

As in Refs. 8, 12, and 13, the second term in Eq.
(6) will be neglected here. This is equivalent to
Blume and Hubbard's~D "Approximation (A),

" and is
expected to be good at short times. It should also
be pointed out that this approximation is necessary
for the application of the Sung-Arnold method of
impurity averaging.

Neglect of the second term in Eq. (6) allows that
equation to be directly integrated, giving

where the square brackets denote the commutator
and the shorthand notation A =A, has been used.
Although the notation is somewhat different, the

t
G(r„r„ t) = ((exp.Ii ' 0(r„ t')dt'})),

D

(6b)



THEORETICAL STUDY OF NUCLEAR-SPIN —LATTICE. . .

where comparison of Eqs. (Sa) and (Sb) defines the
double brackets. When both the cumulant expansion
theory of Kubo, and Blume and Hubbard's "Ap-
pl'oxlII1Rtloll (B) Rlld 1'ts vRriolls col'011RI'les Rl'8

applied to Eq. (Sb) the result is (taking r&=0)
t

G(t„ t)=ax )It- dt dt ((h(ttt)h(, tt, t )))I .

(Sc)
After the definition of the douMe brackets in Eq.
(Sc) is taken into account and Blume and Hubbard's
"Approximation (B)" is again used, the correla-
tion function matrix takes the final form

These correlation functus. ons will be denoted simply
as 6 . In addition, in keeping with the spirit of
Blume and Hubbard's "Approximation (A)" and its
corollaries only the autocorrelation function will
be considered. ' Speeiaiization to the autocorrela-
tion function is also necessary in order to impurity
average by the Sung-Arnold method. 1~ The corre-
lation functions w'ill therefore be written with their
position dependences suppressed. Under these
conditions, Eq. (Sd) becomes

~t ~t
G (f)=exp, — df' df"

dtt 0 he) 0

~t

G(r;, t) = exp. —
)

dt dt ('II(r;, f )h(rI, & ))
w{) tQ

(Sd)
xP (h„(tt, t')h„(tt;t" }}I, (9)

where it should now be emphasized that the argu-
ment of the exponential here contains a giqgl'@-
bracket average.

III. APPLICATION OF THE FORMALISM TO THE EQQ
INTERACTION

A. Correction function equations of motion for the dense system

In this paper, only the diagonal elements 6, of
Eq. (Sd) will be considered. Furthermore, only
the cases a = (1, m) and n = (2, m) are important
here since they are the only ones that are nonzero
at high temperatures within the 4= 1 manifold.

where the elements of the matrix A have been ex-
plicitly shown.

In order to obtain a closed set of equations for the
functions G (t) it is necessary to substitute the II (),
givell by Eq. (4b)h lllto Eq. (9)h to I11Rke llse of tile
definition of the correlation function, given in Eq.
(Sa) and discussed further in Appendix A, and to
again use the corollary to Blume and Hubbard's 3

"Approximation (A)" which neglects all correlation
functions but the autocorrelation function. When
these steps are taken, the equations for the corre-
lation functions are

d. (t)=ex(t, — dt (t t')Q 'Q (rtt„-) tt( (}tt)(t-() "G {t')I, (10)
40 By

where one of the time integrations in Eq. (9) has been performed by a slight rearrangement, and y= (f„,—m„)
when y = (f„,m„).

The equations which describe all of the G (f) can now be found from Eq. (10) and the A„~„'8 listed in Ta-
bles I-V. Before this is done, however, a further simplification can be made by noting that with the ne-
glect of magnetic field effects G, = G, . This simplification reduces the number of independent G 's from
eight to five. The equations of motion for these five functions are

10
G,„(I)=exp -2+ ~--( Q E"„(8,(()}) ' dl'(v. -I')G~„(v') (11a)

where m =0, 1, 2 and

10 2. .
G,„( )= xp -2+ g e„(e;y) d '( — ')G,„.( '), (lib)

where m, =O, l.

These are the Blume-Hubbard equations of motion
[within "Approximations (A) and (B)"]for the dense
quadrupolar lattice. They are written in terms of
the dimensionless time I = (~ISOII)I~~I'f which is useful
for obtaining the numerical solutions which may be
found in Sec. V. The functions F„(8,(QI}) and
H„" (8, Q) are given in Appendix C where it is also
noted t at F.'(8, y) -=e„'(8, y), so that G„(r)= G„(~)-
within the approximations of this paper. Note that
this is not true in general and that in particular it

I

is not true in the calculations preserited in Ref. 9.
Equations (11a) form a closed set which can be

solved for the GI (I ); substitution of these into
. Eqs. (11b) tilell yields the Gl (&). Tllls RgRill ls R

consequence of the approximations used here and
is in marked contrast to the equations of motion
obtained for these functions in Ref. 9 by the spin
self-energy method. In that paper, the solutions
for the five independent G 's had to be obtained by
solving all five equations of motion simultaneously.
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The fact that drastically different situations oc-.
cur in the two cases with regard to the equations of
motion for the 6 's is probably not as surprising
as it might first appear. The differences are un-
doubtedly due to the different approximations made
in the derivation of the equations here and in Bef.
9. In particular, the equations in Bef. 9 were ob-
tained as the lowest-order approximation in a, well-
defined self-energy expansion and are valid to low-
est order in I/s, where s is the number of nearest
neighbors. On the other hand, the equations ob-
tained in the present paper were derived by the use
of Blume and Hubbard's'~ "Approximations (A} and
(B)." Although it is not clear at the present time
exactly what the physical differences are between
the approximations made in the two cases, it is
clear that the self-energy approximation does not
restrict one to keeping only the autocorrelation
function while "Approximation (A)" and its corol-
laries obviously do. In addition, it is clear how to
generalize the "bubble" approximation used in Bef.
9 to higher orders in a Brillouin-signer type of
perturbation theory, while it is not obvious how to
generalize the Blume-Hubbard theory to higher
orders in the interaction. As Blume and Hubbard
themselves have shown, it is possible to use their
theory without invoking "Approximation (A). " In
fact, when this is done, their theory and the "bub-
ble approximation" for the self-energy appear to
be equivalent, at least for the Heisenberg paramag-
net case. " This aspect of Blume-Hubbard theory
applied to the EQQ interaction will not be consid-
ered here.

B. Sung-Arnold average: The correlation-function equations
of motion for the impurity-averaged system and solutions

In order to obtain solutions for the correlation
functions G (f}which are valid for other than a
dense quadrupolar system, it is first necessary to
impurity average Eqs. (11). When this is done,
solutions to the averaged equations will be applica, -
ble to solid mixtures of 0-Hz and p-H2. The aver-
aging method that will be used was developed by
Sung and Arnold for their study of nuclear-spin-
lattice relaxation via impurities in metals. This
formalism zs briefly reviewed below

It is first convenient to rewrite Eqs. (11) in a
more compact form:

G (7) = exp — M (r, r) ',
where direct comparison of Eqs. (11) with Eq. (12)
defines the M„(r, 7). In the case of a dense ciuad-
rupolar system (c =1), the sum in Eq. (12) goes
over all lattice sites. For t.-&1 however, the sum
goes only over sites which are occupied by a J=1
molecule. If one assumes that r is a random vari-
able for cc 1 the ciuantjty of interest here is

(G (v))„, where ( )„denotes the average over the
random variable r. For convenience, this averaged
correlation function will again be denoted as G~(v).
Assuming that for a specified n, the M at different
lattice sites are statistically independent and that
there is a uniform probability that a given J= 1
molecule can be found at a given site r, Sung and
Arnold show that the averaged form of Eq. (12) can
be written

G (r) = exp —c Q (1. —e "I'""), (13)

An expression for 1/T, can be obtained by apply-
ing the matrix generalization of the Blume-Hub-
bard' formalism that was discussed in Sec. II di-
rectly to the Hamiltonian, Eq. (2), which describes
the nuclear-spin-rotational-angular-momentum in-
teraction. In. addition, this same calculation yieMs
an expression for the transverse nuclear-spin re-
laxation time T~ due to EQQ interactions, as well
as relaxation times for the other three nuclear-
spi. n correlation functions, which will be defined

where e is the concentration of J=1 molecules; it
is understood that the G's contained in M (r, ~) in
Eq. (13) are to be replaced by their average values,
and the sum over r is now over all sites. Equation
(13) with M obtained from Eqs. (12) and (ll) are
the equations of motion for the impurity averaged
correlation functions.

These equations have been solved numerically for
various values of the O-H& concentration in the in-
terval 0.001 ~ c ~ 1.0. The procedure used to solve
them was similar to that used in Refs. 8 and 12.
One significant difference between. the present
treatment and. that of Refs, 8 and 12 is that here the
sum on r was done explicitly over 300 shells of the
hcp lattice rather than being approximated by an in-
tegral. The results for the various G, (r) are shown
in Figs. 1 for e = 0. 01, 0. 1, and 1.0; for small
c +0. 1, the G are approximately Gaussian at short
times (G- e "'

), simple exponential at intermediate
times (G-e '), and exponential v I at long times
(G-e ' ). In this region of concentration, it is
the long time behavior that is important in deter-
mining Tj.

It should be noted in passing that it is possible to
obtain the incoherent quasiela. stic differential neu-
tron scattering cross section in solid H~ by using
the G (r) for each c in a formula, derived in Ref.
9, which expresses the scattering cross section in
terms of the frequency-dependent spectral func-
tions. Since this paper is concerned primarily with
studying nuclear-spin-lattice relaxation, such a
calculation will not be done here but will be de-
ferred to another payer.

IV. DERIVATION OF RELAXATION TIMES:
EXPERIMENTAL COMPARISON
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angular momentum correlation functions where ap-
propriate and with the interaction given by Eq. (2)
replacing the EQQ interaction. As before, only the
autocorrelation functions and only G 's diagonal in
the indices a and p will be kept. Similarly, the o»y
indices a. in G that need be considered here are
u=(l, m) and u=(2, rn). If magnetic field effects
are again neglected, the equations of motion for the
nuclear-spin correlation functions take the general
form

0
0

I I I I l I I I I i

I 2
(T /IOOO)

~t

G'(f) =exp '- df (f-f )
"0

x Q (- 1) "Q~tj„Q~ „G„(t)-
8x

0.9

0.5

I 02—
E
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O. I

07~
I

E

0.5

0.5

0
0

I.o

I

20
T

I

40

0
0 0.5
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FIG. 1. Correlation functions G&~(v) vs dimension-
less time v at concentrations (a) c=0.01, (b) c=0.1, and

(c) c = l. 0; in Figs. 1(a) and 1(b), the upper pair of
curves are referred to the upper and right scales while
the lower pair of curves are referred to the lower and left
scales.

where Q~z„ is analogous to Q z„ in Eq. (4b) and G„(E)
is the rotational angular momentum correlation
function already discussed. The 0 ~„are tabulated
in Tables VI-X and are discussed in Appendix D.

Although Eq. (15) can certainly be evaluated for
all t using the above results for G„(t), it is the long
time behavior that is usually experimentally ob-
served. The expected large time exponential decay
of the nuclear correlation functions can be obtained

by the following reasoning. The quantities Q~», as
shown in Tables VI-X, vary on the scale of the nu-
clear- spin-rotational-angular- momentum interac-
tion energies c and d. On the other hand, the in-
tegrals of the form

~t
df (f- t )G„(f )

wo

vary inversely as the square of the EQQ interaction
energy I'. This can easily be seen by rewriting
them in terms of the dimensionless time &. The
exponent in Eq. (15) is therefore proportional to the
quantities (c /I') or (d/I'), which have a magnitude
of the order of 10 '~. Since the number multiplying
the integral in the exponent is so small, the nuclear
correlation function G (t) itself will only differ from

I I
i

I I
[

I l

below.
In analogy with Eq. (3a), one can define a nuclear-

spin correlation function as

G'~(r„r&, f) = (5A~B(r„r&, f))/(5A '~(r„r&, 0}), (14)

where the superscript I means the nuclear spin and
5A~~ is defined by Eq. (Sb) with the A 's replaced
by A"s. Here A' means the nuclear-spin irreduc-
ible tensor operator. In order to obtain the equa-
tion of motion for these nuclear-spin correlation
functions one must carry out the steps of Sec. IIB,
with the functions defined in Eq. (14) replacing the

C3
lo

C
O

O

C
V
O
&IO

Io'
IO-' I I

Io Io Io I

Relaxation Time, TI (sec)

FIG. 2. Relaxation time T~ (sec) as a function of o-H2
concentration. The experimental points are from Ref. 4.
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unity for very long times, at which Eq. (15) can be
written

G (4) = *p(—1 d4 1' (1 ))
~d0

t/T O,

where. I' (t ) and thus T ' will be shown explicitly
below for each n.

The only two of these relaxation times usually
measured in solid H2 are the longitudinal relaxa-
tion time T&0, commonly denoted T&, and thetrans-
verse relaxation time T&» commonly denoted T2.
From Eqs. (15) and (16) it can be shown after
changing to dimensionless times that these quanti-
ties take the form (for 4=I=1)

1 2 "" t2c 3d
4'p dT(1

4
GG(~)+ (G i(~)+4G (~))) (174)

1 "0

and

+ —', d~[7G~, (r)+5G„(7)+3G~~(r)]), (17b)

where Z= ('27 m)'~ 1. These equations will give T,
and T2 in seconds if c, d, and 8 are all first ex-
pressed in ergs. Equation (17a) reduces to the ex-
pression for 1/T, used in the Erratum to Ref. 9.
Also, it is the same formula for 1/T, obtained by
others ' ' using different methods. By the em-
ployment of the G, (~) found in Sec. III B, T, has been
evaluated for 0. 001& c &1.0; the result is plotted as
a function of c in Fig. 2. For consistency and easy
comparison with the relaxation times calculated in
Ref. 9, we have used 1"=0.712 K although the best
fit to the data is obtained if I"=0.754 K. The data
from Ref. 4, taken at a temperature of T =10 K are
also shown in Fig. 2. Here the experimental re-
sults have not been extrapolated to T = ~ before

-I
10

0
a
L

C
Op

44 )O'—

ips I I I I I I I I I I I

lO IO lO IO I

Relaxation Time, T& (sec)

FIG. 3. Relaxation time 7.'2 {sec) as a function of 0-82
concentration. See Ref, 24 for an explanation of where
the experimental data were obtained.

comparison with the theory, as was done in Ref. 9
for the large-c data of Ref. 3. The reason for this
is that, although one would naively expect T, to vary
with temperature at all concentrations, even in the
nondiffusive region, the data of Ref. 4 indicate that
this is not the case for the low concentrations dis-
cussed there. In fact for 0. 019+ c & 0. 510 the data

,indicate that, except for diffusive effects, T& is
relatively constant in temperature over the range
6& T& 10 K. Thus, neglecting diffusion, T&(10 K)
= T, (~) and no extrapolation is necessary. This be-
havior is in marked contrast to the high-c data of
Ref. 3 which show that T& varies markedly with T
for c &0. 5 so that, in order to obtain a theoretical-
experimental comparison in Ref. 9 it was necessary
to extrapolate that data to T = ~.

Figure 2 shows that the slope of the theoretical
curve for T, approaches ~3 for c very small and in-
creases monotonically as c increases. Both the
c dependence at low c and the departures from
this behavior at larger c are in general agreement
with the experimental data. The theory is expected
to be most accurate for c «1 but large enough that
crystal-field effects are not important. From Fig.
2 one sees that this expectation is realized; the ex-
perimental and theoretical values of T& are most
nearly equal for 0-H, concentrations between 2 and
10/0. It is interesting to note that even though the
Sung-Arnold method of averaging is not expected to

. be valid at large concentrations, the T& obtained
from the solutions to the impurity-averaged equa-
tions at large c follows the general trend of the
high-c experimental data ' and the value for T, ob-
tained at c = 1 by this method is T, = 338 msec (for
I' =0. 712 K), which is within 12/g of the experimen-
tal value at that concentration, Tj'""= 382 msec,
which was obtained in Ref. 9 by extrapolation to
T = ~. It should be noted that there are uncertain-
ties in the EQQ parameter I'. For example, Table
IX of Ref. 1 shows that different experiments obtain
values for this parameter differing by as much as
10/q. Therefore, the theoretical values of T, ob-
tained here have a built in uncertainty of at least
10%.

Experimental results on T2 due to pure EQQ in-
teractions in solid H2 are somewhat sparse. In ad-
dition, the data available are, for a restricted range
of concentrations. ' Nevertheless, T2 given by
Eq. (17b) has been evaluated for c in the range
0. 001&e&1.0 and the results are plotted ini'Fig. 3
along with the experimental data taken from Ref.
6. The theoretical results for T2 shown in that fig-
ure show the same c ~ dependence at low c and the
same general increase with increasing c as was
found for T,. As can be seen from the figure, where
the data are available, the theory and experiment
are in general agreement.

Although, at the present time the nuclear-spin
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TABLE II. Q(0,2m, 2n) ~pp
m') I' (a/2) .

~ io

C0
0
2

C
Cl

C0~ io'

2C22 Y4

2C21 Y4

2C20F4

2C2 1Y4
1 2i2

2C2~ 2Y4
0 )i2

C21Y4

CflF4

C10F4

Cl 1 Y40

C2~ 1Y4
*

0

-C2 1Y4

-C, ,Y40
2i2

—CipF4

0 —C21F4
*

-2CR 2Y4
0

—2C2 1Y4

—2C20 Y4
-2+

-2C21 Y4
*

—2C22 Y4

io', i

lo io' Io
Relaxation Time (sec)

Io

I i i I i i I
and thus of measuring T», T», and T» in that
system.

FIG. 4. Relaxation tlDles T2D, T~f, and T22 as func-
tions of 0-82 concentration.

2 —
[G~~ (T) + 2G, O(v )]

T22 SE +0 3

3d2
+ (2Gss(r)+ Gss(r))),2

1 2
"" c

[5Gi~(r) + G,o(r)jeZ.0 3

3d
+ (2G, (r) 22G s(r) s 2Gss(r))),

(isa)

(18b)

1 2 i""
lp 9ddr 2s Gss(r) 2 Gss(r))

20 "0
(18c)

Again, the formulas will give T in seconds if all
energies are expressed in ergs. These relaxation
times are plotted as functions of c in Fig. 4. As
can be seen from that figure, their low-c behavior
is again c with the same general trend at high c
as is displayed by Tj and T2. Since nuclear acous-
tic resonance (NAR) measures the higher-order
nuclear-spin correlation functions G23, G2&,
G20 ' ' in other systems, perhaps it could be used
as a method of probing these functions in solid H2

~ff,2ffi 2/~ ~p7 +~ I ~+/&~ o

relaxation times T», T», and TM, do not appear
to have been measured, it is nevertheless interest-
ing to show their forms as given by Eqs. (15) and

(16) and to evaluate them as functions of concentra-
tion. These relaxation times are (for /=I =1)

V. SOLUTIONS TO THE DENSE SYSTEM EQUATIONS:
LIMITATIONS OF THE BLUME-HUBBARD-SUNG-ARNOLD

METHOD

It is of some interest to solve the dense Blume-
Hubbard equations, for the quadrupolar solid. It
is worthwhile to obtain such solutions for two rea-
sons. First, experimental data for T, exist'
near c =-1 and the Tj obtained theoretically could be
compared to these data. Secondly, Myles and
Ebnere have used the spin-self-energy method to
obtain these correlation functions at large c and it
would be interesting to compare their solutions
with the solutions to Eqs. (11).

Equations (lla) and (lib) have been solved nu-
merically by the same method used in Sec. IV. The
resulting G (r) are very nearly identical with those
shown in Fig. 1(c); they are basically Gaussian in
character for short times and display an.essential-
ly exponential behavior at long times. The main
difference that should be noted in the solutions
found here and those found in Ref. S (see Fig. 4 of
that reference) is that the functions G,o and G~, as
found in Ref. 9 show marked oscillations in time,
whereas the corresponding functions found here do
not. Theoretical values of T& at c=1 have been ob-
tained by using these dense system solutions in
Eq. (1'7a). The results of this calculation are (for
r=o. vi2 K)

T& = 355 msec . (is)
These results may be compared with the T =~,
c =1 experimental value of 382 msec, obtained from
the T = ~ extrapolation of the data of Amstutz ef; al.

TABLE III. 022, fm 2„/(~7 r) I" (g/ ) .

2Cgl Y4

2C«F4*

2C1 1Y4
0+

2C2 &F4

v6C20Y4

46 Clp Y4*

vYC00Y4'

vYC&0Y '

%6C20Y

v6C2 1Y4

V6C1 1Y4*

v 6C1()Y

&6C11F42

v 6 C21Y4

2C) 1Y4
*

2C20Y

2C22F4'

—2 C2 f Y4

Cf,-f Y4D

Y~f Q

C Y'*
2i 4

&2C Y4*

vYC, ,Y

v2C2DY

&2C2f Y4'*

2 C)2Y4

0
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TABLE IV. —Q2( )~ 2„/p~)' 2 I' (a/r)~. TABLE VI. 0(( g, q.

2v 3 C20 Y24

2' C„I,'*
2&3CooY4*

2vSC

2v~3C2p Y '*

10Cn gY4

10Cg g Y4o

10Cgp Y4~

10C((Y

10C2(Y4

2v2C, ,Y,'*

2&2C, ,Y,'*

242Cgp Y

2v 2 C„Y4'*

2&2C22 Y44*

11
10
22
21
20

2, —1

0
C Q

0
0
0
0

10

—C g
0
0
0
0
0

P
22

0
0
0
0
0

P2dv

21

0
0
0
0

—4~3cfv
0

0
0
0

4~3dv
0
0

0
0

—4%2 dv
0
0
0

which was discussed in Ref. 9. The result given by
Eq. (19) is within 7/~ of this experimental value.
The experimental number is obtained here if l" is
taken to be 0. 765 K.

The differences in the results for the dense-sys-
tem correlation functions obtained here and in
Ref. 9 as well as the difference for the theoretical
T~ values obtained in the two calculations are cer-
tainly almost wholly due to the different approxi-
mations that are made in Blume-Hubbard 3 theory
with "Approximations (A) and (B)" and in the
"bubble" approximation for the spin self-energy.
This point has already been discussed in Sec. III
of the present paper. In light of the discussion
there, it is really difficult to say which theory is
"more correct, "but it is clear that invoking
"Approximation (A)"and its corollaries throws away

terms which are kept in the self-energy expansion.
At this point is should be emphasized that the re-

sults obtained here for the correlation functions and
for the relaxation times were obtained by the ne-
glect of both crystal-field and magnetic field ef-
fects. As the concentration c becomes very small,
these effects certainly become important. ' Using
the formalism described in Sec. II to take them into
account is straightforward but algebraically compli-
cated; such a ca.lculation will be left for a future
publication. It should also be mentioned in passing
that although the calculations presented above were,
for simplicity, performed in the T = limit, it is
possible to treat the Blume-Hubbard theory at finite
temperatures and also to incorporate finite-tem-
perature effects into the Sung-Arnold formalism.

One of the basic limita, tions of the Sung-Arnoldia

method of impurity averaging is that it is limited
to the form of the Blume-Hubbard correla, tion
function theory in which "Approximations (A) and
(B)" are used. The disadvantages of these two
approximations are discussed in Sec. III and briefly
in this section. Although in the general form of
Blume-Hubbard theory these approximations are
not necessary, ~3 it is not clear at the present time
how to generalize the Sung-Arnold method to treat
this kind of correlation function theory. Since the
general Blume-Hubbard theory is equivalent to the
"bubble" approximation to the spin self-energy, '~

neither is it clear how to apply a, Sung-Arnold im-
purity average to the equations resulting from the
latter theory.

An additional disadvantage of the Sung-Arnold
method is that it accurately treats only low concen-
trations of impurities but gives the wrong concen-
tration dependence for T1 at high c. On the other
hand, the spin-self-energy method combined with
an ad hoc method of averaging proposed in Ref. 9
gives the correct c dependence of T, only at high
concentrations. It is therefore desirable to de-
velop a theory which is capable of treating the
entire concentration range 0 & c & 1, and which is
at the same time not restricted to "Approxima-
tions (A) and (B)"and their disadvantages. Such
a theory, based upon the spin-self-energy method
combined with a coherent-potential-like effective-
medium approximation, has recently been pro-
posed and calcul. a,tions which apply this theory to
solid H3 and other materials are now in progress.

APPENDIX A: RELATIONSHIP BETWEEN CORRELATION
FUNCTION DEFINITIONS

The correlation function defined in Eg. (Sa) and
that defined in Ref. 9 are identical if only times

TABLE VII. Ql~o & „.

C2g Y43
Q

C~~ Y4

Cio Y4
1+

Ci, -~ Y4*

C2,-i Y4'

—C2, -~ Y4
pg—Cg (Y4

—C1oY4'

yy3 $-C„Y4

11 0

1,—1 c'I
22 0
21 0

2, —1 0
2, —2 0

P
], -]. 22

0
0
0
0
0

gdV

0
0
0
0

—pe3

0

2 —1

0
0
0

4dV

0
0

2 —2

0
0

—2dv
0
0
0
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TABI E VIII. 0212 g y. TABLE X. 020,g, y.
I

11
10
22
21

0
0

. 0

P
10

0
0

3'&
0

0
2C Q

0
0

-v2c'I
0
0
0

ll
1 —1

21
2 -1

0
0
0

—;v3dn

0
0

——',&3ffsv

0

21

0
&3c'u

0
0

2, —1

-v 3c'I
0
0
0

t~ 0 are considered. This can be shown rather
easily in the following way. Equation (Sa) gives

G,a(r, —r&, t)= (a4 a(r&, r&, f))/(M a(r;, r&, 0)),
(Al)

while Eq. (2a) of Ref. 9 gives

G a(r;-r&, t)=Q (r;, t)Aa(r&, 0)) (A2)

for times t&0. Blume and Hubbard" show that

(6A„,(r„r„f)) = pQ. (r, , t) A,'(r„o)), (AS)

where P =1/kT. Using Eq. (As) in Eq. (Al) gives
the result

G a(r) —rg f)

=Q (r;, t)A (r„0))/Q (r;, 0)Aa(r~, 0)). (A4)

Now, according to Ref. 9, the A 's are normalized
so that the function in the denominator of Eq. (A4)
is unity. Therefore, G a defined by Eqs. (Al) and
(A2) are equivalent.

APPENDIX B: 0 P~(rf, ri)

The & a„(r,-, r~)' s defined in Eq. (4b) are easiest
to present in tabular form. In Tables I-V the C
represent the Clebsch-Gordan coefficients C(224,
nm), the property C = C„„=C „has been
used, and Y", * means [Y4(8, P)]*.

1, -1;2m;pn~ 2, -].;]m;pny d 2, -2, ;1m;pn Can be Ob

tained from the tables by the use of the properties

&, -l;a, ~;a,-n ( ) ( 1l;am;an)

and

l;a1, -m; n a( ) ( alp1m lan) (B2)

TABLE IX. Q2( g, q,

11
10

1,—1
22
21
20

0
0
0
0
0

—3vSdw

10

0
0
0
0

—'dwi5
2

0

0
0
0

gv 2dw
0
0

22

0
0

&2c'u
0
0
0

21

0
c Q

0
0
0
0

20

-v 3c'I
0
0
0
0
0

Also, it should be noted that the following condition
holds:

1l, 1m, 1n 1l, 1m, 2n 1l,2m, ln 2l, am, 1n 1l,2m, 2n

(»)

APPENDIX C: FUNCTIONS F .(0,&) and H (0,$)

The functions E„,(8, Q) and II"„.(8, Q) defined in
Eqs. (lla) and (lib) are listed below. The symbol
C~ means the Clebsch-Gordan coefficient C(224,
mn), I Y» I means IY", (8, P) I, and the (8, @) de-
pendence of the E's and H's has been suppressed:

s'a =2C»I Y4I +cail Y41 +ca, il Y41 +2c'., al Y41

&i = 2cai
I
Y41'+ C» I

Y41'+ 2ca, il Y41'+ Cl, i I
Y41',

&o = 2Cao
I
Y41'+ Cio I Y41',

Fl = IIl =-'(2cl.
I
Yl I'+ 6cl, I

Y41'+6c»
I
Y41'

Fl = II' =-'(2cao
I
Y41'+6cxo

I
Y41'+ scoo I

Y'41'),

&a = S(cail Y41'+Ca, -il Y41')

F' = s(c'„IY', I'.c'.. . I
Y'I'),

&o = Scio I
Y41',

a', =4c'„IY',I'+6c', , IY,'I'+6c', , IY,'I'+4c,', IYll',

III 4C211 Y41' + 6cli I
Y41'+ 6cl,-i I

&41'+4Ca. -i I Y41',

d,'= 4c,', I
Y', I'+ 6c'„IY,' I'.

APPENDIX D: Qip

The & a„'s defined in Eq, (16) are tabulated in
Tables VI-X. Columns in the tables which would
have all zero entries have been left out. The quan-
tities c and d are the nuclear-spin-rotational
angular momentum interaction energies defined in
Eq. (2) and the abbreviations u = v y~, v = ( p z p ~/yz)'~a,
and u = (yz pz/pz)' ' have been used. Here y~
= a&(J+1), ys=~sI(I+1) gJ =kZ(J+1)(2J'-1)(2J+3)
and pz =/~I(I+1)(2I-1)(2I+ S). For o -Ha(J'=I = l)
these last four quantities have values y~= y, =-,' p,1 2

Q pr 3 Nonzero g, which are not shown can be
obtained from those in the tables by use of the re-
lation

0 g„=—Q--,
where n=(l, -m, ) when n =(l, m&).
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